
High-Efficient Intrusion Detection Infrastructure

Thomas Holz, Michael Meier, Hartmut König

Brandenburg University of Technology Cottbus
Department of Computer Science

PF 10 13 44
03013 Cottbus

Germany
{thh,mm,koenig}@informatik.tu-cottbus.de

Abstract: In recent years research activities in computer network security focus
more actively on the development of effective methods in intrusion detection. The
reason for this development is the rapidly increasing potential of threats to social,
economical, and military information stored in information technology (IT) systems.
Powerful and practically applicable mechanisms are required to protect critical in-
frastructures. Intrusion detection systems have been proven as a powerful means for
the detection of IT security violations. They provide protection of computer and net-
work resources by automatic detection of security violations. Some of these systems
are able to initiate appropriate intrusion response actions. The crucial point for real-
time applications, especially for host-based audit analysis, is the detection speed. In
the paper we present the distributed intrusion detection infrastructure HEIDI which
tackles this problem. HEIDI provides a module system based on sensors and agents
to set up tailored intrusion detection systems for real-time applications. The basic
features of the HEIDI approach are a distributed analysis functionality, the handling
of overload situations, and a dynamic configurability. Furthermore, the problem
of time-consuming audit analysis is compensated by integration of StraFER, a new
signature match algorithm.

1 Motivation
The rapid advance of communication technologies in many areas of the human society
accelerates the shift of many social processes on such systems, in particular on the Internet.
This brings numerous benefits to the users, but it also increases their dependencies on these
technologies. These dependencies as well as the technological complexity of the systems
themselves create an increasing potential of threats for these systems which make them
more and more vulnerable. The constantly growing number of computers in the Internet
gives hackers, crackers, terrorists, and subversive insiders better and better opportunities
for attacks. This concerns not only the critical infrastructures of industrial states, the trade,
the information system, or the health care system, but in particular the military protection
of the society [1, 2].

To counter these threats besides preventive measures such as authentication of communi-
cation partners, encryption of communication, and access control to resources, means on
the technological level are required which allow to detect and indicate security violations
to evaluate and to possibly confine the damage.

218 Thomas Holz, Michael Meier, Hartmut König

Intrusion detection systems (IDS) have proved to be an effective instrument for this pur-
pose. Systems with real-time capabilities provide automated protection of computer and
network resources and allow the detection of ongoing security violations. Intrusion de-
tection systems are currently one of the few reactive security mechanisms to counter
threats on the communication infrastructure. They have been developed since 20 years
and successfully deployed in practice [3]. Various commercial solutions are available.
The effectiveness of commercial systems in real-life environments, however, is limited.
They mainly confine themselves to detecting simply structured security violations in a
post-mortem mode. For the deployment in large computer networks, they are less suited,
especially for tight time constraints. Growing communication infrastructures and increas-
ing user requirements raise new problems (e.g. encryption, switching technologies) and
demands (e.g. privacy) which are not covered by existing concepts.

In the paper we present the distributed intrusion detection infrastructure HEIDI that is cur-
rently being developed at Department of Computer Science at Brandenburg University of
Technology Cottbus. It is based on the experience we gathered with the intrusion detection
system AID [4] developed in our group and other systems as well. The objective of the
HEIDI approach is to get a module system to flexibly set up intrusion detection systems
for real-time applications. The HEIDI concept is based on the use of sensors and agents
which can be combined to set up a tailored intrusion detection system which meets the
requirements of a given application environment. Unlike other approaches, which try to
reduce the amount of audit data, the HEIDI concept aims at the complete evaluation of
all audit data. This is achieved by using a combined analysis distribution, the delegation
of processing functionality in overload situations and the application of a new optimized
signature match algorithm. The paper describes the basic principles of the HEIDI ap-
proach. Section 2 formulates requirements to the design of modern intrusion detection
systems, which inspired the HEIDI development. Section 3 introduces the basic features
of the HEIDI approach. It gives examples for the surveillance of different IT systems with
HEIDI-based architectures. In Section 4 we describe the new match algorithm StraFER
which is applied in HEIDI agents. The conclusion summarizes the achievements of the
approach and gives an outlook on next research steps.

2 Requirements to modern Intrusion Detection Systems
The security function intrusion detection deals with the monitoring of IT systems to detect
security violations. Due to the large amount of incoming audit data this analysis can be
only efficiently processed if automated evaluation support is given. The decision which
activities can be considered as security violations in a given context is determined by the
applied security policy. For the detection of security violations, mainly two complemen-
tary approaches are applied: anomaly detection and misuse detection. Anomaly detection
aims at the exposure of abnormal user behavior. Misuse detection focuses on the automatic
detection of known attacks. These attacks are described by patterns, so called signatures,
required to identify an attack in an audit data stream. Misuse detection has revealed to be
the more effective approach. It is only considered in the sequel.

