A B2B Benchmark On Top Of UMM and TPC-App

Birgit Hofreiter, Christian Huemer, and Robert Mosser
Department of Distributed and Multimedia Systems
University of Vienna
Liebiggasse 4
1010 Vienna, Austria
{bh, ch, rom}@mminf.univie.ac.at

Abstract: The TPC-App is a B2B benchmark implementing a retail sce-
nario. This benchmark specifies a set of web services interactions to test the
performance of an application server. Today B2B systems undergo a perma-
nent technological change. There even exist competitive technologies at the
same time. From a business perspective it is important that the application
systems of the business partners interoperate no matter what technology is
applied. In order to measure the effects of using a combination of different
technologies for the same B2B scenario, we reverse engineer the TPC-App
scenario into a platform independent model following the UN/CEFACT’s
Modeling Methodology (UMM). The resulting UMM-App benchmark de-
fines a conceptual B2B model that may be implemented by different IT
technologies in order to evaluate feasibility and performance.

1 Motivation

Computer systems are used to solve more and more complex business problems.
The more complex the problem gets the more complex it gets to compare solutions
for the problem. It is hardly possible to compare different solutions by comparing
their specifications. Instead a number of test and trials are performed to assess the
performance of each computer system. Of course, the test must represent a typical
workload for the computer systems. Since testing different computer systems in
real world environments over a significant amount of time is too hard and too time-
consuming, special programs have been created imposing a typical workload on
the system. These synthetic programs are known as benchmarks.

It is the goal of the paper to develop a benchmark for business to business e-
commerce (B2B) systems. In a B2B environment, interoperation is usually reached
by the exchange of standardized business documents in an agreed choreography.
Each document exchange is further characterized by reliability, authorization, non-
repudiation, etc. Today, we know one B2B benchmark: TPC-App [TPCOS5]. It
defines the workload on the application server of one business partner. This work-
load is defined by a set of XML documents exchanged by SOAP messages. TPC-
App considers reliable and durable messaging, but not all security requirements
omnipresent in inter-organizational commerce.

182

It follows that TPC-App defines a B2B benchmark that is limited to a certain IT
technology — a certain mix of Web Services specifications. However, there exist
different technologies that may be used to implement B2B systems. This technolo-
gies span from traditional EDI [HF89] over Web Services [W3C06] and ebXML
[ENO1], to Semantic Web technologies [BHLO02] and whatever comes up in the
future. Even within the family of Web Services there exist some competing speci-
fications, e.g. BPEL [ACDO03] and BPML [Ar(02] to describe business processes.
From a business perspective it is not important which technology is used, as long
as the business goals are reached. In order to build a test bed enabling the compari-
son of different B2B technologies, it is necessary to define the B2B test scenario
independently of any B2B technology. UN/CEFACT’s modeling methodology
(UMM) [UNO6a] is a well-accepted approach to model the collaboration scenario
between different business partners in B2B. Thereby, UMM focuses on the busi-
ness logic, commitments and constraints of a partnership independent of any plat-
form issues.

In this paper we combine the strengths of both TPC-App and UMM in order to
create a platform independent benchmark. We call this benchmark UMM-App to
express its relationship to TPC-App and UMM. As a starting point we consider the
B2B scenario of TPC-App which has proven to define a typical workload for B2B
servers. We reverse engineer this scenario in order to create a platform independent
UMM model. This model may be transformed to different other B2B technologies
enabling their comparison. This approach will help the developers of B2B stan-
dards on the IT-layer to test the practicability of their specifications. It will assist
B2B tool providers to decide whether to integrate a specification into their tool set
or not. Last, but not least, it will aid the business partners to decide which technol-
ogy to use for realizing their B2B platforms.

The remainder of this paper is structured as follows. In section 2 we give a short
introduction of the TPC-App. It is followed by an overview of the most important
UMM artefacts in section 3. Section 4 presents the reverse engineering of the TPC-
App scenario into UMM-App. We highlight the fundamental differences between
TPC-App and UMM as well as the assumptions made during the reverse engineer-
ing. Section 5 positions the role of UMM-App in developing meaningful B2B
systems. The conclusion in section 6 summarizes our approach and suggests ex-
tending the UMM-App by a computational independent model to develop better
socio-economic systems.

