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Abstract: This paper investigates the extraction of a reproducible bit string referred
to as biometric key from biometric data. This is difficult due to the natural variabil-
ity of biometric data. If the biometric-key generation process were sufficiently re-
sistant against attacks, a biometric key may be used e.g. as basis for the generation of
application-specific user passwords. Handwritten signatures or handwritten signs have
been chosen because of their high level of user acceptance and because the exchange
of compromised keys is possible by using other phrases to write. The experimental
results show an insufficient reproducibility of the biometric keys if no auxiliary data is
used for smoothing out the natural variability of the presented data.

1 Introduction

Many existing security solutions are based on knowledge-based user authentication using

PINs (Personal Identification Numbers) or passwords. Many users are overwhelmed by the

task of memorizing PINs and passwords for a growing number of applications. “Single

sign-on” systems and password safes provide solutions for the administration of PINs and

passwords. The PasswordSitter [SIT06], for instance, is a kind of password safe; however,

it does not store individual passwords, but computes them each time anew from a master

password, which is not stored either in the system. The users have to memorize strong

master passwords. When they forget or reveal the master passwords, they should renew

the password for every individual application as soon as possible.

Biometric methods may be an alternative to knowledge-based user authentication meth-

ods because biometric characteristics are more strongly bound to a person than PINs and

passwords are and cannot easily be forgotten or passed on to other people, be it intention-

ally or unintentionally. Like PINs and passwords, biometric reference data must be stored

securely and be protected against unauthorized use. However, many users are troubled

by the risks associated with storing biometric reference data in computer systems: Once

compromised, biometric reference data can only a limited number of times be replaced by

new biometric reference data of the same person. Furthermore, biometric data often con-

tain information beyond what is needed for authentication (e.g. information about body

conditions and diseases), which one would like to keep private. This has been shown also

for signature dynamics [HGS06].

Due to the natural variability of biometric data (data captured via a biometric sensor from

the same person are never completely the same), a biometric reference cannot serve as a
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direct replacement for a password or for a cryptographic key. There exist key regeneration

systems (such as the fuzzy commitment scheme [JW99] or the fuzzy vault scheme [JS02])

where a key is bound with the biometric data of a user and can be regenerated only by

providing matching biometric data from the same user. These methods work with error-

correcting codes to smooth out the differences when the encoded key is bound with slightly

different biometric data belonging to the same user. However, these concepts require the

secure storage of the security-sensitive key in encoded form. A solution without the need

for storing any security-sensitive data on the user’s side would be advantageous.

Biometric data contain highly redundant information. It may be possible to consistently

extract a relatively small number of bits out of the information contained in biometric data.

This paper investigates the extraction of a reproducible bit string (referred to as biometric

key) from biometric data, in particular from handwritten signatures. Theoretical work on

the information content of such biometric keys has already been performed [Pla09].

The remainder of this paper is organized as follows: Section 2 describes the use case

considered. Section 3 lists requirements that the biometric key generation system must

satisfy in order to be useful in this use case. Section 4 describes our specific approach

based on handwritten signatures with all its considered aspects. Section 5 presents some

experimental results obtained with the described approach. Section 6 summarizes the

results and gives an outlook.

2 Use case

The goal is to generate application passwords on demand based on a biometric key and

some other parameters that do not necessarily have to be kept secret. The biometric key

should be generated directly from presented biometric characteristics without comparison

with a stored biometric reference (see Figure 1). If necessary, some auxiliary data may

be used to always reconstruct the same biometric key. The biometric key then serves as

a “master password” from which application-specific passwords are derived using further

data like application names and password rules.

Biometric characteristics

Auxiliary data Biometric key generation

Biometric keyApplication name

Password rules

User name

Password generation

Password

Application

❄

❄

❄

✲

❍❍❥
✲

✟✟✯
❍❍❥

Figure 1: Block diagram
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3 Requirements

In order to be useful for the protection of application passwords, a biometric key generation

system should satisfy a couple of requirements. Many of these requirements are related to

the aspect of security. However, there are further requirements, e.g. related to usability, that

have an impact on the choice of biometric method if several biometric methods provide

the same level of security.