Intrusion detection systems are usually applied to monitor critical servers and complete
(local) computer networks. The observation of desktop computers represents more an ex-

High-Efficient Intrusion Detection Infrastructure 219

ception. For the observation, stand-alone and distributed intrusion detection systems can
be distinguished. Intrusion detection systems are often deployed in connection with other
security mechanisms like firewalls to support a superior security management. Therefore
distributed solutions are more and more becoming a typical characteristic of modern in-
trusion detection systems. The deployment of intrusion detection systems in practice has
revealed a couple of problems such as the high amount of audit data, privacy, response
mechanisms, insufficient system protection, high false alarm rates and others for which
different solutions have been proposed. In the discussion here we focus on the following
problems: detection efficiency, and system adaptation and maintenance. We consider in
particular

1. the use of distributively acting IDS components,
2. the efficient development of signatures, and
3. the integration of efficient analysis methods.

In this context, our main interest aims at the minimization of the time intervals between the
appearance of security violations and their detection to improve the chances of effective
intrusion response actions. Unlike network based intrusion detection systems, host based
systems often provide no chance to stop an ongoing attack, because audit records are
mostly only reflections of completed security relevant actions. In case of relatively long
attacks, however, a fast audit analysis may be able to reduce the arising damage.

2.1 Distributively acting IDS components

Modern distributed intrusion detection systems consist of a set of modules for capturing,
preprocessing, analyzing the audit data, and for archiving them if required. In addition,
most commercial products offer an appropriate management functionality. As far as ef-
ficiency is concerned, the primary aspect of such a system is the distribution of time-
consuming analysis functionality. Two categories of intrusion detection systems can be
distinguished: systems with a centralized and a decentralized analysis. Systems with a
centralized analysis are simpler to implement, but the analysis function represents a per-
formance bottleneck and a single point of failure. Further large amounts of data have to be
transferred between a local host and the central processing unit. These effects we could
also observe while testing our own centralized system AID (Adaptive Intrusion Detec-
tion system) [4]. If several processing units are used synchronization is required, but load
distribution and efficiency are essentially better. Furthermore the processing units can be
aligned in a hierarchical manner, e.g. in a two-layered scheme, where the units at the lower
level perform a detection of local attacks and a unit at the upper level is responsible for
finding all distributed security violations.

Most approaches, however, apply the centralized processing paradigm [5]. Only a few
systems use the distributed approach as, for instance, DIDS, CSM, AAFID, and EMER-
ALD. In this context DIDS (Distributed Intrusion Detection System) was the first intrusion
detection system that combined local audit evaluations, network monitoring and a central
alarm correlation [6]. CSM (Cooperating Security Managers) implemented an unusual
idea [7]. Here every monitored host contains a security manager. When a user logs in first
time on a certain host the security manager of this host is responsible for recording and

220 Thomas Holz, Michael Meier, Hartmut König

analyzing all subsequent actions of this user, even if he moves to another host within the
network. The roaming of users, however, cause an enormous data transfer. The approach
is therefore not applicable to a fast inspection of large amounts of audit data. The AAFID
(Autonomous Agents for Intrusion Detection) concept, on the other hand, addresses the
problem of system load caused by using intrusion detection systems. The main idea here
consists in the application of many small, specialized and hierarchically grouped entities
[8]. These components (filters, agents, transceivers and monitors) are too limited in their
performance to meet the requirements of an efficient audit analysis. The fourth systems,
EMERALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances), is a
military sponsored development which aims at the application of a flexible set of complex
modules, the EMERALD monitors. These monitors integrate both detection and response
functionality, and are designed to be interoperable with many other security functions at
a very high degree [9]. They can be connected among each other within a three-layered
hierarchy. An EMERALD intrusion detection system is able to protect large networks,
especially in critical enterprise environments. This approach, as well as others, does not
aim at a high audit analysis speed. There are no documented performance data available
for these systems so far.

Further problems that are related to the design of distributed intrusion detection systems
are a high runtime adaptability, robustness, availability and fault tolerance. In particular
in sensitive environments there is a fundamental operational need for the survivability of
the intrusion detection systems under various conditions. Every time interval, in which
the system is not running, represents a threatening situation. Modern distributed intrusion
detection architectures used for the protection of critical infrastructures should ensure this
dynamic adaptability as extensively as possible [10].