2 TPC-App

The TPC-App benchmark is designed to compare application servers executing
B2B scenarios by means of web services [TPCO05]. It measures the throughput rate
of a commercially available application server. The benchmark not only allows the
comparison of the hardware performance, but also the performance of the two
supported application environments: .NET and JAVA. The throughput rate is re-

183

ported as Web Service Interactions per Second (SIPS). TPC-App also provides a
price/performance indicator: Associated Price per SIPS ($USD/SIPS).

In order to deliver significant results, TPC-App has defined a set of basic opera-
tions that are vital and representative for B2B web service environments. The syn-
thetic application takes place in a retail distribution environment on the Internet: A
wholesaler provides retailers with web services supporting product browsing and
ordering. The application server takes the role of the wholesaler. The retailers are
represented by the remote business emulators (RBE) which continuously create the
workload. The following self-explanatory list represents the basic operations de-
fined by TPC-App:

New Customer

Change Payment Method

Create Order

Order Status

Change Item (allows the retailers to change the publishing date of any given
item in the wholesaler’s catalog)

e New Products (returns a list of currently changed items)

¢ Product Detail

In addition to these services offered by the wholesaler, the TPC-App defines four
emulators that are services invoked by the wholesaler. The payment gateway emu-
lator (PGE) processes credit card payments. The purchase order validation (POV)
checks incoming purchase orders against a set of business rules. The invenfory
control emulator (ICE) handles purchase orders with suppliers of the wholesaler.
Finally, the shipment notification emulator (SNE) creates a tracking number and a
shipping label for the shipment of a purchase order.

Usually, an incoming web services request from the retailer requires the wholesaler
to execute one or more emulator services before returning a response to the retailer.
This means that the emulators are nested within the web services provided by the
wholesaler. Consequently a wholesaler’s web service cannot be completed unless
any nested emulator is completed. In the remainder of the paper we use the term
web services interaction for a service offered by the wholesaler, and the term
nested interaction for a service offered by an emulator.

The input and output of both web services interactions and nested interactions are
defined as a list of parameters each complying with an XML schema data type.
TPC-App utilizes SOAP to exchange messages. All communication is secured
using SSL. Furthermore, the wholesaler and the emulators need to be authenti-
cated. This is also realized by SSL. A web service interaction starts with a request
message. The business response — also delivered as a SOAP message — is expected
within 90 seconds. However, a web service may also lead to a control failure, i.e.
no answer is given in time, a SOAP fault message is delivered or an HTTP status
code in the 4xx-5xx range is indicated. In case of a control failure TPC-App allows

184

for a total of 20 resubmissions of the request. A resubmission is also necessary in
case of a misshaped response document that did not fulfill the output requirements.
The performance test takes place within the so-called measurement interval. The
throughput rate (SIPS) is the number of successful web service interactions divided
by the length of the measurement interval in seconds.

There is no choreography defined for the web service interactions. They can be
requested by the retailers in any order. However, the web service interaction mix
specifies how often each web service interaction must be invoked in relation to the
overall number of operation calls. This means that TPC-App defines an exact per-
centage of operation calls for each web service interaction which must be met with
a tolerance of +/- 0,5%. This regulates the mixture of web service requests in order
to simulate a real world environment. In TPC-App the majority of requests gener-
ate purchase orders while only a very small portion of requests generate item cata-
log information.

3 UN/CEFACT Modeling Methodology

The UN/CEFACT Modeling Methodology (UMM) is a methodology for describ-
ing B2B collaborations. UMM enables capturing the business knowledge inde-
pendently of the underlying implementation technology. The goal is specifying a
global choreography of business document exchanges serving as an agreement
between the participating business partners. UMM defines a UML profile [UNO6a]
i.e. a set of stereotypes, tagged values and constraints — customizing the UML meta
model for the special purpose of modeling the collaborative space in B2B.

UMM consist of three views which are briefly introduced in the following subsec-
tions. Each view specifies a set of artefacts that are based on the stereotypes de-
fined in the scope of this view. Additionally, the steps to create UMM-compliant
artefacts are outlined. Later on, we demonstrate the most important steps by exam-
ples taken from our reverse engineering of the TPC-App specification. Since the
reverse engineering approach results in realistic, but rather complex UMM models,
we decided to simplify them due to space limitations and for educational purposes.
In the simplified example the retailer is allowed to order books at a wholesaler.
During the processing of the purchase order the wholesaler requests an authoriza-
tion at a payment gateway.

