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ABSTRACT
As too much interaction can be detrimental to user experience, we

investigate the computation of a smart questionnaire for a predic-

tion task. Given time and budget constraints (maximum 𝑞 questions

asked), this questionnaire will select adaptively the question se-

quence based on answers already given. Several use-cases with

increased user and customer experience are given.

The problem is framed as a Markov Decision Process and solved

numerically with approximate dynamic programming, exploiting

the hierarchical and episodic structure of the problem. The ap-

proach, evaluated on toy models and classic supervised learning

datasets, outperforms two baselines: a decision tree with budget

constraint and a model with 𝑞 best features systematically asked.

CCS CONCEPTS
• Computingmethodologies→ Planning under uncertainty;
Approximate dynamic programming methods.

KEYWORDS
Planning, Questionnaire design, Approximate dynamic program-

ming

1 INTRODUCTION
In user interaction, less is often more. When asking questions, it

is desirable to ask as few questions as possible or given a budget

of questions asking the most interesting ones. We study the case

of smart questionnaire in which the questions asked may depend

on the previous answers. More precisely, we consider a set of 𝑝

questions in a prediction context. Given a budget of 𝑞 questions,

we design an algorithm choosing sequentially the next question to

be asked so that the predictive power is maximized after having

𝑞 answers. We assume that we have observed the whole set of

answers on a first dataset and that no prior knowledge is available.

This setting is quite general and comprises for example:

• Patient follow-up. Consider a patient who is hospitalized at home

and fills in a daily checkup questionnaire asking for leg pain, a

hurting chest or physical discomfort. The aim of the question-

naire being to check the status of the patient, we would like to ask
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the most pertinent questions as soon as possible and personalize

the questions to their status.

• Prospective calls e.g. telemarketing. Instead of bluntly unrolling

the same list of questions, we could adapt our series of questions

in order to know as fast as possible if the person called would be

interested or not in our product.

• Cold start issue with new customer. When subscribing to a new

service, it is not uncommon to get asked some questions in or-

der to personalize the service e.g. Netflix, web service provider.

Assuming we already have a customer clustering at hand, we

would like to find the new customer’s cluster with as seamlessly

as possible. One way to do so is to ask very few questions.

• Balancing acquisition cost with available information. Assuming

the data is paid for, e.g. personal data sold, we would choose

which information to pay for each people.

• Storing less data to make as good predictions. Considering that

data storage has non-negligible cost, whether it be financial,

facility-wise or environmental, we wish to only keep data which

is essential to the prediction. One way to do so is to store a sparse

matrix.

Adaptive questionnaires have been investigated through knowledge-

based approaches in several fields amongst whichwe find e-learning

[14] and healthcare [9]. In [13] the authors investigated an approach

relying on association rules for the prediction and question selec-

tion tasks and experimented their algorithm on Myers-Briggs tests.

Such a sequence of questions depending on the previous an-

swers has a tree-like structure. A classical CART algorithm [6]

with a tree of depth 𝑞 provides a solution but is optimized in a

top-down manner whereas we propose a bottom-up optimization.

Furthermore, we allow much more flexibility than a single coordi-

nate thresholding to choose the next question, or than association

rules.

We formulate this problem as a sequential decision-making prob-

lem and represent it by a Markov Decision Process [16] where the

state is the information currently available, actions are the ques-

tions we ask and as final rewards the prediction performance based

on the final partial information. Such a modeling has been used

for instance in [7] to tackle the game of 20 questions relying on a

smart matrix factorization. This setting has also been used in active

learning [15] and more recently in a health diagnosis problem using

a reinforcement learning approach [5].

In our setting, we assume we have the full set of answers in

a first dataset, hence we do not have an exploitation issue and

can thus focus on a planning approach [11]. We show how to use

approximate dynamic programming [3, 4] to propose this adaptive

https://doi.org/10.18420/muc2020-ws111-264
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sequence of questions so that it outperforms a fixed subset of 𝑞

questions or a depth 𝑞 CART decision tree.

The approach will be outlined in section 2, followed by experi-

mental results on toymodels and benchmark datasets in section 3. A

general conclusion as well as ideas for improvements are presented

in section 4.