2.2 Efficient development of signatures

The goal of misuse detection systems is to automatically find traces of known attacks in
audit data streams. The signatures have to be expressed in a representation that can be used
as basis for the analysis process. The derivation of signatures based on a given security
policy has often proved to be a crucial point in audit-based misuse detection. The problem
can be divided in two steps:

1. to determine attack patterns to be searched for during the analysis, and

2. to encode the patterns in an appropriate form.

The determination of patterns that are significant for an attack usually involves an in-
depth investigation of the constituent actions of known attacks. This step requires a lot of
expertise about attacks and audit functions. The identified signatures have to be expressed
in an adequate representation that can be used as basis for the analysis process. Since the
representation of signatures is specific to the used detection mechanisms most intrusion
detection systems use their own language to encode signatures. Many existing intrusion
detection systems (e.g. EMERALD, ASAX [11], AID) use rule-based languages to encode
signatures. Others use state transition diagrams (STAT [12]) or petri net representations
(IDIOT [13]).

High-Efficient Intrusion Detection Infrastructure 221

Although these approaches have shown their usefulness, they lack some important fea-
tures. Most intrusion detection systems require not only a description of the signatures but
also details on the manner the detection process has to work. Often adequate means to
build abstraction in developing signatures are missed. This makes the development and
maintenance of signatures complicated and error-prone.

2.3 Integration of efficient analysis methods

The analysis of the audit data is still the bottleneck for intrusion detection systems, es-
pecially for real-time applications. Although analysis techniques have improved contin-
uously, the capability of knowledge-based methods, which are usually applied in intrusion
detection systems, remains limited. The increasing amount of audit data often wipes out
the progress. Audit bursts like, for instance, 100 Mbps for usual PCs running Microsoft
Windows 2000 requires special optimized algorithms.

Concerning the analysis techniques misuse detection systems can be roughly divided into
two groups. The first group of systems uses the specified signatures to generate program
code (e.g. in C/C++) that searches for attack patterns using the specified criteria. Systems
of the second group use the expert system approach to analyze audit data.

Examples for intrusion detection systems of the first group are IDIOT and the STAT tool
suite. These systems create a program module for each signature that after its compilation
can be used to search for the specified patterns in audit data. A performance issue here is
that different signatures are checked or executed independently. Thus it is scarcely possible
to take advantage of the optimization potential that can be used if signatures are analyzed
together. For example, techniques like condition sharing to avoid redundant calculations
of conditions in a signature set cannot be used.

AID, ASAX, and EMERALD’s P-BEST component [14] are examples for systems of the
second group. Here the inference mechanism and match algorithm of the underlying ex-
pert system shell determine the used analysis technique. The most popular and applied
match algorithm of these systems is RETE [15] (others are TREAT [16] and LEAPS [17]).
The issue is that match algorithms of expert system shells are general-purpose algorithms.
It is well known that a match algorithm may outperform all other algorithms in a spe-
cific application domain [18]. Therefore it depends on the concrete application domain
which algorithm performs best. To our knowledge it is an unanswered question which
match algorithm is best suited for misuse detection expert systems. Further the question
arises, whether a special-purpose match algorithm for misuse detection systems can be
constructed that noticeably outperforms general-purpose algorithms by taking advantage
of known information about the application domain.

3 The HEIDI approach
The objective of the HEIDI approach (High-Efficient Intrusion Detection Infrastructure)
is to provide an infrastructure for setting up tailored intrusion detection systems to speed
up the detection capability. The term “infrastructure” means that a module system is de-
fined which can be adapted to a specific intrusion detection architecture for a given target

222 Thomas Holz, Michael Meier, Hartmut König

environment and application scenario, respectively. The main characteristics of such an
architecture are the placement of necessary HEIDI modules and the general specification
of their interconnectivity [19]. Further refinements of the architecture towards a real intru-
sion detection system can be introduced by the integration of target-specific adaptations,
e.g. interfaces for capturing host-specific audit data.

3.1 Functional overview

HEIDI distinguishes 3 basic components: sensors, agents, and user interfaces. The sen-
sors collect and preprocess audit data. The agents provide the analysis units. They can
cooperate among each other. The user interfaces serve for system management and user
interactions.

3.1.1 HEIDI sensors

HEIDI sensors are specialized modules to collect and to handle audit data. They aim at
a fast reading, preprocessing and forwarding of the audit data. Sensors can be placed at
different points of the monitored hosts depending of the applied security policy. Different
sensors at one host are coordinated by the supervising local agent. Figure 1 depicts the
generic structure of a sensor.

