
Assessing Relations between Non-Functional Requirements

Michael C. Jaeger and Anne Hoffmann

Siemens Corprate Research and Technology, Software & Engineering (CT SE)
Otto-Hahn-Ring 6, D-82000 München, Germany

michael.c.jaeger@siemens.com
anne.hoffmann@siemens.com

Abstract: The development of requirements involves also necessary checks for con-
sistency, coherency and identification of dependencies between them. While approaches
for requirements development exist that cover the functional characteristics of a sys-
tem, the support for non-functional requirements is not well elaborated today. This
work proposes to assess non-functional requirements (NFRs) by their relations be-
tween them in order to provide a reference for a systematic analysis of NFRs.

1 Introduction

Generally, a non-functional characteristic describes – contrary to a functional characteris-
tic – the behaviour of system during its use. Accordingly, during the engineering process of
a system, the requirements are separated into two major parts: functional requirements and
non-functional requirements. Functional requirements constitute the nature of the desired
system. In addition to that, non-functional requirements (NFRs) express requirements in
order to enable the use of such system. Thus, requirements engineering must consider
NFRs as important as the function of a system.
This work is driven by the fact that an NFR implies different actions and decisions during
the subsequent specification and design of a system. Consider the example that a system
must provide extraordinary reliability. In this case, a possible implication on the design is
the redundant set up of critical components of that system. However, this also implies a
higher operational cost, because the footprint of the system increases leveraging a redun-
dant design. Thus, in this simple example, the NFR referring to the reliability interferes
with a possible NFR on operational cost. The important point for the requirements en-
gineering is: What are the relations between different NFRs and what are the resulting
implications for the requirement engineering phase? In order to answer to this question,
this work aims to identify the dependencies among NFRs.
To answer this question, we must determine the relevant NFRs for the engineering of
software-intensive systems. The discussion on relations among NFR cannot be general or
on an abstract level, but must consider the nature of individual requirements in a specific
domain. For example, implications on capacity when constructing buildings are different
as when considering software systems. Thus, this work entirely focuses on the require-
ments engineering of software-intensive systems. It lists relevant non-functional charac-
teristics of these and it explains their interpretation today.

451



Finally, we can analyse how these NFRs interrelate with each other. Based on the inter-
pretation of the NFRs, the implications are explained. Then, this discussion puts these
implications in a common context in order to identify conflicts or – what is also consid-
ered possible – favouring effects. The rest of this work is organised in the following way:
the next section gives a brief overview on requirements engineering. Section 3 discusses
relevant NFR for software-intensive systems and leads to a rough overview of dependen-
cies among these. Finally, Section 4 presents our conclusions so far and our next steps in
this field.

2 Brief Overview on Requirements Engineering

In general, dealing with requirements can be separated into the development and the man-
agement of requirements. In requirements development, the main activities are elicitation,
analysis, and specification. Beginning with the elicitation, an appropriate scope of the de-
sired system is defined that limit the extent of the requirements. Then requirements are
collected and a common understanding among the stakeholders of the development pro-
cess needs to be ensured. In multi-party software development projects, the elicitation also
involves the negotiation of requirements, for example between client and developers. As
the next step, the analysis of the requirements takes place: Requirements are classified
and checked for consistency and completeness. Also, dependencies among requirements
would be identified in order to cover potential conflicts. Subsequently, the third step is
about the specification of requirements, which includes their presentation, their structur-
ing and the setting of criteria for determining under what conditions a product meets the
requirements.
Besides the development of requirements, the management of requirements is also neces-
sary, because in a software development process, subsequent steps, such as the design or
the implementation take place beyond the developed requirements. Thus, a change man-
agement of the requirements is necessary that allows to apply and track modifications. Our
work proposes to enhance the development of requirements: Our aim is to bring the focus
of requirements engineering to checking consistency and dependencies with in particular
with NFR. Our anticipated result is a comprehensive reference that provides requirements
engineers with a guide when structuring NFRs. This reference enables the requirements
engineer to:

• Define implications of particular NFRs: Using this framework, the requirements
engineer can pick up relevant implications for the entire set of particular NFRs.

• Discover possible conflicts between NFRs: Knowing about implications of partic-
ular NFRs enables the requirements engineer to get a more comprehensive image of
the desired system. Within this image, conflicting NFRs become explicit.