2 METHODOLOGY
2.1 Setting
Consider 𝑌 ∈ Y, dim(Y) ≥ 1, our variable of interest and 𝑋 ∈ X,
dim(X) = 𝑝 , the variable vector which can be used to predict

𝑌 and can be collected via survey element-by-element. Since we

collect 𝑋 in order to predict 𝑌 we would like to build an intelligent

questionnaire which would collect elements of 𝑋 which are the

most useful for the prediction task. As such, this questionnaire will

take into account the realizations of the elements of 𝑋 that were

already requested and check which new feature could be the most

useful for our task. This process is repeated 𝑞 times, 𝑞 < 𝑝 , akin to

a questionnaire with budget constraint.

Consider {X𝑗 , 𝑗 ∈ {1, . . . , 𝑝}} the set of one-dimensional spaces

composing feature space X i.e. X .
= ⊗𝑝

𝑗=1
X𝑗 . Now consider

˜X .
=

⊗𝑝
𝑗=1

(
X𝑗 ∪ {“unknown”}

)
the space of partially-known feature vec-

tor 𝑋̃ , where to each dimension is added the element “unknown”,

encoding the fact this element has not yet been queried.

We aim at designing a Smart Questionnaire algorithm 𝜋∗, which
to any element of

˜X assigns the best next question to ask, formally

defined as follows:

∀𝑥 ∈ ˜X 𝜋∗ (𝑥) = arg max

𝜋 ∈Π
E𝜋,(𝑋,𝑌 ) [𝑠𝑐𝑜𝑟𝑒 (𝑋̃𝑞, 𝑌 ) |𝑋̃ = 𝑥] (1)

where the function 𝑠𝑐𝑜𝑟𝑒 measures how accurately we can predict𝑌

based on 𝑋̃𝑞 , which is the partially-known feature vector obtained

when the algorithm is stopped. Π stands for the set of functions

mapping
˜X to {1, . . . , 𝑝} i.e. the set of algorithms recommending a

question to ask based on partial information on 𝑋 .

We propose the following score function:

∀(𝑥,𝑦) ∈ ˜X ×Y 𝑠𝑐𝑜𝑟𝑒 (𝑥,𝑦) = −R(𝑚̂(𝑥), 𝑦) (2)

where 𝑚̂ is a prediction function of the target based on partial

information and R is an individual risk measure, such as the squared

error in regression or the log-loss in classification. Themethodology

that follows is reliant on function 𝑠𝑐𝑜𝑟𝑒 and therefore the quality

of predictor 𝑚̂.

2.2 Markov Decision Process
The questionnaire process can be modeled by a Markov Decision

Process (MDP, [16])M = ( ˜X,A,𝑇 , 𝑅) where ˜X is the state space,

where partially-known feature vector 𝑋̃ lives andA = {1, . . . , 𝑝} is
the action space, the indexes of feature elements we can collect. 𝑇

is the transition function mapping
˜X × A × ˜X to [0, 1] defined as

𝑇 (𝑥, 𝑗, 𝑥 ′) = P𝑋

(
𝑋 𝑗 = 𝑥 ′𝑗 | ∩

{𝑙 :𝑥̃𝑙≠“unknown”}
{𝑋𝑙 = 𝑥𝑙 }

)
(3)

for all (𝑥, 𝑗, 𝑥 ′) ∈ ˜X × A × ˜X such that 𝑥 𝑗 = “unknown”, 𝑥 ′
𝑗
≠

“unknown” and ∀𝑙 ∈ {1, . . . , 𝑝} \ { 𝑗}, 𝑥𝑙 = 𝑥 ′
𝑙
. In the case where

𝑥 𝑗 ≠ “unknown” and ∀𝑙 ∈ {1, . . . , 𝑝}, 𝑥𝑙 = 𝑥 ′
𝑙
, the question has

already been asked, hence the transition probability is exactly one.

In all other cases, the transition probability is exactly zero, because

of incompatibilities.

𝑅 is the reward function defined for any 𝑥 such that the algorithm

is stopped as

𝑅(𝑥) ∼ P(𝑋,𝑌 ) [𝑠𝑐𝑜𝑟𝑒 (𝑥,𝑌 ) |𝑋̃ = 𝑥] (4)

and equals 0 otherwise.

The MDP starts with initial state 𝑋̃0 = “unknown”
𝑝
, we then

ask question 𝐴0, coordinate 𝐴0 is revealed (state 𝑋̃1), we then ask

question 𝐴1, reach state 𝑋̃2, and so on and so forth, until a terminal

state is reached. In our case, we will stop when 𝑞 questions will

have been asked.