HEIDI sensors consist of permanent components (illustrated in darker grey), e.g. the
read interface, the transformation unit for data converting, and the transfer buffer. Other
components are optional (illustrated in lighter grey), e.g. the pseudonymization unit for
encrypting user identifying references in the audit data like the user ID, the group ID and
others to ensure user privacy. Most components of the sensor are connected by a data
processing pipeline. They are supervised by the control and configuration component.
After reading the information from the local host, the data are preprocessed and forwarded
to the local HEIDI agent.

3.1.2 HEIDI agents

After the fast capturing of the audit data by the sensors the second step to maximize the
detection speed is to ensure an efficient analysis of these data. This is the task of the
HEIDI agents. Beside the application of optimized analysis algorithms (see Section 4)
they use an appropriate distribution of data. This distribution is based on a classification of
the signatures into local and distributed contexts. To detect signatures with a local context
only locally preprocessed data are analyzed, while for signatures with a distributed context
data from various agents are demanded.

The most efficient way to perform such an analysis in a network is to apply a combined
execution scheme. Similarly to systems like DIDS, AAFID, and EMERALD, HEIDI
prefers to match signatures with local context on the corresponding host. The detection
of distributed attacks takes place on a central location. Unlike any other known system,
however, HEIDI applies this hybrid concept in a stringent manner to achieve a maximal

High-Efficient Intrusion Detection Infrastructure 223

�
�
��

��
�
�
�
	

�

� � � � � � � � � 	 �
 � � � � � �
 �

� � � � � � � � � � � � � � � � �

� �

� �

� � � � � � � � � � 	 � � � � � � � � � � � � � � � �

� �

�
�
�
�
�
��
�

�
�
��
�
��
�

�
�
�
�
�
�

 � � � � � � � �

 �
 !
 � " � � � � �
 !
 � " � � � �

Figure 1: Structure of a HEIDI sensor

local concentration and a minimal need for network traffic and delay. For this purpose
we extended the notion of signature. In context of HEIDI signatures are not only used
for mapping complete security violation sequences. A signature can also represent a
partial sequence of such an attack. This extension enables a hierarchy of agents to split the
detection process for a distributed attack into a number of local sub-detections and a small
amount of central combining. This principle is not applicable to all distributed attacks,
but some critical security violations, like several doorknob rattling variants, can be easily
detected this way.

For the execution of all local and central detection processes, each involved host contains
a single stationary HEIDI agent. Figure 2 shows the structure of an agent.

A HEIDI agent receives the preprocessed information from all local sensors. It contains
a central data processing pipeline which consists of an input, a processing, and an output
unit. Input and output units are responsible for receiving, synchronizing and transmitting
the security relevant data. The analysis of the audit data takes place in the processing
unit. Several analysis processes can run in parallel, e.g. a complete signature detection,
a fast signature detection for particularly critical attacks, and a simple audit statistics.
The analysis algorithm applied currently is StraFER which is introduced in Section 4. In
addition to the detection capabilities an agent can contain an active response unit which
is able to initiate appropriate local countermeasures.

224 Thomas Holz, Michael Meier, Hartmut König
�

�
��

��
�

�
�
	

�
�
�

�
��
�

�	

��
�

�
�

��

�

�
�

��
�

�
��

�
��

�
�

	
�

�
�

�
��
�

�
� � � � � � � � � � � � � �

� � � �

� � � � � � � � � � �
� � � �

� � � � � � � � � 	 � � � � �

� � � �

� � � � � � � � � � � �
� � � �

�

�
�

��
�

�
��

�
��

�
�

�
��

��
�

��
�

�

�
�

��
�

�
�

��
�

��
�

�
�

�

�
�

� � ! " � � � � � � � � � � �
 � � � � � �

� � � � � � � �
 � � � � � �

� � $ � � �
 � � � �

# � � $ � � � � � � � � � � � � � � 	 �

Figure 2: Structure of a HEIDI agent

3.1.3 HEIDI user interfaces

A HEIDI user interface is a graphical application which enables a security operator to
perform several tasks in the context of a given HEIDI intrusion detection system. The most
important tasks are the configuration of the system and the visualization of the detection
results. Furthermore, a user interface can act as a link between a security management and
a HEIDI intrusion detection system.

Every HEIDI agent provides a single interface for the connection with a user interface.
This connection can be either local or remote. Thus a user interface can dynamically con-
nect to a number of agents. Since several user interfaces can be attached to a HEIDI system
at the same time every interface has to periodically read the corresponding configuration
data.

