
Ant Colony System Based Algorithm for QoS-Aware
Web Service Selection

Xiao Zheng1, Jun-Zhou Luo1, Ai-Bo Song1

1 School of Computer Science and Engineering,Southeast University
210096 Nanjing,China

{xzheng, jluo, absong}@seu.edu.cn

Abstract. QoS-aware service selection is an active area of research on Web
services composition. It is a complex combinatorial optimization problem,
which solves how to find a best composition plan that maximizes user QoS
requirement. This paper presents a QoS-aware Web service selection algorithm
based on Ant Colony System. Firstly, a proposed Web Services Composition
graph (WSC graph) is applied to model the composition problem. Then an
extended Ant Colony System using a novel Ant clone rule is applied to solve
the selection problem. In order to quicken the speed of its convergence, the
utility function is considered as the heuristic information. Finally, the algorithm
is tested for the performance.

Keywords: Web Service Selection, Quality of Service (QoS), Utility Function,
Ant Colony System

1 Introduction

In service-oriented computing (SOC), Web services are fundamental elements of
distributed and heterogeneous applications. Web services composition is a main
method of implementing service reuse [1]. It allows a distributed application to be
constructed from a number of existing Web services; moreover these Web services
could also compose to solve other problems. So developers and users can solve
complex problems by combining available basic services. Take purchasing laptop
computers over the Web for example, the corresponding transaction software should
have the capability of showing up-to-date models and prices on line, checking and
debiting the credit card, and a guaranteed delivery. So an online store service, a bank
payment service and a delivery service could be combined to implement the business
workflow. In addition, there are many different Web services available that could
provide the same service function. However, these services have different Quality of
Service(QoS) including performance, reliability, cost etc. In order to satisfy the global
QoS requirement of the transaction software, the best services must be selected from
numerous candidates to compose a more complex service.

QoS issues present new challenges in Web services composition [2]. The combined
result of services execution determines actual QoS performance [3]. Thus end-to-end
QoS must be researched. In SOC, some QoS criteria are dynamic, such as the

39

response time, which depends on the load and bandwidth of network link between the
Web service and the user. So the selection plan would also be adjusted dynamically.

The QoS-aware Web service selection problem is a complex combinatorial
optimization problem. Its objective is to find a best composition plan that maximizes
given QoS requirements. Nowadays, the research has focused on QoS-aware service
selection, and many approaches have been considered. Zeng[4] presents a middleware
platform which addresses the issue of selecting Web services. The proposed approach
firstly obtains several task execution paths in a model of Web services composition.
Subsequently a selection algorithm based on integer programming is applied to select
services in the path. Accordingly, it is necessary to generate several task execution
paths by hand. Zhang[5] proposes a genetic algorithm based QoS-aware algorithm on
Web services selection. This algorithm includes a special matrix coding scheme of
chromosomes that could express simultaneously all of composite paths. However,
with the increasing number of the candidate services, the size of the matrix would
multiple. This algorithm may be not suit large-scale composition. Yu and Lin[6]
models the selection problem as the Multiple Choice Knapsack Problem and provides
efficient solutions. But this work only considers the composite service with the
sequential execution instead of the parallel situation.

However, to our knowledge, none of these initiatives have attempted considering
the method based on ant colony system (ACS)[7]. ACS is a distributed evolutionary
algorithm that is originally applied to the traveling salesman problem (TSP). In the
ACS, a set of cooperation agents, called ants, cooperate to find good solutions to TSP.
ACS is suitable to solve the combinational optimization problems, which has the
characteristic of parallelism, positive feedback and heuristic search.

This paper presents our QoS-aware Web services selection algorithm based on
ACS, which is applied to Web services composition with selection and concurrent
execution path. Section 2 presents the concept of utility function of QoS, which could
be used to measure user satisfactory degree. Utility function is the objective function
of our algorithm. Section 3 suggests the model of Web services composition. Task
graph and WSC graph are presented as modeling tools. Section 4 presents our
algorithm to Web services selection. A novel ant clone rule is suggested to solve how
to select parallel paths. In section 5, the algorithm has been tested and the results are
analyzed through the simulations on randomly generated set of Web services. Section
6 draws conclusions and highlights future work.

2 Measurement of Quality of Web service

2.1 Web Service QoS Criteria

QoS is a combination of several qualities or properties of a service. This paper
considers the following QoS attributes as part of the Web service criteria.
1. Response time is the time to get a service request responded at the client side. This

includes the total time for service and round-trip communication delay.