In one of our experiments (Coronary Heart Disease dataset), we

extend the setting to the case where initial information is available,

allowing us to personalize the initial question. We also consider

that to a given action, multiple features may be revealed. Other

extensions are discussed in the last section.

2.3 Proposed solution
We assume that we have at our disposal the set {(𝑥 (𝑖) , 𝑦 (𝑖) ), 𝑖 ∈
{1, . . . , 𝑛}}, consisting of 𝑛 independent and identically distributed

instances from variables (𝑋,𝑌 ). From there we can fit prediction

function 𝑚̂, create the set of observed transitions and the set of

rewards for terminal states, since we define function score. Based
on those datasets we propose to learn 𝜋∗ through the following

state-action value functions:

∀(𝑥, 𝑎) ∈ ˜X × A
𝑄𝜋 (𝑥, 𝑎) = E𝜋,(𝑋,𝑌 ) [𝑠𝑐𝑜𝑟𝑒 (𝑋̃𝑞, 𝑌 ) |𝑋̃𝑡 = 𝑥,𝐴𝑡 = 𝑎] . (5)

The problem being episodic (𝑞 steps) and hierarchical, we can use

approximate dynamic programming [4] to learn the value functions

in a backward fashion as presented in figure 1.

Based on the calibrated neural networks { ˆ𝑓𝑗 , 𝑗 ∈ {0, . . . , 𝑞 − 1}}
we would apply the Smart Questionnaire as presented in figure 2.

3 EXPERIMENTS
To evaluate the methodology presented above, we used three toy

models we built as well as three standard supervised learning bench-

mark datasets. The toy models were built in order to ensure that

the methodology achieves proper performances against baselines

and therefore validate quantitatively its interest. Amongst the three

datasets we considered, there is the Boston Housing, the AMES and

the Coronary Heart Disease (CHD) dataset. The first two, although

not practically realistic for the intended use, serve as quantitative

evaluation of the methodology performance on real-life data. The

CHD dataset however is quite close to the motivation of this paper.

Amongst the six problems, four of them where regression prob-

lems, evaluated with Root Mean Squared Error (RMSE) metric. The

two others where binary classification problems, evaluated with

Area Under the Curve (AUC) metric.

For each of those problems, we built a Smart Questionnaire

algorithm with a budget of 𝑞 = 3 features to uncover based on

training data. The training data was split in three equal parts: one

to train the final predictor 𝑚̂, one to train the Smart Questionnaire,

and finally one to validate the Smart Questionnaire training. We
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Learning value functions

Input data {(𝑥 (𝑖) , 𝑦 (𝑖) ), 𝑖 ∈ {1, . . . , 𝑛}}
Input function 𝑠𝑐𝑜𝑟𝑒

Learn 𝑓𝑞−1 as
ˆ𝑓𝑞−1, where

𝑓𝑞−1 :
˜X × A → R

(𝑥, 𝑎) ↦→ E(𝑋,𝑌 ) [𝑠𝑐𝑜𝑟𝑒 (𝑋̃𝑞, 𝑌 ) |𝑋̃𝑞−1 = 𝑥,𝐴𝑞−1 = 𝑎]
For 𝑗 ∈ {𝑞 − 1, 𝑞 − 2, . . . , 1}

Learn 𝑓𝑗−1 as
ˆ𝑓𝑗−1, where

𝑓𝑗−1 :
˜X × A → R

(𝑥, 𝑎) ↦→ E(𝑋,𝑌 ) [max

𝑎′
ˆ𝑓𝑗 (𝑋̃ 𝑗 , 𝑎

′) |𝑋̃ 𝑗−1 = 𝑥,𝐴 𝑗−1 = 𝑎]

End For

Return set of networks : { ˆ𝑓𝑗 , 𝑗 ∈ {0, . . . , 𝑞 − 1}}

Figure 1: Learning value functions using approximate dy-
namic programming.