Security requirements

• Distinguishability of biometric keys of different persons: The biometric keys gener-

ated from any two persons must be different.

• Reproducibility of the biometric key of the same person: For the same person always

(or at least almost always over a long period of time) the same biometric key must

be computed.

• Resistance against “brute force” attacks: The biometric keys must have sufficient

length to withstand “brute force” attacks (where an attacker systematically tries pos-

sible values one after the other).

• Resistance against spoofing: It must be difficult to fake or imitate the biometric

characteristics e.g. using gummy fingers or handwritten signature forgeries.

• Revocability: Changing the biometric key in case of compromise must be possi-

ble. For instance, in case of biometric key generation from keystroke dynamics

[MRW02] and from voice [MRLW01] revocability is achieved by changing the

typed or spoken password, respectively.

• No storage of sensitive data: The privacy of biometric data may best be protected

when they are not stored at all. Therefore, no biometric data shall be stored. Auxil-

iary data, if stored, shall not allow to reconstruct biometric data.

Further requirements

• Availability of the biometric sensor: The biometric sensor used for capturing the

biometric characteristics should be suitable for integration into devices used for log-

in procedures, i.e. PCs, notebooks, or smart phones.

• Short run time: The biometric key generation algorithm must be fast because users

will not accept much longer processing times than for conventional user authentica-

tion when using biometric key generation.

• Vendor independence: The biometric key generation algorithm should be indepen-

dent of specific vendor solutions, i.e. it should be interoperable with systems offered

by different vendors for capturing and extracting certain types of biometric data.
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• Scalability: Depending on the targeted applications, different password lengths may

be desired by the user or required by corresponding application policies. The length

of a biometric key will be related to the amount of information contained in the bio-

metric data. Therefore, the size of the biometric data being captured and processed

should be easily scalable by the choice of the user.

4 Biometric key generation approach

4.1 Choice of handwritten signatures/signs

A major advantage of handwritten signatures over other biometric features is their high

level of user acceptance. Handwritten signatures have long been accepted in many places

as a means for authenticating persons. By choosing different signature lengths (e.g. first

name and last name, last name only, paraph, etc.), the length of the biometric key is easily

scalable. In case of compromise, an exchange of the generated biometric key is possible

by using other phrases to write or changing the style of writing.

The field of application of signatures/signs may be large since capture devices cannot

only be connected to PCs, but are already integrated in many devices (e.g. PDAs or tablet

PCs) used for login. Furthermore, there are standardized data formats for signature/sign

time series data [ISO07]. Normalized time series data may either be used directly for

comparison or for deriving further feature data. Altogether, the dynamics of handwritten

signatures/signs seem to be a promising starting point for generating biometric keys.

4.2 General design

As the biometric key generation would be easier to use without auxiliary data, this study

takes up the challenge of generating a biometric key without the use of any auxiliary

data (cf. Figure 1). Related work on biometric key generation, including that related to

handwritten signatures [VSM02, TY09], makes use of auxiliary data.

In general, biometric key generation methods include the following two stages [MRLW01]:

1. Feature extraction: First, a set of features is extracted from presented biometric

characteristics. Such features must be chosen that are sufficiently similar if extracted

from the biometric characteristics of the same user and that are sufficiently different

if extracted from the biometric characteristics of different users.

2. Key generation from the extracted features: Then, a key is generated from the fea-

tures set. Keys generated from sufficiently similar features sets must be identical.

Features of handwritten on-line signatures can be classified into statistical, spatial, tempo-

ral, and spectral features. For this study, different signature features have been tried and
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compared with respect to their reproducibility. The chosen approach is based on signa-

ture/sign time series data per [ISO07] containing x and y coordinates and time informa-

tion (either time information per sample point or based on a uniform sampling rate). The

availability of pen-up and pen-down information from the capture device is required. This

may be achieved in different ways, e.g. using the optional tip-switch state channel or the

pen-tip force channel or by analysis of technical events such as mouse events.

The signature is first divided into segments in a canonical way by considering different

parts of the signature separated by lifting up the pen. Afterwards, each segment is divided

into more abstract subsegments. These subsegments are classified into four different curve

types. Different considerations how to identify curve types like “line”, “right-hand bend”,

or “left-hand bend” finally lead to a specific algorithm.