40

2. Service availability is the probability that the service is available. This only
measures the server availability in terms of responding to a request, not the result
quality.

3. Service cost is the spending of the client acquires a certain service. When offering
the same function, a Web service may have different costs according to the quality
of the service requested.
Given the above considerations, the quality vector of a service is defined as

))(),(),(()(scostsavaistimesq =
Note that the method for computing the value of the QoS criteria is not unique.

Other computation methods can be designed to fit the needs of specific applications.
The service selection algorithm presented in Section 4 is independent of these
computation methods.

2.2 Utility Model

In the quality vector, the range of each QoS criteria value is different, and the
meaning is not same. Some of the criteria could be negative, i.e., the higher the value,
the lower the quality. This includes criteria such as response time and service price.
Other criteria are positive, i.e., the higher the value, the higher the quality.

In order to measure the overall quality of a Web service, these criteria should be
scaled by a uniform standard and considered in the round. A Simple Additive
Weighting (SAW) [8] technique is often used to select a best Web service [4]. This
method includes scaling phase and weighting phase. The scaling function need get the
maximum and minimum of all QoS criteria in advance. So this method does not suit
dynamic environment. This paper adopts the concepts of user satisfactory degree and
user satisfaction function suggested by Wu [9], and suggests a utility function as the
objective function of selecting a candidate service.
Definition 1: User satisfactory degree is a real number d∈[0,1]. As its value
increasing, users are more satisfied with the service. When the value reaches 1, users
are satisfied perfectly whereas 0 means what users require is not satisfied.
Definition 2: User satisfaction function sij represents the mapping from the j-th QoS
criteria of i-th Web service to user satisfactory degree.

User satisfactory degree is a subjective concept. It varies with different user’s
preference and the application. User satisfaction function describes relation between a
given QoS criteria and User Satisfactory degree. It is defined by users and submitted
to a Web services composition execution mechanism with the task.

Fig.1. shows the examples of user satisfaction function. In Fig.1-a, t1 and t2 are two
thresholds. When the response time is higher than t2, the User Satisfactory degree is
zero, whereas the value is 1 when the time is less than t1. The curve of service cost is
as same as that of response time. The curve in Fig.1-c is a function which is f(x)=x
where x∈[0,1].

41

t1 t2

U
se

r
S

at
is

fa
ct

or
y

de
gr

ee

Response
Time

(a)

1

c1 c2
U

se
r

S
at

is
fa

ct
or

y
de

gr
ee

Service Cost

(b)

1

U
se

r
S

at
is

fa
ct

or
y

de
gr

ee

Service
Availability

(c)

1

1

Fig. 1. Examples of the User Satisfaction Function.

From the above definitions, we present the objective function of the selection
algorithm, which is called utility function.
Definition 3: Utility Function. For i-th service,

∑ ⋅=
j

ijji swu (1)

where wj∈[0,1] and . w∑ =
j

jw 1 j represents the weight of criteria j. Users express

their preferences regarding QoS by providing values for weights wj. sij is a user
satisfaction function depicted in definition 2.

It is well known that the QoS of a composite service is dependent on the QoS of
component services. [2] introduces how to calculate the QoS criteria of a composite
Web service according to that of the component services. Once getting the QoS
criteria of the composite Web service, we could also calculate its utility function
according to formula (1).

Since users always want to maximize the benefit they receive, the Web services
composition plan with maximum value of utility function will be selected.

3 The Application Model

3.1 Task Graph

As introduced above, a composite Web service is to execute a complex task, which
could be partitioned to several subtasks implemented by single Web services. A task
graph could represent these subtasks and their dependencies. A task graph is a
directed acyclic graph. Each subtask is represented with a rectangle and connected via
directed arrows. The arrow represents the control-flow or data-flow dependencies
among subtasks. There are three kinds of dependencies among subtasks, that is,
selection, concurrent and mixture.

42

1. Selection dependency is that only one of the successor subtasks is selected.
2. Concurrent dependency is that a subtask would require that all of its successors be

executed concurrently.
3. Mixture dependency is that there are two relations simultaneously.

As showed in Fig. 2, a whole task could be partitioned to nine subtasks, namely st1,
st2, etc. “+” denotes selection, and “*” denotes concurrent. st4 and st5 must be
executed concurrently whereas one of st2 and st3 would be selected to executed.

st
1

st
2

st
3

st
4

st
5

st
7

+

*

st
6

st
8

st9

Fig. 2. An example of a task graph.