Smart Questionnaire algorithm

Interacting user knows (𝑥,𝑦)
Initialize 𝑥 ← “unknown”

𝑝

For 𝑗 ∈ {1, . . . , 𝑞}
select next action/question to ask

𝑎 𝑗 ← arg max

𝑎∈A
ˆ𝑓𝑗−1 (𝑥, 𝑎)

retrieve corresponding element

𝑥𝑎 𝑗
← 𝑥𝑎 𝑗

End For

Return prediction of 𝑦 : 𝑚̂(𝑥)

Figure 2: Smart Questionnaire algorithm: choosing ques-
tions with task-trained neural networks { ˆ𝑓𝑗 , 𝑗 ∈ {0, . . . , 𝑞−1}}
and providing final prediction of the target with prediction
function 𝑚̂.

used R package keras to calibrate the feed-forward neural networks,
relying on rmsprop optimizer, learning rate reduction on plateau as

well as early stopping.
1
The overall performance results, obtained

on 10 train-test splits are compiled in table 1, followed by a focus on

one of the Smart Questionnaire obtained on a benchmark dataset.

1
Problem specific details, such as network dimensions can be found on the following

Github repository github.com/FredericLoge/SmartQuestions.

3.1 Toy models
Three toy models were considered in order to test our approach.

In each case we simulated in total 6000 samples, 67% of which are

used for training and the rest for testing. As predictor functions,

we used random forests with 100 trees, as implemented in the R
package randomForest. For models #2 and #3, we will write 𝜀 a

standard Gaussian noise generated independently of features 𝑋 .

For model #1 we considered the inaccuracy score function and for

models #2 and #3 we used the squared prediction error.

3.1.1 Model #1, set of rules with binary features. We consider 𝑝 = 8

mutually independent binary features

𝑋 𝑗 ∼ B(0.5) ∀𝑗 ∈ {1, . . . , 𝑝}.

Let 𝐸 (𝑋 ) denote the union of arbitrarily chosen events:

𝐸 (𝑋 ) .
={𝑋1 = 𝑋2 = 𝑋8 = 0} ∪ {𝑋6 = 0, 𝑋2 = 𝑋3 = 1}
∪ {𝑋8 = 𝑋1 = 𝑋3 = 1} ∪ {𝑋4 = 𝑋5 = 𝑋6 = 0}
∪ {𝑋3 = 𝑋4 = 𝑋2 = 1} ∪ {𝑋4 = 𝑋8 = 𝑋1 = 1}
∪ {𝑋3 = 𝑋5 = 𝑋7 = 0}.

We define 𝑌 |𝑋 .
= 1{𝐸 (𝑋 )}. The target is therefore defined deter-

ministically based on 𝑋 .

3.1.2 Model #2, set of rules with binary and continuous features.
We consider 𝑝 = 6 mutually independent features

∀𝑗 ∈ {1, . . . , 𝑝 − 1} 𝑋 𝑗 ∼ B(0.5), 𝑋𝑝 ∼ U[0, 1] .

From there

𝑌 |𝑋 = 1{𝐸1 (𝑋 ) ∩ 𝐸2 (𝑋 )} + 21{𝐸2 (𝑋 )} + 0.2𝜀

with

𝐸1 (𝑋 )
.
={𝑋1 = 0, {𝑋2 = 0 ∪ 𝑋6 > .7}} ∪ {𝑋4 = 𝑋5 = 0, 𝑋6 > .4}
∪ {𝑋1 = 𝑋3 = 0, 𝑋6 > .8},

𝐸2 (𝑋 )
.
={𝑋1 = 1, {𝑋3 = 1 ∪ 𝑋6 > .7}} ∪ {𝑋3 = 𝑋5 = 1, 𝑋6 > .6}.

In this toy model we add some stochasticity in the target and we

consider mixed-type features.

3.1.3 Model #3: regression with continuous features. We consider

𝑝 = 8 mutually independent features

𝑋 𝑗 ∼ N(0, 1) ∀𝑗 ∈ {1, . . . , 𝑝}.

From there,

𝑌 |𝑋 = (𝑋2 + 𝑋3)1{𝑋1 < 0} + (𝑋4 + 𝑋5)1{𝑋1 ≥ 0} +
√

2𝜀.

In this model, the target is a linear regression of the covariates,

whose parameters depend on whether the first coordinate is strictly

positive or not.