3.1 Business Domain View (BDV)

The business domain view (BDV) is used to gather existing knowledge. Interviews
with domain experts and stakeholder help to reveal business processes that require
interactions with business partners. The business processes identified are recorded
in a UML use-case diagram. In our example we assume that interviews with repre-
sentatives of wholesalers, retailers and payment organizations expose the
relevant business processes as shown in the example of figure 1.

185

% «PusinessProcesy» «PusinessProces§»
Retailer oRtain book details provide book details
«BusinessProcesyy .,f:»- """""

"""""" i S «BusinessProcesy§»
«BusinessCollaborationUseCase» —_—
. SETERRE e sell books
book wholesale management Wholesaler
. s

erify credit ca

Payment
Gateway

Figure 1: Business processes of each business partner

3.2 Business Requirements View (BRV)

The business requirements view (BRV) builds upon the business processes discov-
ered before. The challenge is finding possibilities for collaborations between the
business partners. In other words, business collaborations spanning over some of
the business processes are elaborated. For example, the business processes discov-
ered in our example allow the creation of the business collaboration use case book
wholesale management (see figure 1). Since this business collaboration use case
must comply with all the requirements specified in the BDV’s business processes,
it is necessary to establish dependencies between them.

A business collaboration use case is a special kind of a business process where two
or more business partners collaborate. Depending on whether two or more business
partners are involved a business collaboration use case is either a binary or a multi-
party one. The UMM artefact of the BRV is a use-case diagram depicting all rele-
vant business collaboration use cases.

A business collaboration use case is usually a complex task that is split into sub-
tasks. In UMM a multi-party business collaboration use case is always split into
binary business collaboration use cases. This is due to fact that a UMM model
serves as a kind of contract governing the data exchange and choreography com-
mitments between business partners. Since most contracts are bilateral, UMM
concentrates on binary business collaborations. Due to this fact, UMM is not able
to model a nested interaction like TPC-App, since it includes the communication
with a third business partner. Contacting a third partner is a decision internal to one
partner and is out of scope of the collaborative space between the two original
collaborating partners.

A complex binary business collaboration use case is also split into its subtasks.
This split may be applied recursively. It ends if a split into subtasks is not possible
any more. This lowest level corresponds to a so-called business transaction use
case. It is the most basic building block to be used between two business partners.

186

A business transaction use case is detailed by the chorography of a business trans-
action, which is explained in more detail in subsection 3.3.

ud BusinessCollaborationUseCase

«BusinéssCollaborationUsgCase»
book wholesale
management

Retailer Payment Gateway

«include» «include»
o g

«BusinéssCollaborationUsgCase»
credit card
verification

«BusinéssCollaborationUsgCase»

\O/

management
Wholesaler

L X

Retailer Wholesaler

inéssCollaborationUSgCase»
purchase
management

«BusinéssCollaborationUsgCase»
credit card
verification

>0

Wholesaler Payment Gateway

«include» «include» «ii
0 d include»
4 ~N)

«BusiyfessTransactionUsdCase»
request for book
details

«BusihessTransactionUseGase» «BusiffessTransactionUs&Case»
create order credit card
verification

Figure 2: Business collaboarion use cases

Figure 2 depicts the BRV artefacts of our simplified example: The multiparty busi-
ness collaboration use case book wholesale management is decomposed into two
binary business collaboration use cases. purchase management between retailer
and wholesaler as well as credit card verification between wholesaler and
payment gateway. The decomposition is denoted by a UML <<inc/ude>> associa-
tion. The binary business collaboration use case purchase management is split into
two included business transaction use cases. request for book details and
create order. The business collaboration use case credit card verification is
trivial and includes only one business transaction use case with exactly the same
name. The fact that credit card verification is nested within create order
cannot be expressed in UMM.

3.3 Business Transaction View (BTV)

The business transaction view (BTV) comprises amongst others three main arte-
facts. The first artefact is the so-called business collaboration protocol. 1t defines a
choreography according to the requirements specified in the corresponding busi-
ness collaboration use case. The resulting activity graph is built by so-called busi-

187

ness transaction activities. The transitions between these activities are guarded by
the states of business entities.

Figure 3 shows the activity graph of the purchase management business collabora-
tion protocol. 1t begins with a request for book details. This activity can be
performed again if the result is not satisfying. It may also be the last activity with
the result that no books are ordered. After a request for book details some
books may be ordered by performing the create order business transaction activ-
1ty. The business collaboration profocol always ends after create order.

