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Abstract: This paper investigates the use of transformer networks – which have recently become
ubiquitous in natural language processing – for smart autocompletion on source code. Our model
JavaBERT is based on a RoBERTa network, which we pretrain on 250 million lines of code and then
adapt for method ranking, i.e. ranking an object’s methods based on the code context. We suggest
two alternative approaches, namely unsupervised probabilistic reasoning and supervised fine-tuning.
The supervised variant proves more accurate, with a top-3 accuracy of up to 98%. We also show that
the model – though trained on method calls’ full contexts – is quite robust with respect to reducing
context.
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1 Introduction

AI-based support in software engineering has recently emerged as a research field, and
recommenders for software commits [Da16], prediction of code changes [Zh19] or semantic
code search [Hu19] have been developed. These are usually trained on vast amounts of
source code and documentation from open-source platforms such as GitHub. Another
challenge – and the subject of this paper – is smart autocompletionȷ As the developer
types source code, a neural network suggests names for methods to use next. We refer to
this challenge of ranking an object’s method names by their plausibility in a given code
context as method ranking. Figure 1 illustrates this, where a neural network has learned a
suggestion from GitHub projects including code passages similar to the target context.

public class NameEntry {

  ...

  TextField name;

  ...

  

  public void setup() {

    

    name = new TextField(20);

    l = new Label(this.name);

    add(l, Layout.WEST);

    add(name, Layout.EAST);

    

    h = new NameHandler();

    name.  ??? 

    pack(); 

  }

  ...

method 
ranking       
network

1.   92%

2.   addNotify 57%

3.   setText  7%

addActionListener

Fig. 1ȷ A method ranking network analyzes a position in Java source code (red, left), and infers that –
out of the class TextField’s methods – addActionListener() seems most plausible.
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While previous work on method ranking has used 𝑛-grams [Hi12] or recurrent net-
works [Wh15], we evaluate the transformer-based masked language model BERT [De18]
(more precisely, its RoBERTa variant [Li19]). This approach has been very successful in
natural language processing, but there has been – to the best of our knowledge – only one
recent publication on smart autocompletion in source code [Ki20]. We call our model
JavaBERT (since our focus lies on the Java programming language).
To utilize JavaBERT for method ranking, we propose two alternatives addressing the fact
that method names may consist of multiple tokens (e.g., add/Action/Listen/er).ȷ

1. JavaBERT-unsupȷ The pretrained (unsupervised) JavaBERT model is applied by
masking out varying numbers of tokens. JavaBERT’s predictions on token level are
then combined in a probabilistic reasoning to predictions on method level.

2. JavaBERT-supȷ JavaBERT is fine-tuned supervisedly as a binary classifier, estimating
whether a certain method call is plausible or not in a given code context.

We evaluate both models in quantitative experiments on random samples from the GitHub
Java Corpus [AS13]. Our results indicate that masked language modeling is surprisingly
accurate, with a top-3 accuracy of up to 98%. We also study the impact of different contexts,
e.g. only the code up to the target method call, or shorter vs. larger pieces of code.

2 Related Work

Smart autocompletion The task of code completion has been addressed since 2012 by
using n-gram models [Hi12, AS13], cached 𝑛-gram models for improved localization [Fr15,
TSD14, HD17] and graph-based statistical language models [NN15]. More recently, the
availability of large code bases has facilitated the creation of neural network language
models, including recurrent neural networks [Wh15, Ra16, Li17], gated recurrent neural
network models [KS19] and LSTM models [Da16]. Most recent code completion models
for Java use a single layer gated RNN [Ka20] model with Byte-Pair Encoding [SHB16].

Transformer networks in NLP Transformer networks [Va17] use the concept of atten-
tion [BCB14] to derive contextualized representations for the single tokens from a sequence
(i.e. a sentence or paragraph). Probably the most prominent model is BERT [De18], which
applies masked language modeling, i.e. the model is trained to predict random masked
tokens in the training text. Other variants use generative transformers (GPTs) trained by
left-to-right language modeling [Ra18], optimize hyperparameters such as model depth and
learning rate (RoBERTa [Li19]), reduce the amount of parameters (ALBERT [La20]) or
perform an adversarial training (ELECTRA [Cl20]). While transformer models have been
extremely successful and intensely studied in processing natural language recently, we are
only aware of one recent publication employing them for code completion [Ki20]. While
this work uses an autogenerative model, we employ masked language modeling on pieces
of source code.
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Fig. 2ȷ Our approach JavaBERT is first pretrained using Masked Language Modeling (top). Afterwards,
method ranking can either use masking with probabilistic reasoning (JavaBERT-unsup, left) or
fine-tuning with a binary classifier (JavaBERT-sup, right).