3.1.4 Handling of overload situations

For assuring a continuous, robust, and efficient intrusion detection operation, HEIDI uses
an adaptive mechanism to compensate temporary overload situations. In conventional
systems such overload situations, e.g. an audit burst, normally stop the execution of the
intrusion detection system or cause a crash. To avoid this HEIDI agents are able to dele-
gate analyzing functionality to other agents. A destination agent receives the preprocessed

High-Efficient Intrusion Detection Infrastructure 225

data and the analysis state. The delegation functionality, the required number of desti-
nation agents, and the duration of the delegation depend on several conditions. They are
calculated and negotiated dynamically. Normally, a re-delegation is carried out when the
overload situation has disappeared. To estimate the load situation in the intrusion detection
system a HEIDI agent contains a monitor which evaluates the performance of both the host
and some time-consuming agent components (see Figure 2).

3.2 Setting up intrusion detection architectures

HEIDI sensors and agents can be combined to set up a hierarchical intrusion detection
architecture for a given target environment, e.g. a host or a local area network. Depend-
ing on the network structure and the applied security policy, special sensors and internal
communication schemes can be configured. In this context, connectivity and data stream
configuration have a special importance. For every security violation to be detected, it
must be determined which subset of modules is involved and where the data analysis is
appropriately located. To offer a flexible and efficient setup, an agent also can act as a
transceiver, i.e. it does not analyze, or as a delegation server. The latter, which describes
a HEIDI agent on demand, is required for enterprise networks with high failure safety
requirements.

Figure 3 shows two different intrusion detection architectures. The left example shows a
two-layered hierarchy, the right example a three-layered. All illustrated hosts (the greater
rectangles) are equipped with two sensors (smaller embedded rectangles) and the corre-
sponding agent (greater embedded rectangle). Streams of preprocessed audit and result
information are illustrated as arrows, whereas the thickness of the arrows serves as an
indicator for the transfer rates between the modules. In the left example all agents are
working on detection processes, and the agent at the upper level is responsible for finding
attacks with distributed context. In the right example, the white illustrated agents do not
perform any analysis, so that their superior agent has to deal with a relatively high amount
of incoming data. In this example, an agent at the third level serves as an overall result
collector.

� � � � �

� � � � � 	 �

 � �
�
 �
 � � � � � � �

� � 	 �
 � � � � � � � � �
� � � � � �
 � � �
 �

� � � �
�
 �
 � � � � � � �

� � � 	 �
 � � � � � � � � � � �
� � � � � �
 � � �
 �

 � �
�
 �
 � � � � � � �

Figure 3: Examples of two HEIDI-based intrusion detection architectures

226 Thomas Holz, Michael Meier, Hartmut König

Figure 4 shows the expansion of the left architecture from Figure 3 by the integration of
two delegation servers. The hosts, on which these delegation servers run, do not have
sensors. In Figure 4 the upper depicted delegation server is configured to exclusively help
the upper-level agent in the regular detection hierarchy. The lower server is dedicated to
handle overload situations for all low-level hosts in the regular detection hierarchy. The
left example shows a burst situation at two low-level hosts. The lower server overtakes
in this case the analysis of the data. In the right example, there are also two hosts in an
overload state. One of them is the upper-level host in the regular detection hierarchy. In
this case the processing capacities of both delegation servers are used.

� � � � � � � � � 	
 � � �
 � �

� � � � � � � � � 	
 � � �
 � �

� � � � �
 � � � � � � � � 	 �

� � � � � � � � � 	
 � � �
 � �

� � � � � � � � � 	
 � � �
 � �

� � � � �
 � � � � � � � � 	 � � � � �
 � � � � � � � � 	

Figure 4: Scenario with two different overload situations for a single architecture

4 Efficient detection components
Beside the distributed collection and processing of audit data HEIDI provides means for
an efficient analysis. Unlike many other systems HEIDI agents do not use a rule-based
analysis. Instead the IDS specific analysis algorithm StraFER has been developed. This
algorithm takes advantage of knowledge about the static structure of attack signatures to
reduce the processing time. StraFER is based on the event description language SHEDEL
which has been defined to facilitate the description and introduction of signatures into
agents. In the sequel we first shortly introduce SHEDEL. Thereafter we give an overview
of the StraFER algorithm.

4.1 The attack description language SHEDEL

To simplify the development and maintenance of signatures we developed the attack de-
scription language SHEDEL (Simple Hierarchical Event Description Language). The
main objective of SHEDEL is to provide means to describe signatures without determining
the detection process.

The main abstraction in SHEDEL is the event. An event can represent an audit record, an
attack signature, a Meta attack signature and so on. Describing a signature in SHEDEL

High-Efficient Intrusion Detection Infrastructure 227

means to specify an event. An event consists of a collection of one ore more sub-events,
also called steps, which are related to each other, temporally or by their properties. There
is a set of basic events which cannot be divided in sub-events. They represent the basic
recognizable units, e.g. audit records or network packets. Thus it is possible to specify
a hierarchy of events that can be used to describe a pattern of audit records. To support the
response to an attack (or any event) it is possible to link an action to sub-events of an event
specification.

