
cba

H. Roßnagel, C.H. Schunck, S. Mödersheim, D. Hühnlein (Hrsg.): Open Identity Summit 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 71

Accountable Trust Decisions: A Semantic Approach

Anders Schlichtkrull1, Sebastian Mödersheim2

Abstract: This paper is concerned with the question of how to obtain the highest possible assurance
on trust policy decisions: when accepting an electronic transaction of substantial value or significant
implications, we want to be sure that this did not happen because of a bug in a policy checker. Potential
bugs include bugs in parsing documents, in signature checking, in checking trust lists, and in the
logical evaluation of the policy. This paper focuses on the latter kind of problems and our idea
is to validate the logical steps of the trust decision by another, complementary method. We have
implemented this for the Trust Policy Language of the LIGHTest project and we use the completely
independently developed FOL theorem prover '%- as a complementary method.

Keywords: Trust policies, Accountability, Security, Logic, Theorem Prover, Isabelle, eIDAS

1 Introduction

When an organization engages in an electronic transaction of substantial value or with
significant implications for the organization, it should have policies in place to protect
themselves or mitigate risks. For instance, before starting a costly production the business
wants to be sure that the apparent customer that ordered the production is really the entity
who initiated the order and that the electronic signature on the order is indeed legally binding
(so it is reasonable to assume that it can be enforced by the legal system in the applicable
jurisdiction). This may also include limits on the total value of the order so that even if a
legal dispute fails or takes time, the company can stay operational.

The project LIGHTest [BL16] offers an infrastructure for formulating trust policies for
this kind of purpose, e. g., a company may define the following policy: we accept every
order up to a specified amount, if it was signed with an eIDAS qualified signature. They
may additionally allow for trust schemes outside the European Union, but rely on trust
translation recommendations: suppose the European Commission defines a translation from
a foreign scheme to eIDAS, say level 3 in the foreign scheme is regarded as equivalent
to level advanced in eIDAS, then the company may accept those signatures as well, but
may choose to set a lower cap on the value of accepted orders. The reason for such a lower
cap is that a legal dispute outside the European Union may be much more difficult for this
company. On the other hand, they may have other business policies, e. g. if the customer
1 Technical university of Denmark, DTU Compute, Richard Petersens Plads, Bygning 324, 2800 Kongens Lyngby,
Denmark andschl@dtu.dk
2 Technical university of Denmark, DTU Compute, Richard Petersens Plads, Bygning 324, 2800 Kongens Lyngby,
Denmark samo@dtu.dk

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andschl@dtu.dk
mailto:samo@dtu.dk


72 Anders Schlichtkrull, Sebastian Mödersheim

is well-known or has a good reputation from other partners. Finally, We may also have
delegation, i. e., if the customer is itself a company, it may be an employee signing on behalf
of the company. For all these purposes, LIGHTest offers a Trust Policy Language (TPL) and
has an automated trust verifier (ATV) to evaluate a given transaction against a given policy,
possibly looking up trust list entries as needed [Mö19].

This paper is concerned with the question: how can we trust the trust decision made by
the ATV, or more generally, how can we be sure about the result of an automated policy
evaluation? The problem would be if we accidentally accept a transaction that actually does
not meet the requirements of the policy – due to a bug in policy evaluation tool. We see at
least the following aspects relevant to this question:

Cryptography Are for instance the electronic signature algorithms sufficiently secure
(until the time we rely on them) and implemented correctly?

Parsing When extracting information from a document, is this parsing done correctly?
Potential problems include ambiguous document formats, parts erroneously not
included in the signature, vulnerabilities to injection/overflow attacks.

History Can we later prove to a third party what was the state of a trust list at the time
of the policy decision? There can be modifications of the trust list by the hosting
organization, as well as the problem of revocation.

Semantics Assume the previous points are all correct: does the transaction then indeed
logically satisfy the policy? Potential problems include that the ATV has some logical
bugs such as instantiating variables inconsistently.

Real world Does the policy actually make sense to the business such as limiting damages
and providing sufficient legal assurances?