4.3 Design details

4.3.1 Signature normalization

The first preprocessing step consists of normalizing the vertical size of the signature/sign

and translating the signature/sign to non-negative x and y coordinates with a minimum

value of 0 (with the aid of the maximum and minimum values of x and y). This means

that the signature/sign is placed into a bounding box just open to the right side to allow

different lengths of signatures/signs (see Figure 2).

Figure 2: Normalization process applied to a signature/sign

4.3.2 Segmentation

The normalized signature/sign is divided into segments with the aid of the pen-up and

pen-down information. An example of a segmented signature/sign is given in Figure 3.
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Figure 3: Segmentation of a signature/sign

4.3.3 Normalization of individual segments

The segments are individually normalized in preparation for further analysis. For each

segment, the starting point is moved into the origin and the whole segment is rotated such

that the endpoint is located on the positive x axis.

Figure 4: Normalization process applied to segments

This normalization step (illustrated in Figure 4) provides a abstract transformation not pre-

serving the natural signature/sign image. It serves as a preparation for later consideration

of the subsegments as uniquely aligned functional graphs, i.e. the y values as a function of

the x values.

4.3.4 Determination of subsegments

Be Nseg the total number of segments and ns the number of pixels of segment s. We

denote the x and y components of the segments normalized according to Section 4.3.3 by

(xsks , ys
k
s), s = 0, . . . , Nseg − 1, k = 0, . . . , ns − 1.

This more complicated notation is used to clearly distinguish these values from the original

x and y values of the captured signature. We now analyze these data for sequences of

strictly monotonic increasing and monotonic decreasing sequences of x values. For this

purpose, we start from the starting point (xs0s, ys
0
s) of the whole segment and determine
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starting points (xsks , ys
k
s) of new subsegments in the following way: Be (xsls, ys

l
s) the

starting point of the previously determined subsegment; search for index

k = min{m|(∃(i, l < i ≤ m)(xsis ≥ xsi−1
s ) ∧ (∃(i, l < i ≤ m)(xsis ≤ xsi−1

s )}.

This leads to a sequence of subsegments for each segment. Each subsegment consists of

its starting point and the points up to the starting point of the next subsegment.

4.3.5 Analysis and coding of subsegments

In the following, we consider a subsegment that is determined by the steps described in

Section 4.3.4. The procedure for analysis is the same for all subsegments. We denote

the subsegment’s components by (xui, yui), i = 0, . . . , nu − 1 whereby nu denotes the

number of pixels of the subsegment. Furthermore, we introduce the identifiers Usegrs for

subsegment r of segment s and Nus for the number of subsegments of segment s.

The monotony property of the x values inside a subsegment guarantees that for each x

value there only exists one corresponding y value, i.e. there exists a unique function f with

the property yui = f(xui)∀i = 0, . . . , nu − 1. Our goal consists in an approximation of

this function with a preferably simple analytic function whose parameters may be used to

classify the subsegment. Since the subsegments may be expected to be rather small curves,

we use the approximation with quadratic polynomials with minimal average quadratic

distance to the functional values delivered by our subsegments (least square method). This

means that every subsegment gets assigned a polynomial P2(x) = k1 · x
2 + k2 · x + k3.

Depending on the functional parameters, i.e. the type of the quadratic function, we classify

the subsegments into four types. It would be self-evident to look for the fundamental

curve types “right curve” and “left curve”. However, these types only depend on the sign

of the quadratic term and completely neglect the two other parameters. Therefore, we

use a classification of the subsegments into more abstract curve types which also takes

into account the linear term. Furthermore, a subsegment with too few pixels cannot be

reasonably represented by a quadratic polynomial. Therefore, we treat subsegments with

less than g pixels as an exceptional case denoted by the type “point”. This leads to the

following coding of the subsegments:

Code(Usegrs) =




1 if |k1| < h (line – very small quadratic part)

2 if k2 < 0 and line condition not satisfied (negative linear part)

3 if k2 ≥ 0 and line condition not satisfied (positive linear part)