[Bm'y(\]De?dagzj ‘ timeToPerform: 90 sec. ‘ timeToPerform: 90 sec.)
— isConcurrent: FALSE isConcurrent: FALSE

«BusinessTransacﬁonAcﬁvitﬁ «BusinessTransactionActivity;\
request for book details; [Book. create order ,|
. —" Wanted] ™~

A

[Book.

: [NOT Book.
Ordered] Ordered]

Wanted

PME)irectOrder.BusinessFailure PMDirectOrder.BusinessSuccess

Figure 3: Business collaboration protocol

The second important artefact of the BTV is a business transaction. On the one
hand side a business transaction defines a choreography according to the require-
ments specified in the corresponding business transaction use case. On the other
hand side a business transaction presents an activity graph refining the correspond-
ing composite business transaction activity of a business collaboration protocol.
The goal of a business transaction is synchronizing the business entity states be-
tween business partners. Sometimes a partner reports an irreversible state change
(e.g. notification of shipment). This leads to a one-way business transaction. Some-
times the initiating partner sets a business entity into an interim state which is fi-
nally decided by the corresponding partner (e.g. create order). This leads to a two-
way business transaction. Returning to a previous state after completion of a busi-
ness transaction requires compensation by another business transaction (e.g. cancel
order).

A business transaction always follows the same pattern. It is composed of two
partitions — one for each participating business partner. The first partition includes
the requesting business activity and the second one includes the responding busi-
ness activity. An object flow from the requesting business activity to the respond-
1ng business activity denotes the request document. An object flow in the reverse
direction is optional and represents the response document in two-way transac-
tions. The activity graph does not show the flow of business signals like acknowl-
edgments of receipt and acknowledgments of processing. These are specified as
tagged values of the requesting/responding business activities. Additional fagged
values are time to perform, authorization required, non-repudiation of origin and

188

content, non-repudiation of receipt, and a retry counter. The document exchanges
carry fagged values to signal confidentiality, authentication and tamper proofess.
Figure 4 depicts the activity of the create order business transaction. The buyer
performs the initiating role and starts a place order activity. This activity outputs
the order request envelope which triggers the process order activity per-
formed by the seller. The place order activity of the buyer does not end after
sending the envelope, it receives the order results envelope from the process
order activity of the seller.

OrderResponse
DocumentID: Identifier
isAuthorizationRequired: true SN CreationDate: DateTime
Buyer isNonRepudiationRequired: true Seller

timeToPerform: 90 sec
timeToAcknowledgeReceipt: 30 sec

timeToAcknowIengeAcceptance: 60 sec . y L

isIntelligibleCheckRequired: true isConfidential: true Order

isNonRepudiationOfReceiptRequired: true isTamperProof: _true

retryCount: 20 ISAuth'entlcated_ true OrderlD: Identifier
== ‘ SubTotal: Amount

«RequestingBusinessActivityy» [InformationEnvelopd» ShippingCost: Amount
place order /4 :OrderResp Total: Amount
\ 4 |

=

E’ 8 InformationEnvelopep» «RespondingBusinessActivity»

S|a :OrderRequest [T process order \

) \ V.

: (imePIF\’e:;forml: %0 sac 20 Price: Amount
isConfidential: ti timeToAcknowledgeReceipt: 30 sec
® @ EET;;,IJ;SSM '#fe (irreTﬁAcbl(Inrév'_vlledk eAccepéance: 60 sec
isAuthenticated: t isIntelligibleCheckRequired: true
[SAuthenticaled: TUe | | e AuthorizationRequired: true ProductService
isNonRepudiationRequired: true ID: Identifier

Figure 4: Business transaction and business document

The third artefact of the BTV is a class diagram describing the business documents
exchanged. It is a structured representation of the information envelopes ex-
changed during a business transaction. The relevant information pieces are identi-
fied and structured. The final c/ass diagram must be built from reusable building
blocks guaranteeing reusability. The UN/CEFACT core components [UNO3a]
represent a library of such reusable building blocks. The class diagram of the order
response envelope depicted on the right hand side of figure 4 uses core compo-
nents.