An event is characterized by a name and a set of properties called features. The name
is used as reference for other events. The features contain relevant information about an
event. A basic event contains all information of the corresponding audit record, e.g. the
names of involved users and objects are represented as features of the event. For non-basic
events, the features must be defined. A feature can be defined by referring to a feature
of a step. Thus a feature definition is a pair consisting of a name and a feature of a step
contained by this event.

For the successful completion of an attack, its constituent actions usually must be executed
in a specific order. To describe the signature of such an attack in SHEDEL it must be pos-
sible to specify the order of steps of an event. This can be done by defining a predecessor
of a step. Additionally to the correct order of actions typically further conditions must be
fulfilled to complete an attack successfully. An example for such a condition is that the
same user must execute all actions of an attack. To describe signatures for such kind of
attacks SHEDEL allows the definition of conditions within an event.

Figure 5 shows the description of an event E that consists of the steps A and B. The features
start and filename of E are defined using the features time and file of step A. The
username feature of E is mapped to the user feature of step B. The right side of Figure 5
shows the resulting event hierarchy.

� � � � � � � �
	 �
 � � �
 �

� � � � � � �
� � � � � � � � � �

 � � � � � � � � 	

� 	 � � � � � � � � � 	 �

� � � �

� � 	 �

� � � �

� � �

� � � � � � � �

� � �

� � �

� 	 � � � � � �

	 � � � �

��

�

� �

� � � �

� � 	 �

� � �

� 	 � �

� � �

� �

� �

� �

� �

�

� �

� � � � � � � � � �

Figure 5: Definition of an event and the resulting event hierarchy

The description of the illustrated event E in SHEDEL looks as follows:

228 Thomas Holz, Michael Meier, Hartmut König

EVENT E
{
STEP step1

INITIAL // step1 is the initial step
TYPE A

STEP step2
EXIT // step2 is the final (completing) step
TYPE B
REQUIRES step1 // step1 is predecessor of step2

ACTIONS
... // any actions

CONDTIONS
step1.file == step2.file,
step1.host == step2.host

FEATURES
start = step1.time,
filename = step1.file,
username = step2.user

}

Note that no operational details about the detection process are contained in this descrip-
tion. Using hierarchical event description it is possible to define adequate abstractions to
reason about intrusions. So it is simple to define a generalization of different signatures
or to specialize a signature. A detailed discussion of SHEDEL and example signatures are
contained in [20].

4.2 An algorithm for event-based misuse detection

Proceeding from signatures described in SHEDEL, an algorithm is needed, which matches
the specified patterns against a stream of audit data. Because of the reasons discussed
in Section 2.3 neither a simple code generation approach nor a (general-purpose) expert
system shell is used for this purpose. Instead we develop a special-purpose algorithm,
named StraFER (Straight-Forward Event Recognition), that is based on descriptions in
SHEDEL. In this section we first present a straight-forward algorithm for matching event-
based signatures. Second we discuss some ideas for optimizations of such an algorithm.

4.2.1 A straight-forward approach for event-based misuse detection

A stream of audit records and a set of SHEDEL event descriptions form the input for the
algorithm. Audit records are treated as observable input events. They are represented by
SHEDEL basic events.

The analysis unit first reads all specified event descriptions and creates for each description
a corresponding event object (an initial instance of the event description). During process-
ing the straight-forward analysis algorithm does the following for each input event:

For each event object E

1. Check
• if there are steps S of the type of the input event,
• if all required predecessor steps P of these steps S have already occurred,
• if all conditions, which refer to features of steps S respectively features of the

input event and can already be evaluated, are fulfilled.

High-Efficient Intrusion Detection Infrastructure 229

2. If these checks were successful
• a copy of the event object E is created,
• required information on the step S are saved in the copied event object,
• the actions linked to step S are executed.

3. If step S is the last (and completing) step of event object E
• the features of this event are assigned,
• the occurrence of the event represented by event object E is signaled,
• the event object is removed.

Occurred events are used as input event in the next cycle. After all occurred events are
processed as input events the next audit record is used as input event.

A basic version of the StraFER algorithm is implemented. It detects all attack patterns
specified as event descriptions; but it consumes a relatively high amount of memory and
processing time.

