
cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Skew-resilient Query Processing for Fast Networks

(Extended Abstract)

Tobias Ziegler1, Carsten Binnig1, Uwe Röhm2

1 Introduction

Motivation: Scalable distributed in-memory databases are at the core of data-intensive
computation. Although scaling-out solutions help to handle large amounts of data, more
nodes do not necessarily lead to improved query performance. In fact, recent papers have
shown that performance can even degrade when scaling out due to higher communication
overhead (e.g., shuffling data across nodes) and limited bandwidth [Rö15]. Thus, current
distributed database systems are built with the assumption that the network is the major
bottleneck [BH13] and should be avoided at all costs.

In recent years, high-speed networks (e.g., InfiniBand (IB)) with a bandwidth close to the
local memory bus [Bi16] have become economically viable. These network technologies
provide Remote Direct Memory Access (RDMA) to allow direct memory access to a remote
host and also reduce the latency of data transfer through bypassing the remote’s CPU
[In17, Gr10]. Therefore, the assumption that the network is the bottleneck no longer holds.

Consequently, recent research has focused on integrating RDMA-enabled high-speed
networks into existing database systems designed along a Shared-Nothing Architecture
(SN) [Rö16, LYB17]. This architecture co-locates computation and data to reduce the
communication overhead in a cluster. Although combining a SN with IB’s higher network
bandwidth enables scalability to a certain extent, this approach fails if the data or workload
is skewed and cannot be evenly partitioned. The root cause is that classical query execution
schemes assume that each partition is processed by one node. Since nodes with larger
partitions must process more data, they may become a bottleneck and hinder the overall
scalability. In consequence, only utilizing the higher bandwidth without adapting the database
architecture and query execution, does not automatically lead to improved scalability [Bi16].

Contributions: In this paper, we present a new approach to execute distributed queries
on fast networks with RDMA. Our main contribution is a novel execution strategy, which
enables collaborative query processing by remote work stealing to mitigate skew, as this
is a common issues that hinders scalable query execution [WDJ91, Ly88]. Moreover, we
implement this execution strategy in our prototype engine I-Store and show that it introduces
almost no overhead to handle skew.
1 TU Darmstadt, Data Management Lab - Informatik, Germany, firstname.lastname@cs.tu-darmstadt.de
2 University of Sydney, School of Computer Science, Australia, uwe.roehm@sydney.edu.au

cba doi:10.18420/btw2019-ws-06

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 81

2 Tobias Ziegler, Carsten Binnig, Uwe Röhm

2 System Overview

Compute Node Compute Node

Storage Node Storage Node

 RDMA

RAM RAM
Work

Queue
Work

Queue

Fig. 1: The NAM Architecture

I-Store builds upon an architecture specifically de-
signed along fast networks — called the network-
attached-memory (NAM) architecture [Bi16, Sa17].
The NAM architecture logically decouples compute
nodes from storage nodes and uses RDMA for com-
munication between all nodes as shown in Figure 1.
The idea is that storage nodes provide a shared dis-
tributed memory pool that holds all the data and
auxiliary data structures, which can be accessed via
one-sided RDMA from all compute servers. In contrast to the traditional SN database
architecture which physically co-locates the query execution with the storage location, the
NAM architecture separates them. Due to the separation of compute and storage servers,
computation can be executed independently of its storage location. Thus the computation
is less sensitive to workload skew, since in case of a straggling compute server any other
compute server can help. Therefore, in the NAM architecture data locality is not a hard
requirement but only a tuning parameter that can be added to speed-up workloads.

Our skew-resilient execution engine I-Store relies on fine-grained work elements that are
stored inside work queues as depicted in Figure 1. A query execution is broken down into
multiple work elements, similar to the morsel-driven execution on single node database
systems as proposed in [Le14]. The queue-based execution, in combination with the
possibility to access every data item via RDMA, allows load balancing by work stealing.
However, not every data access between a compute and a storage node needs to be via
RDMA. If we allow the (logical) compute and storage nodes to be co-located on the same
(physical) cluster node, I-Store can use local memory access instead of RDMA for all local
available data.