This paper does not consider how to decompose a task and generate a task graph. It
is assumed that the task has been decomposed to several subtasks, and each subtask
could be implemented by any one of a group of candidate Web services with a
common functionality but different QoS properties.

3.2 Web Services Composition Graph

In order to research the problem of Web service selection, this paper considers how
to model the Web services composition. So the Web Services Composition graph
(WSC graph) is presented as a modeling tool.

Definition 4: WSC graph. Formally, a WSC graph is a triple WSC(V, E, Q),where:
1. V=Vor∪Vand. V is the set of vertexes denoting Web services. Vor ,called OR-Vertex,

is the set of vertexes which denote selection mode, and Vand, called AND-Vertex, is
the set of vertexes which denote concurrent mode.

2. E ={(i,j)| i,j∈V} is the edge set. And if (i,j) ∈E, then (j,i) ∉E.
3. Q={q(i,j)|(i,j)∈E} is a weight associated with edge(i,j)∈E. q(i,j)=(t,a,c),where
t,a,c∈R+∪{0} and a∈[0,1].

4. There is not a path from r to itself, where r∈V.
5. There is only a vertex called source, which has no predecessors. There is only a

vertex called destination, which has no successors.
Therefore, the WSC graph is a kind of directed acyclic graph, which only has a

resource vertex and a destination vertex. It owns two types of vertex, namely OR-
Vertex and AND-Vertex. All vertexes represent Web services attending composition.
Its edge represents a dependent relation, whose weight is a triple(t,a,c) ,where t is the
response time of invoked Web service, a is the service availability, and c is the
service cost of invocation. A WSC graph represents all possibility of composing Web
services. The objective of our selection algorithm is to find a path called WS
execution path from the source vertex to the destination vertex. A WS execution path
denotes a composition plan of Web services.

43

Definition 5: WS execution path. A WS execution path of a WSC Graph is a
sequence of vertexes, namely Web services [ws1,ws2,…,wsn], such that ws1 is the
source vertex, wsn is the destination vertex, and for every wsi(1<i<n):
1. wsi is a direct successor of one of the Web services in [ws1,…,wsi-1].
2. wsi is not a direct successor of any of the Web services in [wsi+1,…,wsn].
3. There is no wsj in [ws1,…,wsi-1] such that wsj and wsi belong to two alternative

branches of the WSC Graph.
4. If wsi is the AND-Vertex, then all wsi’s successors will be include in

[ws1,ws2,…,wsn].In other words, if an AND-Vertex is entered, all its concurrent
branches will be executed.

There are many different WS execution paths in a WSC graph. Surely different path
has different end-to-end QoS. This paper applies utility function to measure user
satisfactory degree.

Definition 6: Optimal WS execution path. An optimal WS execution path is a
WS execution path with the maximum utility.

3.3 From a Task Graph to a WSC Graph

In the task graph, each subtask can be mapped to a collective of Web services. So
Fig. 2 could be translated to a directed graph only composed of Web services. Fig. 3
illustrates a Web services composition scenario, which is a part of Fig. 2 including st1,
st2 and st3. Without loss of generality，suppose that each task has two candidate Web
services.

In Fig. 3, each service is represented with an oval and connected via directed
arrows. An arrow from Web service A to Web service B indicates that A executes
before B. The subscript in the label of the oval includes two numbers separated by a
comma. The first number denotes which task the Web service belongs to, and the
second number denotes the index in the task. For example, WS1,1 and WS1,2 represent
two Web Services, which could respectively implement task st1 in Fig.2. The index of
WS1,1 is 1, and WS1,2 ’s is 2.

+
WS

1,1

WS
1,2

WS
2,1

WS
2,2

WS3,1

WS
3,2

+

Fig. 3. A Web service composition scenario.

Apparently, there are the same dependent relations as tasks. But in the Definition 1,
there are only two types of vertexes, namely AND-Vertex and OR-Vertex. How to
represent the mixture relation? So the transition rule from the mixture mode to the
other modes is presented as follows. Suppose that ws is a Web service of mixture
mode, and it invokes n groups of concurrent successors.
1. For each group of concurrent successors WScsi, extra vertex vsi is added to invoke

them, where i ∈[1..n].