The main contribution of this paper is to propose a solution for the point “Semantics”
by an “independent set of eyes”. The idea comes from the area of proof assistants like
Isabelle/HOL [NPW02] which provide a way to formalize mathematical claims and proofs
for them in a language similar to programming languages, and that the proof assistant
can check. This gives an overwhelming assurance that proofs are indeed correct, because
it rules out the problem of holes, false conclusions, or imprecisions in proofs that often
occur in standard proofs that are written in a mixture of mathematical terms and natural
language. While Isabelle/HOL offers some automation to find proofs, the human prover still
has to provide at least the main idea of a proof. The prover '%- [SBT19], in contrast, is
an automatic prover for First-Order Logic (FOL) that was proven correct in Isabelle. It is
based on a handbook chapter by Bachmair and Ganzinger [BG01] and thus proves that their
approach is correct. The formalization, however, revealed several non-trivial mistakes in the
chapter, all of which were then rectified. With '%- we thus have a theorem prover where we
have the same overwhelming assurance as in Isabelle when '%- accepts a FOL-statement



Accountable Trust Decisions: A Semantic Approach 73

as logically valid. Since LIGHTest’s TPL is inspired by Prolog, we can cast policy decisions
as FOL theorem proving problems and thus use '%- for double checking them.

One may wonder why not to use '%- as the policy decision tool in the first place. The reason
is that the ATV of LIGHTest evaluates policies in a different way than a theorem prover: it
processes a transaction (parsing, signature checking, comparing fields) and interacts with
different servers maintaining trust lists; also it has to process policy rules and their elements
in a given order. In contrast, a theorem prover deals only with logical formulae and needs
the freedom to “process” them in an arbitrary order in order to be most effective. We thus
propose the combination of ATV and '%- – or more generally: the combination of a policy
decision tool with a verifier – as they benefit from complementary strengths.

The main contribution of this paper is the integration of the ATV and '%- . This includes
defining a good interface for the first three aspects Cryptography, Parsing and History
that are beyond what '%- can check. The implementation of our approach is part of
the LIGHTest distribution and first experiments have indeed revealed a few mistakes in a
preliminary implementation of the ATV that are now all corrected; thus our verification has,
if anything, already practically contributed to improving the ATV.

2 Preliminaries

Our work is based on the LIGHTest Trust Policy Language TPL [Mö19] which we first
briefly introduce by way of an example TPL policy (adapted from [Mö19]). This example
is that an auction house receives bids for auction lots over the Internet in a custom format
(defined by the auction house themselves) and it accept all bids up to 1500 Euro as long as
the bidding form is signed by an eIDAS qualified signature. In TPL this looks as follows:

1. accept(Transaction) :-

2. extract(Transaction, format, theAuctionHouse2020format),

3. extract(Transaction, bid, Bid),

4. Bid <= 1500,

5. extract(Transaction, certificate, Certificate),

6. extract(Certificate, format, x509),

7. extract(Certificate, pubKey, PK),

8. verify_signature(Transaction, PK),

9. check_eIDAS_qualified(Certificate).

10.

11. check_eIDAS_qualified(Certificate) :-

12. extract(Certificate, format, eIDAS_qualified_certificate),

13. extract(Certificate, issuer, IssuerCertificate),

14. extract(IssuerCertificate, trustScheme, TrustSchemeClaim),

15. trustscheme(TrustSchemeClaim, eIDAS_qualified),



74 Anders Schlichtkrull, Sebastian Mödersheim

16. trustlist(TrustSchemeClaim, IssuerCertificate, TrustListEntry),

17. extract(TrustListEntry, format, trustlist_entry),

18. extract(TrustListEntry, pubKey, PkIss),

19. verify_signature(Certificate, PkIss).

Lines 1 to 9 define a predicate accept. Such a definition is called a clause. The predicate
accept specifies when a transaction is accepted. The transaction is here represented as a
parameter variable Transaction to the predicate (on line 1). As a convention, variables
always start with a capital letter, while identifiers that start with a lower-case letter are
constants or predicate symbols. The following lines give constraints on the transaction that
need to be all true in order to satisfy accept(Transaction).

TPL supports the use of arbitrary data formats as long as a parser for that format exists.
Consider the constraint on line 2 that uses the extract predicate. The extract predicate
connects TPL with the parsers of the various data formats where the first two parameters
are the input and the third parameter is the output. In the concrete example we ask what
the format of Transaction is and we expect a particular result defined by the constant
theAuctionHouse2020format. In the example, this is a custom format defined by the auction
house themselves, containing a number of fields that they require to be filled in in order to
make a bid at their current auction; assume these fields include at least the fields bid and
certificate that we formulate constraints on below. The policy decision would be negative
if at this point the parser for this format does not successfully parse the given transaction.