3 Remote Work Stealing
Queue-based Query Execution: I-Store implements a queue-based query execution strategy
that allows fined-grained execution by organizing work in smaller chunks, namely work
elements. A work element encodes the operation (e.g., an operator) and on which part of the
data the operation is executed. The work elements are then stored in work queues, which are
placed on the storage nodes as shown in Figure 1. Each work queue manages work elements
which belong to the same partition as indicated in Figure 2. In order to process a query, a
compute node is initially assigned to one work queue, i.e., to one partition. A compute node
pops the work elements sequentially from its respective queue. Based on the information in
the work element, a compute node processes the specified data pages. Once the assigned
queue of a compute node is empty (i.e., if all work elements have been processed), this node
starts stealing work elements remotely from other straggling compute nodes (i.e., from their
work queues).

82 Tobias Ziegler, Carsten Binnig, Uwe Röhm

Skew-resilient Query Processing for Fast Networks 3

Compute Node 1 Compute Node 2

Storage Node 1 Storage Node 2

Work

Queue
Work

Queue

P1

P2

Fig. 2: The NAM-Partitioning

NAM-Partitioning: A problem of remote work
stealing is that multiple compute nodes may try
to steal data from the same straggling compute
node, which would cause the available bandwidth
of the storage node to be shared among them. To
achieve a more balanced network usage, I-Store
implements a novel partitioning scheme, called
NAM partitioning, which distributes data equally
among all storage nodes independent of the data
distribution. In NAM partitioning, a partition is split into many small pages. These pages
are then distributed evenly in a round-robin fashion to all storage nodes. To maintain a
logical partition, the pages are linked together via a remote pointer to form a distributed
linked list of pages, as indicated in Figure 2. To avoid pointer chasing, I-Store implements a
prefetching mechanism: Using the remote pointer from an already fetched data page, I-Store
can overlay computation with data retrieval by exploiting the RDMA-network card as a
co-processor to prefetch the next page.

4 Experimental Evaluation
In the following, we present the results of a small experimental performance evaluation
of I-Store to validate the performance benefits of work stealing and NAM-partitioning.
The evaluation was conducted on a four-node cluster connected via a single InfiniBand
FDR 4X switch using one Mellanox Connect-IB card3. Each server had two Intel Xeon
E5-2660 v2 processors (20 cores in total) and ran on Ubuntu 14.01 Server Edition (kernel
3.13.0-54-generic). I-Store was compiled using gcc 4.8.5.

To be able to assess workload skew, we generated two synthetical datasets consisting of four
relations (A, B, C, D), one where the partition key is following a uniform distribution (i.e.,
all partitions have the same size), while the second dataset followed a Zipf distribution with
z = 1.25 (i.e., one partition dominates the others in size). Each record in the dataset consisted
of three attributes (PK, payload, FK) similar to [Rö16], with a tuple width of 24 Bytes. In
total, each table contained 420M records, which yields a total size of about 10 GB per table.
The query workload consisted of SQL queries that execute three joins (i.e., A./B./C./D)
with an additional selection on each inner relation (A./ σX(B)./ σY (C)./ σZ (D)). We
mainly concentrated on joins since these operations are widely used in many analytical SQL
workloads and we thus can show the effects of or work stealing algorithms for a wide class
of analytical SQL queries.

We assess the runtime of this workload on two system architectures: The baseline is the
shared-nothing architecture with co-partitioned (A,B) tables to minimize network transfers,
while I-Store implements a NAM architecture. We used the same cluster with four physical
nodes for this experiment. We configured I-Store to co-locate one compute and one storage

3 Theoretical bandwidth of 6.8 GB/s per incoming and outgoing link

Skew-resilient Query Processing for Fast Networks 83

4 Tobias Ziegler, Carsten Binnig, Uwe Röhm

node on each single physical node. We measured I-Store in four different configurations:
Plain I-Store without further optimizations, with work-stealing (WS), with NAM-partitioning
(NAM-Part), and with local-access optimization (LocOpt) enabled (i.e., data accesses do
not use RDMA but local memory accesses). For this paper, work stealing was done on the
granularity of the selection operators (scan and pre-filtering of data pages).