3 Approach

As shown in Figure 2, our approach pretrains an encoder (JavaBERT) by masked language
modeling. The resulting model can either be applied in an unsupervised fashion (using
probabilistic reasoning) or by fine-tuning it into a supervised binary classifier. We discuss
these three processing steps in depth in the following subsections.

3.1 Pretraining

Our approach starts with training a RoBERTa model on the Github Java Corpus [AS13]
using the fairseq library [Ot19]. RoBERTa replicates and improves key hyperparameters of
the well-known BERT model [De18] for a more robust training.
The training set of the Github Java Corpus consists of around 1.1 billion tokens of Java
source code, from which we separate the last 5% into a validation set. We tokenize all
Java code with a language parser2 to separate natural language identifiers from syntax
symbols. Thereby, we also remove multiple whitespace and replace string, character, float,
and integer literals with a respective constant (e.g. <INT>). As source code may contain
unicode identifiers, we use the unidecode library to transcribe any non-ASCII letters into
ASCII.
Afterwards, we train and apply a Byte-Pair Encoding [SHB16] of 𝑉=10, 000 sub-words
on the tokenized source code. We perform neither lower-casing nor camel-case split-
ting as it is often done in machine learning on source code [ALY18]. A vocabulary
of 10𝐾 tokens is used, which we assume is sufficient for source code (most identi-
fiers are rather short or combined with camel-casing) while improving training speed.
For example, our preprocessing tokenizes public float myFloat = 10.0; into
public/float/my/Float/=/<FLOAT>/;.

2 We use the javalang library for tokenization.
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Model and Training We use a configuration similar to the RoBERTa𝐵𝐴𝑆𝐸 model (12
layers, 768-dimensional embeddings, 12 attention heads, 110M params total). Like ToBERTa,
we use GELU activation functions [HG16], learned positional embeddings and a dropout of
0.1 throughout all layers and activations. The model is optimized with the Adam optimizer
[KB14] (𝛽1=0.9, 𝛽2=0.98, 𝜖=10−6, weight decay 0.01) using a linear warm-up of the
learning rate for 6𝐾 steps up to 6×10−4 followed by a cosine decay over 30𝐾 steps.
For efficiency reasons, we first train 15𝐾 steps on shorter code blocks of 128 tokens each
(batch size 8𝐾) and then increase the block length to 512 (batch size 1, 500). The sampled
blocks do not cross document (i.e. source file) boundaries. We use gradient accumulation
to mimic larger batch sizes on our limited hardware (6 NVIDIA GeForce GTX 1080 Ti).
After a total training time of about two weeks, the JavaBERT model reached a validation
perplexity of 1.16 for predicting masked out tokens, which is significantly better than
common results for natural language (which is more ambiguous and unstructured).

3.2 Unsupervised Method Ranking (JavaBERT-unsup)

We assume an incomplete piece of code to be given, which is a sequence of 𝑛 tokens
𝑇 :=(𝑡1, . . . , 𝑡𝑠 , . . . , 𝑡𝑛) containing a slot 𝑡𝑠 for the missing method call, and a set of candidate
method names {𝐶1, . . . , 𝐶𝑙} which contains the correct method call 𝐶∗ as well as other
method names from the same class as 𝐶∗. The task is to maximize the probability 𝑃(𝐶∗ |𝑇).
Note that – after tokenization – each candidate method name may consist of multiple tokens,
i.e. 𝐶=(𝑐1, . . . , 𝑐𝐿) with 𝐿>1.
Note that the JavaBERT model’s original training is similar to method rankingȷ The original
source sequence is transformed into a sequence 𝑇 ′, in which – similar to our input sequence
– random tokens 𝑡𝑖 have been masked out by replacing them with a <mask> token. During
training the probability 𝑃(𝑇𝑖=𝑡𝑖 |𝑇 ′) of predicting the masked token is maximized. The key
difference with method ranking is that multi-token method names have to be predicted. To do
so, we calculate the probability of a candidate method (e.g., 𝐶=(𝑐1, .., 𝑐𝐿)) by replacing the
slot token 𝑡𝑠 with 𝐿 <mask> tokens, obtaining a sequence 𝑇𝐿 . Then, the overall probability
of candidate 𝐶 is defined as