In line 3 the extract predicate is given as parameters Transaction, bid and Bid. As said
before, the theAuctionHouse2020format contains a field called bid, and the constraint
here is to simply bind the concrete value in the transaction to the variable Bid (in fact this
constraint cannot fail). Line 4 specifies the constraint that whatever is now the value of Bid
should be at most 1500. Again, if the concrete bid in the transaction is above 1500, then at
this point the policy decision stops with a negative result.

In lines 5-7 we first extract a certificate from the transaction, now represented as variable
Certificate, then we put the constraint that it should be of the x509 format, and lastly we
extract a public key from it, binding it to a new variable PK. Here we assume a similar interface
to the x509 format as for the auction house format. In line 8 we use the verify_signature
predicate to require that the signature on the transaction Transaction can be verified with
the PK public key. In fact, this requires that theAuctionHouse2020format is a format with a
notion of a signature.

Each constraint of the clause so far (lines 2-8) uses built-in predicates of TPL (extract, <=,
and verify_signature). The predicate in line 9, however, is not built-in: it is defined by the
clause in lines 11-19. Lines 11-14 constrain what format the certificate must have and also
extracting from it an issuer certificate and from that a trust scheme claim. A trust scheme
claim is a URL to a trust list that the issuer certificate claims to be represented on. In line 15
we use the built-in trustscheme predicate with second parameter eIDAS_qualified which



Accountable Trust Decisions: A Semantic Approach 75

checks if the URL points to the eIDAS trust list. In line 16 we use the built-in predicate
trustlist actually perform the trustlist lookup, to check if it indeed contains the required
IssuerCertificate. As a result of a successful lookup, we obtain a TrustListEntry that
we check in lines 17 to 19: we check the entry format, extract the public key stored in the
entry, now PkIss, and verify Certificate’s signature with respect to PkIss.

In this example we have defined both the predicates accept and check_eIDAS_qualified
by one clause each. In general, we can define any number of clauses, and they represent
alternative ways to satisfy a predicate. For instance, in the example a bid above 1500 Euro
would not fulfill the above clause, but if another accept clause is specified (e. g. on known
customers) then the ATV tries that next.

3 Transcripts

The goal of this paper is to verify the logical aspect of the trust decisions of the ATV –
and we leave out the aspects that are “outside” the logical realm, namely the verification
of signatures, parsing, and server lookups. We thus need an appropriate interface between
the logical and the extra-logical side. To this end we introduce the notion of a transcript
as a triple (%,&, �) where % is the TPL policy, & is a query and � is an event log. The
query will be simply of the form accept(transaction) where transaction is a constant
representing the transaction document in question. In fact, for all elements that we talk about
in the transcript, we use such symbolic constants. The event log contains a recording of all
built-in predicates that were successfully evaluated by the ATV during the policy decision.

Since we need to work later with symbolic constants, but the ATV works on quite different
data-structures, we need to take an intermediate step to arrive at a transcript. As a policy is
being checked, the ATV will build what is basically a tree representation of the various
objects that it stores. Running the above policy on with a concrete transaction could result
in the following tree representation:

(root)

+--transaction

| +-- format = "the_auction_house_2020"

| +-- bid = "600"

| +-- certificate

| +-- pubKey

| +-- issuer

| +-- trustScheme = "trust.eidas.eu"

+--trustlistentry1

+-- pubKey

This tree represents a state of the ATV where it contains a transaction and a trust list entry
which each are represented as subtrees, namely the subtrees rooted in “(root).transaction”



76 Anders Schlichtkrull, Sebastian Mödersheim

and “(root).trustlistentry1” respectively. We shall from now on ignore the root node in paths
and thus the mentioned paths of the example start with “transaction” or “trustlistentry1”.
The tree has internal nodes like “transaction.certificate”. The tree also has leaves such as
“transaction.bid”. This leaf contains the value “600”. Additionally, the ATV keeps track of
the concrete data that some parts of the tree represent, for instance “transaction.certificate”
and “trustlistentry1.pubKey” represent a certificate and a public key, respectively, and the
ATV needs to keep track of the certificates signature.

We have thus augmented the ATV so that it can generate the event log as a side effect during
its normal work. We use again the example policy from section 2 and as a transaction the
concrete objects shown in the above tree (fulfilling the policy):

extract(transaction, format, theAuctionHouse2020format).

extract(transaction, bid, 600).