4.2.2 4.2.2 Ideas for optimizing event-based analysis

The StraFER algorithm as discussed above checks all conditions of all event objects. Each
of these checks consumes time. The runtime can be decreased

• by not checking each event object in every cycle,
• by not checking all conditions of each event object, and
• by optimizing the condition evaluation, for instance, by avoiding multiple calculations

of the same function with the same parameters.

StraFER tries to realize the above points by taking advantage of knowledge about the
structure and contents of its input data, especially the event based signature descriptions.
Further some state information is maintained during the analysis to reduce the process
runtime.

StraFER currently uses the following ideas:

1. Using the type of an input event the set of event objects, which have to be checked,
is reduced to those event objects that contain a step of this type.

2. Steps of an event object usually are in temporal relation to each other. Thus the set
of event objects that have to be checked can be reduced to those event objects with
no or already occurred predecessor steps.

3. Events that represent only a partial signature (and thus have not linked an action to
its final step) can be treated in a special way. Event B in Figure 5 shall be such an
event. The occurrence of the final step B3 of event B can imply the occurrence of
event B. Event B is used as step in event E and has an event A as its predecessor step.
As long as the event A does not have occurred the event B3 does not have any effect
with respect to the detection of event E. In this cases events like B3 are called events
with no effect. Such steps and the conditions associated with them do not have to be
evaluated.

230 Thomas Holz, Michael Meier, Hartmut König

4. Conditions of an event object that describe relations between features of different steps
are called inter-event-conditions while conditions that refer to features of the current
input event are called intra-event-conditions. Inter-event-conditions have only to be
evaluated if they
• refer to features of steps with a type equal to the type of the current input event

and
• refer to features of already occurred steps.

5. During the matching runtime a couple of event objects of an event description are
created that represent different partial matches of a signature. For example the execu-
tion of signature actions by different users result in multiple event objects representing
partial signature matches of these users. Thus for an input event a step of a signature
has to be matched for multiple event objects. Since intra-event-conditions of a step are
identical for all event objects they need to be matched only once, and the evaluation
result can be recycled for all event objects.

The ideas mentioned in point 1 and 2 reduce the number of event objects. Additionally
the number of conditions is decreased using the concepts in point 3, 4 and 5.

To implement the above ideas different calculations are required. A main part of them
can be done at compile time (during the reading of the event descriptions) using infor-
mation about the static structure of signatures. During runtime only a few modifications of
control data are needed. Thus a noticeably runtime improvement can be expected. We are
currently introduce these optimizations into the StraFER implementation.

5 Conclusion
In the paper we have presented the basics of the intrusion detection infrastructure HEIDI.
The HEIDI approach aims at a module system to set up efficient and tailored intrusion
detection systems for local area networks. The module system provides a set of special-
ized sensors for audit data capturing and flexible agents for data analysis. The analysis
combines local and central signature matching processes. Furthermore, a HEIDI-based
intrusion detection system is capable to react to overload situations by delegating analysis
functionality among the communicating agents.

So far only a very few intrusion detection approaches or systems have the potential to
overcome the efficiency problem of the host-oriented intrusion detection. It has shown that
only decentralized analysis approaches like DIDS, AAFID, and EMERALD are capable
to meet near real-time requirements. Unfortunately, none of these systems aim at an
efficient intrusion detection solution, but from an architectural point of view some aspects
are comparable with HEIDI. The systems CSM and EMERALD are characterized by the
application of large and complex modules. This feature is similar to the HEIDI agents. In
contrast to this AAFID uses a great number of small an specialized entities. In HEIDI the
sensors play a similar role. Since HEIDI uses both complex and small modules it is also
comparable to DIDS. Depending on the different development targets each of this systems
has special module-intern structures. Regarding the module interconnection capabilities
HEIDI seems to be as potentially as EMERALD and AAFID, while DIDS and CSM are
functionally limited in this context.

High-Efficient Intrusion Detection Infrastructure 231

The implementation of the HEIDI infrastructure modules is still in progress. Currently
the implementation of various sensors, e.g. for capturing audit data under Sun Solaris and
Microsoft Windows NT/2000, and for TCP/IP segments are available. After finishing the
implementation of the HEIDI agent we plan to set up a first example intrusion detection
system which corresponds our system AID [4]. By comparing the two AID variants we
will evaluate the performance of the HEIDI concept. Thereafter the usability of the HEIDI
concept will be investigated with different IDS architectures.

To support efficient data analysis with HEIDI agents the new algorithm StraFER that
utilize knowledge about the static structure of signatures has been proposed. A basic
version of StraFER is available. The next step will be to evaluate the impact of the
discussed optimizations on the processing time. We plan to directly compare the StraFER
implementation with the rule based analysis component of AID. Based on this further
optimizations will be introduced to the algorithm.