4 if nu < g (point – exceptional case)

This way, we have 2 bit information per subsegment available. Additional information

is provided by the numbers of subsegments Nus for each segment s = 0, . . . , Nseg − 1
since a given sequence of subsegment codes may be derived from different divisions of

segments. The values of g and h are adjustable thresholds. For the prototype values of

g = 5 and h = 0.002 have been chosen.
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4.3.6 Additional dynamics features

The derivation method for biometric keys developed within the previous sections pro-

vides features of a human signature as input for biometric key generation. In particular,

the segment and subsegment features are robust against certain variabilities like signature

size, horizontal or vertical alignment or the exact number of sample points. However,

the method only considers static signature features, and the robustness against change of

pixel numbers in particular allows the reconstruction of the biometric key from a printed

signature image.

To enhance the security of the method, it is beneficial to also include some dynamic fea-

tures of the subsegments. For this purpose, we enrich the subsegment information by

velocity information available from the captured x, y, and time values. We now return to

the segment information considered in Section 4.3.2, i.e. the information from the normal-

ized signature/sign image (now together with the corresponding time values that remained

unchanged during the normalization procedure).

As a first step, we assign a speed value vks to each point except the first and last points of

a segment. If the software directly delivers speed values (as an optional part of [ISO07]),

we can take these values and just scale the speed components by the scaling value used for

normalization in Section 4.3.1. Otherwise, we calculate the speed values with the aid of

the time relations to the right and left neighbor points, with duplication of previous speed

value if time difference zero occurs. Therefore, it is reasonable to omit the speed values of

the first and last segment point.

For the next steps, we need the following two auxiliary functions to determine indices of

points inside segments and subsegments where the numbering of points and subsegments

always starts from 0 for each segment:

Lowindex (s, r) = index of first pixel of subsegment r inside segment s

Highindex (s, r) = index of last pixel of subsegment r inside segment s

Since no speed values exist for the first pixel of each first subsegment as well as for the

last pixel of the last subsegment, we define the following additional auxiliary values:

Low(s, r) =

{
1 if r = 0

Lowindex (s, r) else

High(s, r) =

{
Highindex (s, r)− 1 if r = Nus − 1
Highindex (s, r) else

Next, we calculate the average speed value for each subsegment, followed by the maxi-

mum and minimum values of average speeds over the whole signature:

For(s = 0, . . . , Nseg − 1)

For(r = 0, . . . ,Nus − 1){
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vrs =
1

High(s, r)− Low(s, r) + 1
·

High(s,r)∑
k=Low(s,r)

vks

vmin = min {vrs |s = 0, . . . , Nseg − 1, r = 0, . . . ,Nus − 1}

vmax = max {vrs |s = 0, . . . , Nseg − 1, r = 0, . . . ,Nus − 1}

diff = vmax − vmin

}

According to these minimum and maximum values, the average speeds are now quantified

in the following way:

Quant(vrs) =




1 if vrs < vmin + diff
4

2 if vmin + diff
4

≤ vrs < vmin + diff
2

3 if vmin + diff
2

≤ vrs < vmin + 3·diff
4

4 if vrs ≥ vmin + 3·diff
4

These quantified speed values offer an additional 2 bit code per subsegment. The subseg-

ment codes are not equally distributed, i.e. the perfect entropy of 2 bits per subsegment

is slightly disturbed. However, there is no strong mutual strong dependency between the

speed codes except that a minimum and a maximum value (resulting in speed codes 1

and 4) must occur at least once. Furthermore, none of the curve types tends to be typi-

cally drawn slower or faster than the other ones, i.e. there is also no direct dependence of

the speed codes on the corresponding curve codes. Hence, we now practically have 4 bit

information per subsegment.

The speed codes do not depend on particular speed values of the writer but represent

the writer’s behavior in writing particular parts faster or slower than others. Hence, they

provide robust features against variability in individual speeds.

5 Prototype and experimental results

5.1 Static features

For a first prototype, a Wacom Intuous 3 tablet with a resolution of 5080 lpi was used.

The testing program was designed with the GUI framework QT (V4.7.1) that allows the

operation of the Intous tablet in mouse mode. This way, the separation of pen-up and

pen-down may be recognized with the aid of mouse events.