Uniform Zipf (1.25)
Workload Distribution

0

500

1000

1500

2000

2500

Ru
nt

im
e

(m
s)

Runtime Comparison
Shared-Nothing
I-Store
I-Store WS
I-Store WS+NAM-Part.
I-Store WS+NAM+LocOpt

Fig. 3: Performance of Different Execution Strate-
gies on Uniform and Skewed Data

As expected, the uniform dataset is the ideal
case for shared-nothing, however I-Store
with all optimizations shows a similar perfor-
mance (1220 ms vs 1251 ms). Interestingly,
work stealing can improve query execution
even for homogeneous clusters: I-Store WS
was 5% faster than plain I-Store. This shows
that even if the dataset follows a uniform dis-
tribution, it can happen that individual nodes
become slower than others due to external
factors, for example in a shared experiment
cluster like ours. NAM-partitioning (I-Store
WS+NAM-Part) further decreases the run-
time by another 5% since it balances network
access among storage nodes and avoids de-
lays due to network congestion. The last
optimization leverages local-access (I-Store with LocOpt) and performs similarly as the
baseline.

For the skewed distribution, the runtime of shared-nothing (1917 ms) was dominated by the
slowest node which needed to process 4.1 GB per partition. I-Store without any optimizations
takes the longest to finish (2699 ms), but if work-stealing is enabled the runtime is close
to our baseline. With NAM-Partitioning enabled, I-Store outperforms shared-nothing and
shows the effect of network congestion. The runtime with NAM-partitioning compared to
the vanilla work stealing approach is reduced by a 35%. In both distributions I-Store with
all optimizations performs best. Additionally, the overhead induced by the skewed workload
is only around 60 ms compared to the uniform execution.

5 Conclusion

This paper explored techniques to better align query execution with direct memory access
over high-speed networks. We presented I-Store, a novel queue-based query execution
engine that efficiently supports load balancing via NAM-aware data partitioning and work
stealing. In a short evaluation we showed that I-Store can handle skew with almost no
overhead. As an avenue of future work, we plan to implement different work stealing
strategies and show that our work stealing approach is applicable to a variety of operators.

84 Tobias Ziegler, Carsten Binnig, Uwe Röhm

Skew-resilient Query Processing for Fast Networks 5

References
[BH13] Babu, Shivnath; Herodotou, Herodotos: Massively Parallel Databases and MapReduce

Systems. Found. Trends databases, 5(1):1–104, November 2013.
[Bi16] Binnig, Carsten; Crotty, Andrew; Galakatos, Alex; Kraska, Tim; Zamanian, Erfan: The End

of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow., 9(7):528–539, March
2016.

[Gr10] Grun, Paul: Introduction to infiniband for end users. White paper, InfiniBand® Trade
Association (IBTA), 2010.

[In17] InfiniBand® Trade Association (IBTA): , Infiniband Roadmap. http://www.infinibandta.
org/content/pages.php?pg=technology_overview, 2017. Accessed: 2017-10-19.

[Le14] Leis, Viktor et al.: Morsel-driven parallelism: a NUMA-aware query evaluation framework
in the many-core age. In: ACM SIGMOD. 2014.

[Ly88] Lynch, Clifford A.: Selectivity Estimation and Query Optimization in Large Databases with
Highly Skewed Distribution of Column Values. In: Proceedings of the 14th VLDB. VLDB
’88, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 240–251, 1988.

[LYB17] Liu, Feilong; Yin, Lingyan; Blanas, Spyros: Design and Evaluation of an RDMA-aware
Data Shuffling Operator for Parallel Database Systems. Proceedings of the Twelfth European
Conference on Computer Systems - EuroSys ’17, pp. 48–63, 2017.

[Rö15] Rödiger, Wolf; Mühlbauer, Tobias; Kemper, Alfons; Neumann, Thomas: High-speed Query
Processing over High-speed Networks. Proc. VLDB Endow., 9(4):228–239, dec 2015.

[Rö16] Rödiger, Wolf; Idicula, Sam; Kemper, Alfons; Neumann, Thomas: Flow-Join: Adaptive
skew handling for distributed joins over high-speed networks. 2016 IEEE 32nd International
Conference on Data Engineering, ICDE 2016, pp. 1194–1205, 2016.

[Sa17] Salama, Abdallah; Binnig, Carsten; Kraska, Tim; Scherp, Ansgar; Ziegler, Tobias: Re-
thinking Distributed Query Execution on High-Speed Networks. IEEE Data Eng. Bull.,
40(1):27–37, 2017.

[WDJ91] Walton, Christopher B.; Dale, Alfred G.; Jenevein, Roy M.: A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins. In: Proceedings of the 17th VLD. VLDB
’91, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 537–548, 1991.

Skew-resilient Query Processing for Fast Networks 85