4 UMM-App: Reverse Engineering TPC-App into UMM

4.1 Differences

As outlined in section 1, our goal is delivering a framework for B2B scenarios in
order to measure the effects of using different technologies for the same business

189

case. For this purpose we reverse engineering the TPC-App scenario into the tech-
nology independent UMM notation. Since our benchmark is based on both UMM
and TPC-App we call it UMM-App. The resulting UMM-App scenario may be
supported by another mix of technologies than the ones in TPC-App.

Reverse engineering would be trivial, if TPC-App and UMM were using exactly
the same semantic concepts. However, there exist substantial differences between
TPC-App and UMM. These differences are a result of the different goals of a
benchmark and a modeling methodology. TPC-App was created to test an applica-
tion server. Its only goal is to create a reasonable workload. Thus, it is designed to
make the scenario most easy by providing the simplest implementation for the
performance test while delivering reasonable results. A proprietary notation is
sufficient, and reuse is no issue. UMM was created to unambiguously define B2B
collaborations. It is suited to describe complex, real world B2B scenarios. Parts of
UMM models may be used in other UMM models. Thus, reuse is a key issue.
TPC-App defines its B2B scenario from the local perspective of the wholesaler.
This means that the application server to be tested must implement the role of the
wholesaler. The benchmark program produces the workload created by the retailer.
Furthermore, the application server must call emulators to create responses to the
retailer. In contrary, UMM defines a collaboration from a global and neutral per-
spective. This means each business partner is treated equally. Thus, an implemen-
tation may not only test the application server of the wholesaler, but also of any
other business partner involved.

As mentioned earlier, a retailer’s request triggers nested operations along the sup-
ply chain (performed by emulators) before the wholesaler returns a response.
UMM considers binary collaborations only. It is impossible to specify an interac-
tion sequence that spans over more than two business partners. Thus, an additional
UML activity diagram (which is not in the pure UMM scope) is needed to model
the triggered operation calls.

TPC-App’s web service interactions are not choreographed. TPC-App does not
specify interdependencies between the different web services operations as they
exist in the real world — e.g. a purchase order follows a previous request for quote.
Although this negates B2B requirements, it helps to easily balance the number of
calls of each web services interaction as defined in the web service interaction mix.
Since UMM models real world scenarios, the definition of a choreography amongst
the business transactions is of great importance.

UMM and TPC-App also differ in exception, retry, and failure handling. TPC-App
specifies the acknowledgments on the network layer using a given set of technolo-
gies, like HTTP status messages and SSL. UMM defines acknowledgments on the
business layer. An acknowledgment of receipt signals that the exchanged docu-
ment is valid and kept the sequence defined in the choreography. An acknowledg-
ment of processing indicates that the document has passed additional business rules

190

and is imported into the business application. There do not exist any of these busi-
ness acknowledgments in TPC-App.

Finally TPC-App states the exchanged data as sequential parameter lists, whereas
UMM assembles core components to a business document defined in class dia-
gram.

4.2 A different level of complexity for different kinds of business transactions

TPC-App concentrates on the amount of the workload on the application server
only. All the messages used as input and output to the web services must be syntac-
tically valid. However, it is not evaluated whether their business content makes
sense or not. For example, the payment gateway emulator always returns the same
authorization code. Of course, this would be nonsense in a real business environ-
ment, but it is sufficient for pure workload tests.

In real world environments there exist different kinds of business transactions, each
of a different level of complexity and, consequently requiring different level of
technical support. A business transaction may lead to a new legally binding con-
tract or not. For example, a purchase order usually leads to a new contract, whereas
a request for book details does not. Commercial business transactions leading to a
new contract have the highest security requirements, like non-repudiation, authen-
tication, etc.

Business transactions not leading to a new contract may differ significantly accord-
ing to their requirements. For example, a one-way transaction may be non-
reputable due to a previously negotiated contract or not. For example, a shipment
notification must be sent indicating that canceling the products is not possible
anymore. Furthermore, different transactions require a different kind of processing
by the responding partner. A business transaction may result in a simple database
query where no input processing is required. Other ones lead to database transac-
tions requiring input processing before the information can be processed. In some
cases even pre-context validation is required. More complex business transactions
may require modifications of the stored data. Updating the data in a database re-
quires more complex operations than read-only database queries. UMM knows six
different types of business transactions covering all the different situations de-
scribed above. These six types of business transactions were also used in Rosetta-
Net [Ro02] and are able to handle all interaction types as defined in the ISO stan-
dard of the Open-edi reference model [ISO97]. A B2B benchmark that considers
the business level must provide a representative mix of different types of business
transactions.