3.2 Benchmark datasets
Three benchmark datasets where considered: the Boston Housing

dataset [10], the more recent AMES dataset [8] and the Coronary

Heart Disease dataset [1, 2]. The first two contain house prices

and characteristics jointly. Because of the relatively low sample

sizes we relied on linear regression models as prediction functions,

rather than non-parametric models. For the Coronary Heart Dis-

ease problem, having relatively large sample size we used extreme

github.com/FredericLoge/SmartQuestions
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gradient boosting with validation split for early stopping, relying

on R package xgboost.

3.2.1 Boston Housing dataset. This dataset contains 506 observa-
tions (one per suburb) and 13 variables, amongst which: the median

value of owner-occupied homes (the target), crime rate, average

number of rooms, pupil-teacher ratio.

3.2.2 House prices dataset, AMES. This dataset consists of 2930
observations of house value (log-scaled) and 81 characteristics such

as overall quality, year of construction, surface information. The set

of features was brought down to the following ten variables: Over-
allQual, GrLivArea, YearBuilt, GarageCars, TotalBsmtSF, GarageArea,
X1stFlrSF, FullBath, YearRemodAdd, LotArea.

3.2.3 Coronary Heart Disease, CHD. This dataset contains 4238
observations of patients: socio-demographic information (e.g. gen-

der), medical information (e.g. diabetes), medical examination (e.g.

glucose) and finally whether the patient developed Coronary Heart

Disease during the following ten year period. For this problem,

we assumed gender as an already-known feature and one-to-one

relationship between actions and features except for one: action

6 reveals diastolic and systolic blood pressure simultaneously, see

figure 3.

3.3 Results
For each problem, we replicate the train/test split at random 10

times, calibrate our Smart Questionnaire as well as three baselines

on the training set and evaluate on the test set. Toy model #1 and

CHD being classification problems we used the AUC metric for

comparison, whilst we used RMSE for all other problems.

In table 1 we report the test set performance average and its

standard deviation in parenthesis. The oracle corresponds to the

model using all 𝑝 features and best 𝑞 subset relies on the fixed

subset of features which performs best on the training set. CART

algorithm with maximum depth 𝑞 is a decision tree calibrated using

R package Rpart. On all problems, whether it be toy models or

benchmark datasets, the Smart Questionnaire outperforms both

best 𝑞 subset and the decision tree with maximum depth. For toy

models, optimal performance bounds are provided as element of

comparison.

In figure 4 are represented the question sequences asked by the

Smart Questionnaire on a test set of the AMES problem. The thick-

ness of the arrows indicate the proportions of cases making the

transitions. The best 𝑞 subset was found to be (OverallQual, Gr-
LiveArea, YearBuilt). Those variables still matter a lot in the Smart

Questionnaire, but it seems to be more interesting, depending on

OverallQual observed to ask for GarageArea or YearBuilt. This ques-
tionnaire manages which information is more important to get

depending on previously recorded values, as expected. Note that

without initial information, the first feature asked for is systemati-

cally the same. In the CHD problem however, we witnessed that

depending on the gender, known initially, the first question asked

varied.

Figure 3: Feature-action relationship matrix for CHD prob-
lem: gender is assumed to be available initially, associated
to action 0, as it is considered to be a zero cost variables.
Systolic and diastolic blood pressure are collected through
a blood pressure measurement (action 6), all the others are
collectedwith their own specificmeasurement / question e.g.
blood glucose measurement for glucose, heart rate monitor-
ing, asking for diabetes history.

Figure 4: Diagram showing the paths taken during the appli-
cation of the smart questionnaire on the test set on AMES
dataset. Note: contrary to a decision tree which explicits the
directions, this graph is only a representation of which fea-
tures where asked, not why.
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Table 1: Average and standard deviation of prediction performance on test sets, on 10 different train/test splits. On each prob-
lem, our approach performed better than the best 𝑞 subset and the CART decision tree, getting close to the oracle predictor.

Problem Metric Bound Oracle Smart Questionnaire Best 𝑞 subset CART, maxdepth = 𝑞

Toy models
#1 AUC 1 1 (0) 0.87 (0.01) 0.75 (0.02) 0.81 (0.01)

#2 RMSE 0.2 0.3 (0.01) 0.37 (0.01) 0.46 (0.01) 0.41 (0.01)

#3 RMSE

√
2 1.56 (0.02) 1.57 (0.03) 1.83 (0.03) 1.84 (0.02)

Benchmark datasets
Boston Housing RMSE 4.99 (0.57) 4.92 (0.54) 5.33 (0.54) 5.16 (0.64)