600 <= 1500.

extract(transaction, certificate, transaction_certificate).

extract(transaction_certificate, format, x509).

extract(transaction_certificate, pubKey, transaction_certificate_pubKey).

verify_signature(transaction, transaction_certificate_pubKey).

extract(transaction_certificate, format, eIDAS_qualified_certificate).

extract(transaction_certificate, issuer, transaction_certificate_issuer).

extract(transaction_certificate_issuer, trustScheme,

transaction_certificate_issuer_trustScheme).

trustscheme(transaction_certificate_issuer_trustScheme, eIDAS_qualified).

trustlist(transaction_certificate_issuer_trustScheme,

transaction_certificate_issuer, trustlistentry1).

extract(trustlistentry1, format, trustlist_entry).

extract(trustlistentry1, pubKey, trustlistentry1_pubKey).

verify_signature(transaction_certificate, trustlistentry1_pubKey).

This log contains an encoding of the concrete instance of all built-in predicates that occurred
during evaluation. The representation includes constants representing the paths into the tree
that were used during the execution; for example, transaction_certificate represents the
path “transaction.certificate”. We take care that when such constants are introduced they do
not clash with the constants already present in the policy.

4 Translating Transcripts to Logical Formulae

We now translate a transcript to logical formulae. Our running example policy will be
translated to the following logical formula:

(∀Transaction,Bid,Certificate,PK.
accept(Transaction) ← (



Accountable Trust Decisions: A Semantic Approach 77

extract(Transaction, format, theAuctionHouse2020format) ∧
extract(Transaction, bid,Bid) ∧
less_or_eq(Bid, i1500) ∧
extract(Transaction, certificate,Certificate) ∧
extract(Certificate, format, x509) ∧
extract(Certificate, pubKey,PK) ∧
verify_signature(Transaction,PK) ∧
check_eIDAS_qualified(Certificate)
)
)
∧
(∀Certificate, IssuerCertificate,PkIss, TrustListEntry, TrustSchemeClaim.

check_eIDAS_qualified(Certificate) ← (
extract(Certificate, format, eIDAS_qualified_certificate) ∧
extract(Certificate, issuer, IssuerCertificate), ∧
extract(IssuerCertificate, trustScheme, TrustSchemeClaim) ∧
trustscheme(TrustSchemeClaim, eIDAS_qualified) ∧
trustlist(TrustSchemeClaim, IssuerCertificate, TrustListEntry) ∧
extract(TrustListEntry, format, trustlist_entry) ∧
extract(TrustListEntry, pubKey,PkIss) ∧
verify_signature(Certificate,PkIss)
)
)

The translation for each clause replaces the commas (,) with conjunction symbols (∧), and
the colon dash (:-) is replaced with an implication symbol (←). Lastly all variables in
the clause are universally quantified (using the ∀ symbol). The translation of the policy is
then simply the conjunction (using ∧) of the translated clauses. Note that numbers such as
1500 are translated to symbolic constants i1500 and the <= operator becomes the predicate
less_or_eq. Our implementation makes sure that these names do not clash with names of
other logical constants or predicates as to avoid an ambiguity in their meaning. Let us call
the above example formula %ex.

The event log is translated as a conjunction as well, in our example �ex is the formula:

extract(transaction, format, theAuctionHouse2020format) ∧
extract(transaction, bid, i600) ∧
less_or_eq(i600, i1500) ∧
...

verify_signature(transaction_certificate, trustlistentry1_pubKey)

With the query &ex = accept(transaction) we have the translated transcript (%ex, &ex, �ex).



78 Anders Schlichtkrull, Sebastian Mödersheim

5 Semantics: From Logic Programming to FOL

Check the Transcripts Essentially the idea is now that after a successful run of the
ATV we have three formulae (%,&, �): the policy %, the query & and the event log � . We
essentially want to double check with '%- whether % ∧ � logically implies &. If so, then
the positive decision of the ATV is verified. However, as always, the devil is in the details
and we describe now how to make the connection to '%- semantically precise.

'%- [SBT19] is an automatic theorem prover for First-Order Logic (FOL). Given a FOL
formula in TPTP format [Su17], '%- attempts to prove that the negation of the formula
is unsatisfiable. While '%- can run into non-termination (since validity is undecidable
for FOL), we have a strong guarantee when it does terminate. The reason is that the
inference engine of '%- has been proved to be sound and complete using the proof assistant
Isabelle/HOL [SBT19]. Soundness gives us strong mathematical guarantees that if '%-

claims that the formula is unsatisfiable then indeed it is unsatisfiable. Completeness gives
us strong mathematical guarantees that if the formula is unsatisfiable then '%- will be able
to prove that, when given enough time.