𝑃(𝐶 |𝑇) = 𝑃(𝐿) ·
𝐿∏
𝑗=1

𝑃(𝑇𝑠+ 𝑗−1=𝑐 𝑗 |𝑇𝐿) (1)

𝑃(𝐿) acts as a prior on method name length, exploiting the fact that shorter names are more
likely (an estimate on the training set is given in Table 1).

𝐿 1 2 3 4 5 6 7 8 9 10+

𝑃(𝐿) 26.6% 23.9% 21.0% 12.4% 6.9% 3.9% 2.2% 1.2% 0.7% 1.2%

Tab. 1ȷ The prior 𝑃(𝐿) indicates the probability of different method name lengths 𝐿.
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3.3 Supervised Method Ranking (JavaBERT-sup)

Our second approach fine-tunes the pretrained JavaBERT model using a supervised training.
The idea is to insert candidate method names into code blocks and estimate their plausibility
with a binary classifier. To do so, we use a classifier token 𝑡𝐶𝐿𝐴𝑆𝑆 (as is common practice),
replace the slot token 𝑡𝑠 with the candidate 𝐶, and add markers 𝑡𝑆𝑇 𝐴𝑅𝑇 and 𝑡𝐸𝑁𝐷 before
the bound object 𝑡𝑂𝐵𝐽 and after the method call, resulting in the input sequence

𝑇𝐶 := (𝑡𝐶𝐿𝐴𝑆𝑆 , . . . , 𝑡𝑆𝑇 𝐴𝑅𝑇 , 𝑡𝑂𝐵𝐽 , 𝑡𝑑𝑜𝑡 ,
=𝐶︷      ︸︸      ︷

𝑐1, . . . , 𝑐𝐿 , 𝑡𝐸𝑁𝐷 , . . . , 𝑡𝑛).

We encode this sequence with the JavaBERT model and feed the resulting contextualized
classifier token into a binary classifier, which is trained to predict whether 𝑇𝐶 contains the
correct method name. The classifier first projects the encoded representation with a linear
layer into another embedding space of the same dimensionality as the JavaBERT model,
followed by layer normalization and a second projection to our binary output space.
A training set of 3.3𝑀 labeled code blocks is constructed of 2, 649 repositories from the
GitHub Java Corpus’ test split. Each positive sample (containing the true method call) is
complemented with six negative samples, three of which feature another method name from
the same class and the other three containing another random method name from the corpus.
The model was fine-tuned for 5 days on 4 GPUs.

4 Experiments

This section compares the models JavaBERT-sup and JavaBERT-unsup in quantitative
experiments on held-out test data from the Github Java Corpus. We also analyze how
different amounts of context information affect the model’s accuracy.
For this, we use another part of the original test split, which consists of 969 repositories that
are not overlapping with the repositories used for pretraining or fine-tuning from Section 3.
From these test projects, we sample 14𝐾 random code blocks of up to 504 tokens each. In
each block, a randomly selected method call is chosen as slot 𝑡𝑠, and a list of candidate
method names to be ranked is extracted from the method call’s bound object’s class. The
median length of those candidate lists is 39.

Comparison Unsupervised vs. Supervised We compare the supervised and unsupervised
model by measuring the hits@1, hits@3 and hits@5 rates, and the mean reciprocal rank
(MRR). For example, a hits@3 of 98% indicates that for 98% of our 14𝐾 test blocks, the
model ranks the correct method name among the top 3. Table 2 illustrates the results. Both
approaches surpass a baseline that ranks the target methods randomly and the supervised
approach outperforms the unsupervised model by a significant margin, especially for the
top 1 predictions (difference ≈ 15%) and mean reciprocal rank (difference ≈ 10%).
Figure 3 illustrates an example for a random piece of code. Here, both models (supervised
and unsupervised) rank the 8 candidate methods from Class Scanner, and the method
nextInt() is ranked highest correctly. Overall, we found the model to prefer methods
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JavaBERT-unsup JavaBERT-sup Random guessing

hits@1 77.5 92.3 7.4
hits@3 92.5 98.0 20.8
hits@5 94.6 98.9 29.9
MRR 85.4 95.2 18.3