44

2. Cancel the original arrow from ws to WScsi, and add a arrow from ws to vsi, where
i ∈[1..n].

3. At last ws invokes selection mode vsi, and the latter invokes WScsi, where i ∈
[1..n].
This method reduces the complexity of the graph, and makes the graph only include

selection and concurrent relation. Fig. 4 shows the substitution method. By adding
extra vertex vs, called virtual Web service, the mixture mode could be expressed by
only using selection and concurrent mode.

ws1

ws
2

ws3

ws
4

+

*

ws
1

ws
2

ws3

ws4

+

*vs

Fig. 4. The substitution method of mixture mode.

In addition, a source vertex and a destination vertex are added. The source vertex is
connected to every vertex that denotes the Web services belonging to the initial
subtasks by directed arrows. Similarly, all the vertex belonging to the last subtasks are
connected to the destination vertex.

In a conclusion, there are three steps from a task graph to a WSC graph.
1. Every subtask in the task graph is replaced by its candidate Web services. Maintain

the relations among subtasks and connect the Web services according to the
subtask relations.

2. Reduce the graph with the substitution method of mixture mode.
3. Add a source and a destination vertex.

4 ACS-Based Web Service Selection Algorithm

Ant system algorithm has been applied to shortest-path problem [10] and packet
routing problem in communications networks [11] successfully. For these complex
combinatorial optimization problems, Ant system algorithm maybe could provide a
good solution. The goal of our algorithm is to discover an optimal WS execution path
in a WSC Graph. Different with the generic shortest-path problem, the WS execution
path includes parallel sub-paths, and the parallel execution part of that is also a critical
path problem. The difficulty of our problem is how to process parallel paths.

4.1 Ant Colony System

In the nature, ants always find the shortest path between their nest and the food
source. Scientists found a special substance called pheromone play a key role in path
selection. While walking, ants always deposit pheromone on the ground and follow,
in probability, pheromone previously deposited by other ants. The probability of
choosing a path is decided by the amount of pheromone on the path. In other words,

45

ants prefer to visit a path owning more pheromone. Furthermore, pheromone can
volatilize with time goes by. This effect can result in that the ants can find the shortest
path finally.

Ant System (AS) algorithm, based on behavior of the real ant, is first applied to TSP.
In the AS, there are some artificial ants deployed on the vertexes in a graph. The
artificial ants imitate real ants’ behaviors to find a shortest path. The algorithm is
suitable to small TSP(up to 30 cities)[7].

The Ant Colony System(ACS) is an algorithm based on AS. It is feasible for larger
problems. The ACS differs from the previous ant system because of three main
aspects[7] Firstly, the state transition rule provides a direct way to balance between
exploration of new edges and exploitation of a priori and accumulated knowledge
about the problem. Secondly the global updating rule is only applied to edges that
belong to the optimal ant tour. Finally, while ants construct a solution, a local
pheromone updating rule is applied.

Our work modifies the original ACS, and applies it to Web service selection based
on the WSC graph.

4.2 Web Services Selection Algorithm

Informally, the algorithm works as follows. In WSC graph, m ants are initially
positioned on the source vertex. The task of each ant is to find a path from the source
to the destination. While finding the path, if the ant is in an OR-vertex, it will apply a
state transition rule to choose the successor. And if the ant is in an ADD-vertex, it will
clone several new ants and each ant will choose one of the successors respectively.
The ant also modifies the amount of pheromone on the visited edges by applying the
local updating rule. Once all ants have terminated their tour, the vertexes visited by all
ants, which belong to the same clone matrix, compose a WS execution path. Then the
amount of pheromone on edges of the optimal WS execution path is modified with
applying the global updating rule. In the algorithm, ants should be guided by both
heuristic information and pheromone. An edge with a higher amount of pheromone
will have more chance to be chosen.

The key of the algorithm is the state transition rule, the ant clone rule, the global
updating rule and the local updating rule.

4.2.1 State Transition Rule
When an ant is at an OR-Vertex i, it will choose a successor j to move to by

applying the rule given by (2)

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤

=

∈

otherwise,

if},)],()][,({[maxarg 0)(

S

qquiui

j
ikJu

βητ

(2)

where q is a random number uniformly distributed in [0..1], q0 is a
parameter ()10 0 ≤≤ q , and S is a random variable selected according to the probability

distribution given in (3).