AMES Housing RMSE 4.3 (0.22) 4.56 (0.14) 4.67 (0.19) 5.62 (0.15)

CHD AUC 69.73 (1.92) 62.38 (3.2) 61.04 (4.35) 60 (3.41)

4 CONCLUSION
In this work we built an adaptive predictive-questionnaire under

constraint over the number of questions, motivated by the impor-

tant balance between data acquisition and user experience. As this

is a sequential decision-making problem we used a Markov Deci-

sion Process to model it. Furthermore, its episodic and hierarchical

structure allowed us to apply an approximate dynamic program-

ming approach to learn the best adaptive questionnaire based on

available data on couple (X, Y), which is the standard setting in

supervised learning. Regarding the evaluation of this approach, we

have shown on three toy models as well as three classic benchmark

datasets that our approach outperforms (a) a decision tree submit-

ted to the same budget constraint of questions (b) classic models

based on the most informative subset of questions. Option (b) be-

ing non adaptive and option (a) being limited to one-dimensional

splits of data, our approach allows for much more flexibility. Finally,

the application on the third dataset, which is the closest to our

target application, showed that this approach can integrate easily

some initially-known features and how actions unveil features. As a

continuation of this work, we have a few ideas for further research.

Active & reinforcement learning. In this work we considered to

have a dataset representative of couple (𝑋,𝑌 ) already available and
we aimed at setting the Smart Questionnaire algorithm once and for

all. The problem could be extended to the case where observations

can only be collected via the questionnaire, which could then be

viewed as a Reinforcement Learning problem [17]. The associated

exploration-exploitation dilemma would be the following: choosing

questions enhancing our knowledge of P(𝑋,𝑌 ) (exploration) versus
choosing questions enhancing predictive power of 𝑌 given the

partial information requested (exploitation). A related example is

the 20 questions problem studied in [7]. Different formulations of

the data acquisition setting (not always labelled, partially-known

features) were proposed by [15].

Scaling with (𝑝, 𝑞). In our approach we relied on an approxima-

tion of state-value functions based on neural networks, without

considering much on the dimension parameters. It is apparent that

the higher

(𝑝
𝑞

)
is, the more difficult the problem becomes with blunt

overall search. The exploration approaches from active & reinforce-

ment learning will surely be handy to help identify 𝑞-sized subsets

which are uninformative and handle this potential dimension issue.

Stopping criterion. In the algorithm constructed, we assumed a

budget constraint over the features requested. This approach makes

sense in some applications as it reduces globally the number of

requests from us to the user and it simplifies some computational

aspects. We could also consider the case where we would stop

asking questions as soon as we believe we have gathered enough

information on 𝑋 in order to predict 𝑌 to a satisfying level.

Performance criterion. As we defined it, the performance of our

algorithm is quantified through predictive power. From the user

experience perspective, it might be worth taking into account the

cost of each question/action: in the Coronary Heart Disease prob-

lem, some medical exams and checks might have higher costs than

others and as such be favored differently. Bringing this work a step

closer to Human-Computer Interaction, we could even consider

choosing the appropriate question format e.g. radio-button choice

versus numeric input. Overall this is about balancing predictive

power and information retrieval cost, keeping in mind that such

cost is related to user experience.

Truthful responses. Throughout this work we assumed that when

an element of𝑋 is asked for it is revealed exactly. As such, the same

element is never asked for twice and we completely trust the re-

sponse given. In some applications, the order and overall position

of a question in a survey affects the answer given, which can some-

times have very important consequences, see [12]. Therefore, the

answer given should be treated as a noisy version of the truth,

where the noise actually depends on the order followed and pre-

vious answers that were given. This would lead us to model the

interaction through a Partially Observable MDP [11].

Towards Human Computer Interaction, online evaluation. The
framework we worked on suffers from the same issues one might

find in the supervised learning setting, which assumes that indepen-

dent and identically distributed pairs of random variables (𝑋,𝑌 )
are observed: the data collection phase is often overlooked. Our

objective in next steps with this project is to deploy such an algo-

rithm on a tele-monitoring use case related to Air Liquide Home

Care programs, where the difficulties linked to the questionnaire

answering on tablets could be challenging for elderly patients. This

requires going through regulatory protocols for access to data for

algorithm training and piloting in a secure mode to carry out an

online evaluation of the method.
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