Since TPL is inspired by Prolog, unsurprisingly its semantics is based on logic programming
as well, and in fact this work exploits how close TPL is to the semantics of FOL for which
'%- implements an automated theorem prover. There are some differences however, and
we now highlight these details carefully and discuss how we can handle them.

Free Algebra Logic programming generally works on so-called free models, for an
overview see for instance [EFT94, Chapter 11] and since there is sometimes confusion
about the semantics, Hinrichs and Genesereth suggested the formal definition of Herbrand
Logic [HG06] to contrast it more precisely with FOL. One of the key differences is that in
Herbrand logic and logic programming in general, function symbols behave like in a free
term algebra. For instance, if we have a binary function symbol 5 , then 5 (C1, C2) = 5 (B1, B2)
holds iff both C1 = B1 and C2 = B2. In other words: two terms are equal iff they are syntactically
equal. This means in particular that for any two distinct constants 2 and 3, it holds that
2 ≠ 3, because constants are just functions of arity 0. In contrast, standard FOL allows to
model function symbols with algebraic properties such as commutativity.

Universes The model-theoretic definition of a logic is based on the concept of a universe,
i. e. a non-empty set* of objects. For standard FOL, every function 5 of arity = is interpreted
as a function from*= to*, and every relation symbol of arity = is interpreted as a subset
of*=. For instance, the universe may be* = {0, 1} and + is interpreted as disjunction, and
· is interpreted as conjunction, and the binary relation < is interpreted to be true only for the
pair (0, 1). The difference for Herbrand logic is that the universe is determined by the set of
function symbols we employ: we take as universe the set of terms that can be built from
the terms. For instance if we have just two function symbols 0 of arity 0 and B of arity 1,



Accountable Trust Decisions: A Semantic Approach 79

then* = {0, B(0), B(B(0)), . . .} which can be regarded as the set of natural numbers. The
“interpretation” of function symbols is then as expected.

Arithmetics In fact, this makes Herbrand logic even more expressive than standard FOL:
we cannot formalize arithmetics in first-order logic because we lack the expressive power
to formalize that the universe* is the natural numbers (we would have to formalize well-
foundedness or the induction principle which are higher-order concepts), while Herbrand
logic fixes the universe and we can thus get the natural numbers “for free”. This even allows
formalizing arithmetics (addition, multiplication, and comparison on natural numbers) as
Hinrichs and Genesereth show [HG06]: even though we cannot for instance define addition
as a binary function directly, we can use a ternary relation like add(G, H, I) to represent that
the addition of G and H gives I, and based on this axiomatize arithmetics completely. While
this allows a semantically unambiguous integration of arithmetic into our policy language,
what TPL (or logic programming approaches for that matter) can actually support is the
direct evaluation of ground arithmetic statements like 5 + 3 < 100, but they cannot solve
equations. Therefore, in TPL we have to require that when the ATV reaches a condition like
- < 100 that - is instantiated with a concrete integer through some other condition. In fact,
note that while validity of formulae in FOL is semi-decidable, for Herbrand logic neither
validity nor its complement is semi-decidable.

Least Models A last important difference to FOL is that most logic programming
approaches do also fix the interpretation of the relationship symbols to be the least
interpretation that satisfies all clauses. For instance, consider the policy that consists only of
the single clause ?() : −@(), and no more information is given. Then in normal FOL, there
are three interpretations satisfying this clause: @() can be false and ?() can be either true or
false, or both @() and ?() are true. The least interpretation, i. e. the interpretation chosen
by Prolog-style semantics, is that both ?() and @() are false. This is sometimes also called
negation by failure: since we fail to prove @(), it counts as false and thus we also fail to
prove ?() which is therefore also false.

While this behavior can cause confusion in logic programming (e. g. when using not and
cuts as in Prolog), for policies it can make specifications actually quite intuitive: a policy is
described always in a positive way, i. e. by sufficient conditions to satisfy the policy (or a
particular concept of the policy), and everything else is outside the policy, i. e. a default-deny
behavior which also means that forgetting to describe a case leads to erring on the safe side.