Furthermore, there does not exist a unique way of managing the sales/procurement
process. Different buying scenarios can be identified. The search catalog scenario
describes the order process via a catalog search. The buyer searches a catalog. She
might order products of this catalog or she might request more information on a
product prior to ordering. In addition to an order from catalog scenario, a so-called

191

direct order may be supported. In this scenario the buyer is aware of the catalog
and has already decided what products to order. Consequently, there is no need to
search the catalog or to obtain detailed information on the products. The buyer can
order the products directly. Of course other scenarios to manage procurement/sales
are feasible. A good B2B benchmark must consider a representative mix of differ-
ent purchasing scenarios.

4.3 Adjustments made when moving from TPC-App to UMM-App

The differences between TPC-App and UMM described in section 4.2 and the
complexity of B2B collaborations as described in 4.3 require some assumptions
and adjustments when moving from TPC-App to UMM-App.

The most important adoption is made by adding a choreography to UMM-App.
Since TPC-App is missing a choreography, the UMM-App choreography is de-
fined according to best business practice. UMM-App does not mandate a single
business collaboration protocol for the purchase management. Instead it specifies
different alternative business collaboration protocols for the same purpose. Even
within the same business collaboration protocol there exist different paths to fol-
low. UMM-App defines how often (in percentage) each of the paths is executed.
Since different business collaboration protocols partially use the same business
transactions the re-use within a UMM model is demonstrated.

TPC-App defines the scenario from the local perspective of the wholesaler. We
assume that the local perspectives of the other business partners are complemen-
tary to this one. In this case the global perspective mandated by UMM can simply
be reverse engineered.

TPC-App does not distinguish different kinds of business transactions. By reverse
engineering the TPC-App into UMM business transaction, we took care that each
business transaction type is represented at least once in the UMM-App. Further-
more, the TPC-App does not specify any acknowledgements on the business level.
Since these acknowledgments are vital for different kinds of business transactions,
they have been added to UMM-App.

A UMM transaction identifies the document types to be exchanged. In order to
define the documents we had to manually reverse engineer the TPC-App parameter
lists. For each parameter we looked for a semantically matching core component in
the library. Having identified all core components we assembled them to an appro-
priate class diagram.

UMM defines tagged values for different security requirements, e.g. non-
repudiation, authentication, authorization, tamper-proofness, confidentiality. The
protocols used in TPC-App give a hint on the security requirements involved.
However, they are the same for any interaction in TPC-App. Thus, we declined to
base the reverse engineering on these protocols. Instead we defined the security
requirements according to the sensibility of the business transaction. Furthermore,
UMM-Apps defines a percentage for failing to comply with these security re-

192

quirements for each business transaction. This mandates the application server to
cope with business fault handling scenarios.

It is not possible to keep the exact TPC-App web service interaction mix in the
UMM-App. However, UMM-defines how often each business collaboration proto-
col is executed. Since the flow of transactions as part of the business collaboration
protocol is well defined and the percentages of executing alternative paths are
specified, the UMM-App defines also a representative mix, which comes close to
the one of TPC-App.

In order to keep the information about the nested interactions of TPC-App, we
added an activity graph to the UMM-App that is not UMM-compliant, but speci-
fies a flow of activities executed by a single business partner due to an incoming
call in order to produce the response.

5 Positioning UMM-App

Our UMM-App is a technology independent B2B benchmark. Best to our knowl-
edge, no other similar approach is described in the literature. Accordingly, a com-
parison with similar work is impossible. Instead, we want to position the role of
UMM-App in delivering meaningful B2B systems.

The model driven architecture (MDA) approach of the OMG distinguishes three
different views of a system that result in different kind of models [MMO03]: (1) The
computation independent viewpoint focuses on the environment of the system and
its requirements. The details of the structure and processing of the IT system are
unspecified. It leads to a computation independent model (CIM) that is familiar to
the practitioners of the domain under consideration who do not need to care how to
realize the functionality of an IT system. (2) The platform independent viewpoint
focuses on the operation of an IT system while hiding the details necessary for a
particular platform. It leads to a platform independent model (PIM) that exhibits a
certain degree of platform independence in order to be suitable for a number of
different platforms of similar type. (3) The platform specific viewpoint extends the
platform independent viewpoint with an additional focus on the detail of the use of
a specific platform by an IT system. It leads to a platform specific model (PSM)
that is limited to a particular platform.