With this technology combination, the capturing of data points works asynchronously.

Therefore, time values are captured (with the aid of QT standard functions) with a measur-

ing unit of 1 ms. As mentioned in Section 4.3.6, the speed values are calculated according

to the time difference between the left and right neighbor points also under consideration

of exceptional cases with time differences of zero (which really occurred some times in

case of fast movement).
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It turns out that the algorithm works better for people with the habit to present a very exact

appearance of their handwritten signature and whose signature is more similar to printed

characters than to cursive writing.

For our tests, several series of live data were captured from different persons. The first data

generated more than once was considered as “reference data” to determine the acceptance

rate, i.e. the rate of complete matching of two password data strings. The test persons

could all decide about the type of their signature (e.g. only last name, first name and last

name, without full stop in between, etc.). However, they were instructed to always keep

their writing habits and to present their signature along the horizontal direction of the

tablet. First tests were performed with static features only (before the implementation

and testing of the enlargement with dynamic features). The best results were reached by

a very experienced test person frequently operating signature tablets and also involved

in the initial implementation phase. This person reached an acceptance rate of 18.4%

with a first test series of 30 samples which could be increased to over 50% in the third

test series. For unexperienced persons, it also became obvious that the acceptance rate

increases with further test series. However, the rates were much lower. The best achieved

results consisted in an acceptance rate of 13% within the first test series (30 samples) and

33% within the second test series (33 samples).

5.2 Additional dynamics features

After these first results, the testing program was extended with the dynamic velocity fea-

ture whereby the static curve feature are still visible, i.e. the success for static and dynamic

features can be determined separately. During the tests of this extension with further test

persons, it was confirmed that the method really works with only few experienced persons

since no one could reach again the same rates stated before.

At a later stage, another tablet was integrated into the test program, namely a Wacom STU-

500 tablet. This device only provides a resolution of 2540 lpi, but it is better to handle for

the user in particular due to the direct optical feedback on the tablet itself. The STU-500

tablet cannot be operated in mouse mode with QT. Instead, a special capturing software

needed to be integrated. This software directly delivers signature templates compliant

with [ISO07] containing information about x, y, time, and pressure. Explicit pen-up and

pen-down information (with the aid of the switch-state channel) are not given, but the

separation of segments may be discovered by points with the pressure value 0. A time

channel is also not present, but a unique sampling rate of 200 samples per second is used.

All test users in fact felt more comfortable with this type of tablet, and the signature images

already looked more stable than with Wacom Intuous. However, no more stable results

could be reached for the final biometric keys.

Furthermore, the algorithm was tested with publicly available sample data of the Signa-

ture Verification Competition (SVC) 2004 [YCX+04]. No complete matching of biometric

keys – for static as well as for dynamic features – obtained from SVC files were reached.

The best achieved results were recognition rates of 10% for the static features only. But
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the resulting curve and speed codes contained some larger matching parts. In total, the cur-

rently implemented version of the biometric key generation algorithm only provided a few

real success cases, otherwise only partially usable results. Therefore, no more reasonable

quantitative results (e.g. ROC curves) may be given at the current state.

6 Conclusions

We discussed a method for deriving characteristic codes of signature/sign segments to

be used as biometric keys. It becomes obvious that an acceptable reproducibility of the

biometric keys may only be achieved for few persons who practised writing their signa-

ture/sign on a tablet for a long time. In addition, a clear and exact signature appearance

is needed. This means that the method will work better for people writing block letters

than for people with joined-up handwriting [Sch11]. This also means that signatures/signs

yielding reproducible biometric keys will be easier to forge.

Considered separately, the dynamics features with velocity codes appear with similar sta-

bility and variability as the static curve codes. The method is not accurate enough to deliver

biometric keys ready to be used for applications. Nevertheless, the test series with cap-

tured live data as well as SVC 2004 data always contained stable, frequently re-occurring

partial number sequences. The investigations have shown the difficulty of directly extract-

ing passwords from biometric data without the storage of helper data. Such methods may

only work under certain ideal conditions and with special experienced people.
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