Mind the Gap Now that we have highlighted all the differences, let us consider how
they need to be taken into account so that the verification we perform in the FOL-
prover '%- indeed agrees precisely with the semantics of TPL. Recall that we already



80 Anders Schlichtkrull, Sebastian Mödersheim

have predicates like extract that are interfaces between the logical side and the real-
world documents and servers. We handle them axiomatically in the logic, i. e. what-
ever checks and lookups the ATV does are recorded and supplied as facts, e. g. that
extract(transaction, format, theAuctionHouse2020format) holds.

The first idea is now that, since we cannot formalize arithmetic in FOL, we handle all
arithmetic checks axiomatically as well, e. g., if the ATV encountered the check 500 < 1000,
then this is also added as an axiom to the library. Indeed, it is easy to check such statements
outside the FOL, so there was no sense in trying to integrate them in '%- (which would
only be possible in some approximation, anyway).

For the other issues – free algebra, universes and least models – we make use that all policy
decisions have a particular form, namely evaluating a goal predicate with respect to a policy.
More in detail, let � be a conjunction of the policy rules and all other information we
have (statements about extractions, signature verifications, server lookups, and arithmetic
checks), and let @ be a query @ (a ground predication). The least model of � is the least
interpretation that satisfies all conditions we described above: the universe is the set of
ground terms that can be built using the function symbols, every function symbol is freely
interpreted in that universe, and all relationship symbols are interpreted as the least relation
that satisfies all clauses in �. The policy decision, written � |=TPL @, is now the question
whether @ holds in the least model of �.

The corresponding question that we ask '%- is whether the formula � ∧ ¬@ is satisfiable
in FOL. Satisfiable means that there is at least one satisfying FOL interpretation for this
formula. If '%- answers “no”, then there is no way to interpret the universe and the function
and relation symbols such that both � and ¬@ are satisfied – and this includes the least TPL
model of � and thus � |=TPL @. Thus if '%- finds � ∧ ¬@ unsatisfiable, we know that @
was correctly accepted as satisfied by the Automated Trust Verifier and we have successfully
verified the trust decision.

In fact, the converse statement also holds: if '%- answers “yes” to the question whether
� ∧ ¬@ is satisfiable, then actually � 6 |=TPL @. In other words, a correct positive trust
decision from the ATV is never refuted by '%- , only when the ATV erroneously marks a
query @ as fulfilled, will '%- complain. The proof of this is trickier though and we only
give a brief sketch. Suppose we have some satisfying FOL interpretation I for � ∧ ¬@
and compare it to the least TPL model of �, then the TPL model will be “at least as fine”:
equality on terms is the finest possible relation in the least TPL model, and thus the least
TPL model of the predicates contains at most as much as I. Thus since @ is not true in I, it
is also not true in the least TPL model of �, thus � 6 |=TPL @.

6 Experiments and Conclusion

The approach described in this paper is completely implemented and part of the LIGHTest
distribution. In fact, we have already started testing it when the implementation of the ATV



Accountable Trust Decisions: A Semantic Approach 81

was still in a preliminary state. We found a couple of examples where the ATV and '%-

did not agree on policy decisions. For example a predicate like ?(-, -) is actually true for
an arbitrary value as the first parameter – only the second parameter must be identical. This
unification between parameters was not correctly implemented in the first version of the
ATV. The error was of type wrong reject, i. e. the decision was negative when it should be
positive, which is erring on the safe side, but undesirable nonetheless. All mistakes have
been corrected and extensively tested using our '%- connection.

To our knowledge, the only other work that double checks policy decision through a
connection to an independent verifier is by Jim [Ji01]. There, the accountability argument
hinges on the proof checker being a relatively simple program; in contrast, we use with
'%- a verifier that itself is verified in Isabelle. We believe that such works are in principle
feasible and worthwhile for other policy languages where a formal semantics is defined that
can be verified by means other the main policy decision tools. This exploits the fact that the
design of such a semantics is often simpler than the procedure to obtain decisions that also
integrates the extra-logical aspects like server lookups.

This work has focused exclusively on verifying the logical aspects of the decision. Let us
at least briefly discuss the other aspects. For the parsing of documents, we have proposed
a notion akin to the formats of TPL that in a heterogenous eco-system of formats prevent
confusion about the meaning of messages [MK14]. For the cryptography and transmission
channels there are first works on verifying implementations [Bh16]. This is crucial for server
lookups, but not sufficient. The problem that trust lists may change over time implies the
problem to later prove to a third party that the policy was satisfied at the time of checking. In
fact, it is a reasonable requirement that trust lists maintain historical records, but especially
in a volatile environment like servers for delegation that also try to protect the contents of
the delegation lists against monitoring, this may be non-trivial.