References
[1] Clinton Administration (ed.): The Clinton Administration’s Policy on Critical Infrastructure

Protection : Presidental Decision Directive 63, 1998.
[2] Denning, Dorothy E.: Information Warfare and Security. Addison Wesley Longman, Inc.,

Reading, 1999.
[3] Meier, Michael; Holz, Thomas: Intrusion Detection Systems List and Bibliography. http:

//www-rnks.informatik.tu-cottbus.de/en/security/ids.html, 2003.
[4] Sobirey, Michael; Richter, Birk; Koenig, Hartmut: The Intrusion Detection System AID - Ar-

chitecture, and experiences in automated audit analysis. In: Horster, Patrick (ed.): Proceedings
of the IFIP TC6/TC11 International Conference on Communications and Multimedia Security
at Essen, Germany, 23rd - 24th September 1996. Chapman & Hall, London, 1996, pp. 278-290.

[5] Axelsson, Stefan: Research in Intrusion Detection Systems: A Survey. Goeteborg, Chalmers
University of Technology, Technical Report No. 98-17, 1998.

[6] Snapp, Steven R.; Smaha, Stephen E.; Teal, Daniel M.; Grance, Tim: The DIDS (distributed
intrusion detection system) prototype. In: USENIX Association (ed.): Proceedings of the
Summer 1992 USENIX Conference. USENIX Association, Berkeley, 1992, pp. 227-233.

[7] White, Gregory B.; Pooch, Udo W.: Cooperating security managers: Distributed intrusion
detection systems. In: Computers & Security 15 (1996), No. 5, pp. 441-450.

[8] Spafford, Eugene H.; Zamboni, Diego: Intrusion detection using autonomous agents. In: Com-
puter Networks 34 (2000), No. 4, pp. 547-570.

[9] Porras, Phillip A.; Neumann, Peter G.: EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances. In: NIST (ed.); NCSC of the NSA (ed..): Proceedings of
the 20th NISSC, 1997. National Institute of Standards and Technology, Gaithersburg, 1997,
pp. 353-365.

[10] Holz, Th.; Meier, M.; Koenig, H.: Bausteine für effiziente Intrusion Detection Systeme. In
PIK 25 (2002) 3, 144-157.

[11] Mounji, Abdelaziz: Languages and Tools for Rule-Based Distributed Intrusion Detection.
University of Namur, Belgium, Computer Security Institute, PhD Thesis, 1997.

[12] Vigna, Giovanni; Eckmann, Steven T.; Kemmerer, Richard A.: The STAT Tool Suite. In:
Proceedings of DISCEX, Hilton Head, South Carolina. IEEE Computer Society Press, Los
Alamitos, California, 2000.

232 Thomas Holz, Michael Meier, Hartmut König

[13] Kumar, Sandeep: Classification and Detection of Computer Intrusions. Purdue University,
PhD Thesis, 1995.

[14] Lindqvist, Ulf; Porras, Phillip A.: Detecting Computer and Network Misuse with the
Production-Based Expert System Toolset (P-BEST). In: Proceedings of the IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, Los Alamitos, California, 1999,
pp. 146-161.

[15] Forgy, Ch. L.: Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match
Problem. In: Artificial Intelligence, No. 10, 1982, pp. 17-37.

[16] Miranker, Daniel P.: TREAT: A better match algorithm for AI production systems. In: Pro-
ceedings of AAAI 87 Conference on Artificial Intelligence, 1987, pp. 42-47.

[17] Miranker, Daniel P.; Brant, D. A.: An Algorithmic Basis for Integrating Production Systems
and Large Databases. In: Proceedings of the Sixth International Conference on Data Engineer-
ing, February 5-9, 1990, Los Angeles, California, USA. IEEE Computer Society, 1990, pp.
353-360.

[18] Wang, Y.; Hanson, E. N.: A Performance Comparison of the Rete and TREAT Algorithms for
Testing Database Rule Conditions. In: Golshani, Forouzan (ed.): Proceedings of the Eighth
International Conference on Data Engineering, 1992. IEEE Computer Society, 1992, pp. 88-
97.

[19] Holz, Th.; Meier, M.; Koenig, H.: An Efficient Intrusion Detection System Design. In: Pro-
ceedings of the Information Security for South Africa Conference, Muldersdrift, South Africa,
July 10-12, 2002.

[20] Meier, Michael; Bischof, Niels; Holz, Thomas: SHEDEL - A Simple Hierarchical Event
Description Language for Specifying Attack Signatures. To appear in: Proceedings of the
IFIP International Conference on Information Security, Cairo, Egypt, 2002, pp. 559-571.