Crucial questions of the Pragmatic Web are first how to model and analyze col-
laboration, context, organizational commitments, and meaning negotiation; and
second how to use these conceptual models in the design and implementation of
real-world tools and applications [Sch06]. According to the Pragmatic Web Mani-
festo [SMDO06] insights from the language action perspective (LAP) may help to
answer the first set of question and may serve as a theoretical foundation for com-
munication modeling and system design. An example of an LAP-based methodol-
ogy is DEMO revealing the essential structure of business processes [Di06].
DEMO concentrates on a socio-economic system in which human beings in their
role of social individuals involve in commitments and are bringing about the goods

193

or services that are delivered to the environment. It follows that a DEMO model
must be considered as a kind of computation independent model.

The second set of questions mentioned above is already directed towards platform
specific models and their implementations. A UMM model provides the intermedi-
ate layer — the platform independent model. It does not mandate a specific platform
— like traditional EDI, ebXML or Web Services. However, it assumes that possible
implementation technologies are of a similar type, i.e. some kind of message-
oriented middleware connecting autonomous applications of business partners. It
follows that some concepts that are kept abstract in the platform independent
UMM models must be transformed when moving towards implementation to test a
certain mix of technologies.

UMM describes business documents as an assembly of transfer-syntax independent
core components [UNO3a]. The document assembly may be mapped to traditional
EDI standards like UN/EDIFACT [UNO06b], to XML business document standards
such as UBL [OA04a] and those mentioned in a survey by Li [Li00], or to RDF(S)
and OWL base approaches as described in [HHW02,0m01]. The security require-
ments captured in UMM models must be reflected in the data exchanges. Some
security requirements may be captured by the protocols used on the network layer,
(e.g. HTTP, SMTP or Websphere MQ) or extensions to them such as the Secure
Socket Layer (SSL). Other B2B requirements like business level acknowledge-
ments may be solved on a “higher” network level. SOAP and its extensions WS-
Reliable Messaging [OA04b], WS-Security [OA05], WS-Addressing [W3C04] are
candidates for implementation as well as the ebXML messaging specification
[OA02]. Also the chorography defined in UMM models may expressed in different
machine-readable languages which allow the application server to dynamically
load the choreography and to track and to validate corresponding business process
instances. Candidate languages are BPEL [ACDO03], BPML [Ar02], WS-CDL
[Ka04] and ebXML BPSS [UNO3b].

6 Conclusion

In this paper we have presented the UMM-App benchmark which is a platform-
independent benchmark. It defines a representative B2B scenario. This scenario is
based on the scenario used in the TPC-App benchmark which is a platform de-
pendent benchmark based on a particular mix of Web Services specifications. We
reverse engineered the TPC-App scenario to a platform independent UMM model.
It is envisioned that the resulting UMM-App scenario is tested on different B2B
platforms in order to prove the feasibility of each technological mix and its per-
formance.

The current UMM-App defines a platform independent model that assumes to
fulfill the requirements of a representative socio-economic system. However, the
requirements of the underlying socio-economic system are not explicitly captured.
A possible approach to describe this socio-economic system may use the language

194

action perspective such as provided by the DEMO methodology. This would re-
quire a transformation of the computation independent DEMO model to a platform
independent UMM model. Although this transformation needs further investiga-
tions, it seems to be possible by looking at the main concepts of the two method-
ologies. The UMM model will make use of those coordination acts of a DEMO
model in which a business application will support the individual in performing its
act. The concept of DEMO transactions may be represented by UMM business
transactions where the requesting business activity in UMM covers the request and
accept acts of DEMO and, correspondingly, the responding business activity in
UMM includes the promise and state acts of DEMO. The dependencies between
acts of different transactions in DEMO (e.g. waiting conditions) must be reflected
in the choreography of business transaction activities within the UMM business
collaboration protocol. By extending the UMM-App with a computational inde-
pendent DEMO model in the future, we hope to help operationalizing LAP-models
into concrete benchmarks creating better socio-technical systems.