This is actually related to the more “high-level” problem, namely whether a policy makes
even sense for a business in the first place: that all conditions we check and all information
we have gathered in a policy decision are sufficient to prove to a third party – e. g. in a legal
dispute – what has happened. While many legal aspects are outside a technical view, we
plan as future work to verify accountability properties [KTV10] of logging mechanisms
and their relation to the policies we put in place.

Acknowledgments We thank Andreas Viktor Hess, Georg Wagner, Stefan More and
Lukas Alber for helpful discussions and support in the adaption of the ATV. This work
was supported by the Sapere-Aude project “Composec: Secure Composition of Distributed
Systems”, grant 4184-00334B of the Danish Council for Independent Research, by the EU
H2020 project no. 700321 “LIGHTest: Lightweight Infrastructure for Global Heterogeneous
Trust management in support of an open Ecosystem of Trust schemes” (lightest.eu) and by the
“CyberSec4Europe” European Union’s Horizon 2020 research and innovation programme
under grant agreement No 830929.



82 Anders Schlichtkrull, Sebastian Mödersheim

References

[BG01] Bachmair, L.; Ganzinger, H.: Resolution Theorem Proving. In (Robinson, A.;
Voronkov, A., eds.): Handbook of Automated Reasoning. Vol. I, Elsevier and
MIT Press, pp. 19–99, 2001.

[Bh16] Bhargavan, K.; Delignat-Lavaud, A.; Fournet, C.; Kohlweiss, M.; Pan, J.;
Protzenko, J.; Rastogi, A.; Swamy, N.; Béguelin, S. Z.; Zinzindohoue, J. K.:
Implementing and Proving the TLS 1.3 Record Layer. IACR Cryptology ePrint
Archive 2016/, p. 1178, 2016.

[BL16] Bruegger, B. P.; Lipp, P.: LIGHTest - A Lightweight Infrastructure for
Global Heterogeneous Trust Management. In (Hühnlein, D.; Roßnagel, H.;
Schunck, C. H.; Talamo, M., eds.): Open Identity Summit 2016, 13.-14. October
2016, Rome, Italy. Vol. P-264. LNI, GI, pp. 15–26, 2016.

[EFT94] Ebbinghaus, H.; Flum, J.; Thomas, W.: Mathematical logic (2. ed.) Springer,
1994, isbn: 978-3-540-94258-0.

[HG06] Hinrichs, T.; Genesereth, M.: Herbrand Logic, tech. rep. LG-2006-02,
http://logic.stanford.edu/reports/LG-2006-02.pdf, CA, USA: Stanford Uni-
versity, 2006.

[Ji01] Jim, T.: SD3: A Trust Management System with Certified Evaluation. In: 2001
IEEE Symposium on Security and Privacy, Oakland, California, USA May
14-16, 2001. IEEE Computer Society, pp. 106–115, 2001.

[KTV10] Küsters, R.; Truderung, T.; Vogt, A.: Accountability: definition and relationship
to verifiability. In (Al-Shaer, E.; Keromytis, A. D.; Shmatikov, V., eds.): CCS
2010. ACM, pp. 526–535, 2010.

[MK14] Mödersheim, S.; Katsoris, G.: A Sound Abstraction of the Parsing Problem. In:
CSF 2014. IEEE Computer Society, pp. 259–273, 2014.

[Mö19] Mödersheim, S.; Schlichtkrull, A.;Wagner, G.;More, S.; Alber, L.: TPL:ATrust
Policy Language. In (Meng, W.; Cofta, P.; Jensen, C.D.; Grandison, T., eds.):
IFIPTM 2019. Vol. 563. IFIP Advances in Information and Communication
Technology, Springer, pp. 209–223, 2019.

[NPW02] Nipkow, T.; Paulson, L. C.; Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Springer, 2002.

[SBT19] Schlichtkrull, A.; Blanchette, J. C.; Traytel, D.: A verified prover based on
ordered resolution. In (Mahboubi, A.; Myreen, M.O., eds.): CPP 2019. ACM,
pp. 152–165, 2019.

[Su17] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59/4, pp. 483–502,
2017.