46

⎪
⎪
⎩

⎪⎪
⎨

⎧
∑=

∈

∈

otherwise0

if
)],()][,([

)],()][,([

),(
)(,

)(

iJj k

ikJuk
uiui
jiji

jip
β

β

ητ
ητ

(3)

),(jipk is the probability with which ant k at OR-Vertex r chooses to move to its

successors.
In (2) and (3), τ is the pheromone, Jk(j) is the successor set of i, and β is a

parameter which determines the relative importance of pheromone versus heuristic
information (β>0). η=uj is a heuristic function, where utility function uj is
introduced as heuristic information.

According to definition 2 and 3, where

,

)()()(jswjswjswu avaiatimetcostcj ⋅+⋅+⋅=

)),(()(jicsjs costcost =)),(()(jitsjs timetime = , and)),(()(jiasjs avaiavai = .

4.2.2 Ant Clone Rule
When an ant is at an AND-Vertex, it will firstly clone n-1 ants, where n equal to

the number of this vertex’s successor tasks. Then each ant will choose a successor
vertex to move. The rule is that only one of successor vertexes belonging to a same
task will be chosen by each ant respectively according to state transition rule depicted
as above. In other words, an ant could only choose one of successor vertexes
belonging to a same task, and different ant does not choose successors from a same
task.

4.2.3 Global Updating Rule
Just like ACS, this algorithm also has a global pheromone updating rule. It is

executed after all ants have arrived at the destination vertex. The amount of
pheromone is updated according to

),(),()1(),(jijiji τατατ Δ⋅+⋅−= (4)

where

⎩
⎨
⎧ ∈

=Δ
otherwise,0

),(if,
),(

owspjiU
jiτ

0<α<1 is the pheromone decay parameter, owsp denotes the optimal WS execute
path and)()()(AswTswCswU avaiatimetcostc ⋅+⋅+⋅= is a utility function of owsp. In

formula U, ,∑
∈

=
owspji

jicC
),(

),()max(kTT = , and)max(argiff),(
),(

k
Pathji

TkjiaA
k

== ∏
∈

where ∑
∈

=
kPathji

k jitT
),(

),(and is the path of k-th ant passing by, which belongs

to a clone group having found owsp.

kPath

Formula (4) indicates that only the pheromone of the edges belonging to the
optimal path will be reinforced.

47

4.2.4 Local Updating Rule
While finding the path, ants change the pheromone on the passing edges using (5)

),(),()1(),(jijiji τρτρτ Δ⋅+⋅−= (5)

where 0),(ττ =Δ ji , 0τ is the initial pheromone level, and 0<ρ<1 is a parameter.

The detailed algorithm is depicted as follows:
1. Set t=0, and randomly set),(jitτ as positive constant for all edge(i,j).
2. m ants are positioned at the source vertex.
3. if ant k is at AND-Vertex, it executes by the ant clone rule, else if ant k is at OR-

Vertex, it will choose a successor according to formula (2) and (3).
4. Apply local updating rule (5).
5. if ant k arrives at the destination vertex, goto 6,else goto 3.
6. When all ants arrive at the destination, a group of ants having the same clone

matrix will get a WS execution path.
7. Apply the global updating rule (4).
8. t=t+1;
9. If the optimal WS execute path satisfies user’s requirement, the process is

completed, otherwise goto 3.

5 Simulation Results and Analysis

In order to evaluate our approach performance, we have experimented to observe the
effect of the presented algorithm in the paper.

The algorithm program was developed by Visual C++ 6.0 and ran at a PC. The
PC’s configuration is Pentium Duo Core 1.7MHz with 512M RAM. In our
experiment, the task graph is designed by hand in terms of figure 2, and the WSC
graph is generated automatically by the method mentioned in Section 3.3. The service
cost, response time and service availability of a Web service is generated randomly.
The values of time and cost are between 0 and 100, and the service availability is
between 0.8 and 1. Each task has the same number of Web services. The user
satisfactory functions and utility function are defined as follows.

⎪
⎩

⎪
⎨

⎧

+∞∈
∈−
∈

=
),80[0

)80,10()10/(1

]10,0[1

c
cc
c

scost (6)

⎪
⎩

⎪
⎨

⎧

+∞∈
∈−
∈

=
),80[0

)80,10()10/(1

]10,0[1

t
tt
t

stime (7)

48

]1,8.0[∈= aasavai (8)

avaiatimetcostc swswswu ⋅+⋅+⋅= (9)

We consider the number of execution iterations of the algorithm and compare the
execution time of ours with the algorithm of the exhaustive searching. The number of
iterations is a main criterion on ACS based algorithm. Until now, there is not a
theoretic instruction to the values of the parameters in ACS based algorithm. In this
paper, the values are set in terms of ACS and experiments.