Tab. 2ȷ Results of method rankingȷ The supervised approach significantly outperforms the unsupervised
one and shows remarkable accuracy (hits@3 is 98%). We report all values as a percentage.

import java.util.Scanner;

public class EvenOdd {

public static void main(String[] args) {

Scanner reader = new Scanner(System.in);

System.out.print("Enter a number: ");

int num = reader . SLOT ();

String evenOdd = (num % 2 == 0) ? "even":"odd";

System.out.println(num + "is" + evenOdd);

}

}

JavaBERT-unsup
1ȷ nextInt
2ȷ nextLong
3ȷ nextShort
4ȷ nextByte
5ȷ skip
6ȷ close
7ȷ hasNext
8ȷ locale

JavaBERT-sup
1ȷ nextInt
2ȷ nextShort
3ȷ close
4ȷ hasNext
5ȷ nextByte
6ȷ skip
7ȷ locale
8ȷ nextLong

Fig. 3ȷ Given this example code (left) with a left out target method (SLOT), both JavaBERT variants
rank the correct method (nextInt()) out of 8 candidate methods highest.

with the correct parameters and return types (e.g., boolean methods are ranked high in
if-statements). Note that this is not inferred from a static code analysis but only from the
method name (e.g., isEmpty, hasConnection). Also, we found methods that have
already been defined or used in the context to be ranked higher.

Context Analysis So far, we have trained and tested our model on full code contexts,
including the code before and after the target method as well as their arguments. In practice,
e.g. when typing code from left to right, only the code before the target may be available.
Also, it is interesting how much context is required for a stable inference. Therefore, we
evaluate JavaBERT-sup (trained with full contexts) on various forms of reduced contextȷ

• Originalȷ uses the complete context.
• PC (Preceding Context)ȷ all tokens after the candidate method are removed, the

context only consists of preceding tokens.
• FC (Following Context)ȷ all tokens before the candidate method call (more precisely,

before the bound object) are removed.
• PC+ParaC (Preceding Context plus Parameter Context)ȷ Most tokens after the

candidate method token are removed. Only eight complete words or symbols following
the candidate method are kept, which can contain up to four parameters.

• FAM (Few words Around Method)ȷ Only eight complete word or symbols preceding
and following the method call are kept.

• MAM (More words Around Method)ȷ Only 40 complete word or symbols preceding
and following the method call are kept.
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Original PC FC PC+ParaC FAM MAM

hits@1 92.3 70.5 73.2 86.0 61.9 77.7
hits@3 98.0 86.1 85.5 94.3 73.8 87.3
hits@5 98.9 90.5 88.8 96.1 77.0 89.8
MRR 95.2 79.0 80.0 90.0 69.0 83.0

Tab. 3ȷ Comparing JavaBERT’s ranking accuracy with different context windows.

These experiments are based on the same test set as before. Since the location of the target
method call in a code block is chosen randomly, the amount of text for different context
forms varies accordingly. Table 3 shows the results of this experiment. As expected, using
the full context performs best. The follow-up run is PC+ParaC, indicating that the parameters
of a method call form an important source of information for the ranking model.
Comparing the results from FAM to PC, FC and MAM and from original to MAM showcases
the influence of input size on the method ranking. An observation on the three best runs
(Original, PC+ParaC and MAM) is that those are a combination of preceding and following
content and are ordered descendingly by the size of their input. The results from MAM
show, however, that combining the preceding and following content has a larger influence
on the method ranking than the input size when compared to PC and FC. In conclusion,
using surrounding content rather than only the preceding content like left-to-right models
does have an impact on the ranking of candidate methods.

5 Conclusions

In this paper, we have shown that transformer networks pretrained by masked language
modeling are a promising approach towards method ranking. Particularly, we have demon-
strated the benefits of supervised fine-tuning and studied different context windows, whereas
surprisingly small context windows combining a bit of preceding and following code suffice
for an accurate inference. Our future work will focus on enhancing JavaBERT (which is
a token-only model) with syntax trees to obtain richer code representations, as well as
tackling other challenges in automated source code understanding, such as code search and
summarization.
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