References

[ACDO3] T. Andrews, F. Curbera, H. Dholakia, et al. Business Process Execution Lan-
guage for Web Services, Version 11, 2003,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbizspec/html/bpell-1.asp

[Ar02] A. Arkin. Business Process Modeling Language (Version 1.0), 2002,
http://xml.coverpages.org/BPML-2002.pdf

[BHLO2] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American,
2001

[Di06] J.L.G. Dietz. The Deep Structure of Business Processes, Communications of the
ACM, Vol. 49, No. 5, 2006

[ENO1] B. Eisenberg, D. Nickull D. ebXML Technical Architecture Specification
v1.0.4.,2001, ebXML Specifications, http://www.ebxml.org/specs/ebTA.pdf

[HF89] N.C. Hill, D.M. Ferguson. Electronic data interchange: A definition and perspec-
tive. EDI Forum: The Journal of Electronic Data Interchange Vol. 1, No. 1, 1989

[HHWO02] B. Hofreiter, C. Huemer, W. Winiwarter. Towards Syntax-Independent B2B.
ERCIM News, No. 51, October 2002

[ISO97] ISO. Open-edi Reference Model, ISO/IEC JTC 1/SC30 ISO Standard 14662,
1997, http://www.disa.org/international/is14662.pdf

[Ka04] N. Kavantzas et al. Web Services Choreography Description Language, Version
1.0, W3C, 2004, http://www.w3.org/TR/ws-cdl-10

[Li00] H. Li. XML and Industrial Standards for Electronic Commerce. Knowledge
Information Systems, Vol. 2, No. 4, 2000

[MMO03] J. Miller, J. Mukerji, J.; MDA Guide Version 1.0.1; OMG omg/2003-06-01,
2003, http://www.omg.org/docs/omg/03-06-01.pdf

195

[0A02]
[0A04a]

[OA04b]

[0A05]

[OmO1]

[Ro02]
[Sch06]
[SMDO06]
[TPCO5]
[UN03a]
[UN03b]

[UNO6a]

[UNO6b]
[W3C04]

[W3C06]

OASIS. ebXML Message Service Specification, Version 2.0, 2002,
http://www.oasis-open.org/committees/download.php/272/ebMS _v2_ 0.pdf
OASIS. Universal Business Language 1.0, 2004,
http://docs.oasis-open.org/ubl/cd-UBL-1.0/

OASIS. Web Services Reliable Messaging TC, WS-Reliability 1.1, 2004,
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-
spec-os.pdf

OASIS. Web Services Security: SOAP Message Security 1.1, 2005,
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-SOAPMessageSecurity-
0l.pdf

B. Omelayenko. Ontology Integration Tasks in Business-to-Business E-
Commerce, Proc. of 14th Int. Conf. on Industrial and engineering applications of
artificial intelligence and expert systems: engineering of intelligent systems
(IEA/AIE '01), Springer LNCS, June 2001

RosettaNet. RosettaNet [mplementation Framework: Core Specification,
V02.00.01, 2002, http://www.rosettanet.org/rnif

M. Schoop. PragWeb 2006 - Call for Papers, 2006,
http://www.pragmaticweb.info/

M. Schoop, A. de Moor, J.L.G. Dietz. The Pragmatic Web: a Maniféesto, Com-
munications of the ACM, Vol. 49, No. 5, 2006

TPC. TPC Benchmark App (Application Server) Specification, Version 1.1.1,
2005, http://www.tpc.org/tpc_app/spec/TPC-App_V1.1.1.pdf

UN/CEFACT TMG. Core components technical specification, Version 2.01,
2003, http://www.untmg.org/dmdocuments/CCTS_v201 2003 11 15.pdf
UN/CEFACT TMG. ebXML business process specification, Version 1.10,2003,
http://www.untmg.org/dmdocuments/BPSS v110 2003 10_18.pdf

UN/CEFACT TMG. UMM Foundation Module, Version 1.0, 2006,
http://www.untmg.org/index.php?option=com_docman&task=docclick&Itemid=
137&bid=15, 2

UN/CEFACT ICG. UNJEDIFACT Standard Directories, 2006,
http://www.unece.org/trade/untdid/welcome.htm

World Wide Web Consortium. Web Services Addressing. W3C Member Sub-
mission, 2004, http://www.w3.org/Submission/ws-addressing/

World Wide Web Consortium. Homepage of the Web Services Activity, 2006,
http://www.w3.0rg/2002/ws/

196