Each experiment consists of at least 10 trials and the average values are calculated
as experiment results subsequently. Table 1 shows the number of iterations of our
algorithm is much less than other applications solved by ACS based algorithms, such
as TSP, packet routing problem in communications networks [11], and so on. The
reason is that the problem is limited to find a path between a source and a destination.
Accordingly, the size of the problem is much smaller than the TSP. Table 2 shows the
comparison of execution time between the ACS based selection algorithm and the
exhaustive searching. The execution time of our algorithm is acceptable.

Table 1. The simulation results at q0=0.9,β=2,α=0.05,ρ=0.05, wc=0.4, wt=0.4,wa=0.2,
m=8,τ0=100

The number of Web
services in a task

The number of
iterations

10 8
20 12
50 22
100 35

Table 2. The comparison of execution time between the ACS based selection algorithm and
the exhaustive searching. (q0=0.9,β=2,α=0.05,ρ=0.05, wc=0.4, wt=0.4,wa=0.2, m=8,τ0=100)

The number of Web
services in a task

ACS based
selection (sec)

Exhaustive
searching (sec)

10 0.2 1.4
20 0.6 4.4
50 1.4 16.2
100 2.3 50.1

6 Conclusion and Future Work

In this paper, we present our approach inspired by ACS for selecting services in
composing Web services. Firstly, a proposed WSC graph is used to model a Web

49

services composition. So the services selection problem could be translated into the
problem of searching the optimal WSC execute path. This paper analyses the
measurement of quality of Web services, and makes user satisfactory degree as the
evaluating indicator, which is suitable to a dynamic environment. This paper then
uses the utility function to scale the overall quality of a Web service. Therefore, the
objective of the proposed selection algorithm is to find the path with maximum value
of its utility function. The proposed algorithm has solved how to select parallel sub-
paths in an execution path, and considers the utility function as the heuristic function
to quicken its convergence speed. Experimental results show that the algorithm has
higher convergence speed and a less number of iterations.

In ASC based algorithm, heuristic information could improve algorithm
performance efficiently. Other heuristic methods would be considered in future work.
Another direction is to consider the adaptability of our selection algorithm in a large-
scale composition scenario.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under Grants No. 90412014 and 90604004, Jiangsu Provincial Natural
Science Foundation of China under Grants No. BK2007708, and
Jiangsu Provincial Key Laboratory of Network and Information Security under Grants
No. BM2003201.

References

1. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serve Environment for Web Services
Composition. IEEE Internet Computing. 1, 40--48 (2003)

2. Menascé, D., A.: Composing Web Services: A QoS View. IEEE Internet computing.9, 88--
90 (2004)

3. Bichler, M., Lin, K.: Service-Oriented Computing. Computer. 9, 99--101 (2006)
4. Zeng, L., Boualem, B., et al: QoS-Aware Middleware for Web services composition. IEEE

Transactions on Software Engineering. 5, 311--327 (2004)
5. Zhang, C., Su, S., Chen, J.: Genetic Algorithm on Web Services Selection Supporting QoS.

Chinese Journal of Computers. 7, 1029--1037 (2006)
6. Yu, T., Lin, K.: Service Selection Algorithms for Web Services with End-to-end QoS

Constraints. In: 2004 IEEE International Conference on E-Commerce Technology, pp. 129--
136. IEEE Press, San Diego, California, USA (2004)

7. Dorigo, M., Gambardella, L., M.: Ant Colony System: A Cooperative Learning Approach to
the traveling Salesman Problem. IEEE transactions on evolutionary computation. 1, 53--66
(1997)

8. Hwang, C., L., Yoon, K.: Multiple Attribute Decision: Making and Applications. New York,
Springer-Verlag (1981)

9. Wu, Z., Luo, J., Song, A.: Qos-Based grid resource management. Journal of Software.11,
2264--2276 (2006)

10.Liu, S., Lin, J., Lin, Z.: A Shortest-path Network Problem Using an annealed ant system
algorithm. In: Fourth Annual ACIS International Conference on Computer and Information
Science, pp.245--250. IEEE Press, New York (2005)

11.Caro, G., D., Dorigo, M.: AntNet: Distributed stigmergetic control for communications
networks. J. of Artificial Intelligence Research. 9, 317-365 (1998)

50