• React to conflicts in the requirements phase: With the identification of conflicts,
the requirements engineer in able to apply appropriate corrections in an early phase
of the system engineering process. This improves the control on the entire engineer-
ing process and reduces the overall efforts.

452



3 The Non-Functional Requirements and their Dependencies

The term non-functional requirement refers to the non-functional characteristics as re-
quirements on the desired system. The main question that rises with non-functional char-
acteristics is what their difference to functional characteristics are. Cases exist where a
characteristic is functional in one application and is non-functional in another. For exam-
ple, ensuring the provision of a communications link with a particular bandwidth for voice
transmissions, the provided bandwidth is actually the provided function. However, with
a Web server application, the bandwidth is clearly a non-functional requirement since the
application would work with almost any bandwidth characteristics.
The research consensus in order to answer this question is to define the functional core of
a provided function as discussed by Werner [Wer07]. Then, a characteristic that is not cov-
ered by the functional core is named non-functional. Therefore, for a precise definition, it
depends on the application to unambiguously define which characteristics are considered
non-functional. However, in most cases, the non-functional characteristics can be easily
identified. In this area, several characteristics exist as a group. A large group is comprised
by the quality-of-service (QoS), which are considered a subset of non-functional charac-
teristics. Different works state that QoS characteristics are non-functional characteristics
that are quantifiable (e.g. [OMG04]). In other words, the QoS refers to the measureable
characteristics when a system provides its functionality.
In addition, to the cluster of QoS characteristics, other groupings exist such as the depend-
ability or the RAMSS characteristics (Reliability, Availability, Maintainability, Security
and Safety). Both are umbrella terms as well that comprise different individual charac-
teristics. For this work, different work in the domain of distributed software systems are
considered: the ISO QoS reference model as a supplemental proposal for the ISO Refer-
ence Model for Open Distributed Processing (RM-ODP) [ISO98] and the OMG UML QoS
Profile [OMG04]. In addition, we consider the works of Colouris [CDK02], Tanenbaum
and Goodman [TG01], Ran [Ran03] and Buschmann et al. [BMR+96] as references for
non-functional characteristics in the area of distributed software systems in an informal
way. Our selection includes the following characteristics:

• Organisational characteristics:
– Location of provision: This characteristic refers to the location where the sys-

tem is provided. This could involve for example different end user devices.

– Cost (-): The cost for either realising or using the provided system.

– Affiliation: The affiliation denotes the organisation that provides the system or
its parts. For example, legal issues might be relevant with specific affiliations.

• Characteristics from the dependability area:
– Reliability (+): The reliability of a system denotes the ratio of successful sys-

tems execution according to the specification.

– Availability (+): The availability denotes a ratio on how many times the sys-
tem’s functionality can be accessed.

– Safety (+): The safety is meant to cover the operational safety.

453



– Security (+): This umbrella term refers to different particular characteristics,
such as confidentiality. In some works, the safety is also included.

• Performance characteristics:
– Bandwidth (+): The bandwidth denotes the amount of data that a system can

process within a defined time interval.

– Response Time (-): The amount of time to process a particular request.

– Resource Consumption (-): This characteristic denotes the consumption of
technical resources, for example, CPU time or main memory.

• Technical characteristics:
– Maintainability: During its lifetime, the software must be updated, corrected

or data must be maintained. In order to preserve the operation of the software,
efficient mechanisms for maintenance are desired.

– Extensibility: This characteristic refers to the suitability of the software for
applying extension for the support of new functionality.

– Deployability: Describes how easy or difficult a software is to deploy.

– Scalability: Denotes how well a system performs with a rising amount of use.

In this list, a plus or minus sign indicates that the particular characteristic is quantifiable
and thus has a direction. A minus indicates that lower values are considered better; a plus
vice versa. A systematic selection could be based on assessing actual occurrences in the
requirement engineering of industrial projects. However, this would exceed the available
space for this work and is, thus, postponed as further work.
These characteristics result in particular implications on the requirements engineering
when involved as non-functional requirements. Such implications result in new require-
ments or complement existing ones. For example, requirements on the scalability supple-
ment requirements on the response time. A requirement on a high level of extensibility
implies modular system architecture. With maintenance, the implications are more com-
plicated as this is understood as a characteristic in order to improve the general availability,
or reliability. However, modularity can result in a performance penalty, as this, for exam-
ple, is an issue with the design of operation system kernels. But, to show the difficulty
of this interpretation, modularity can also lead to the solution on the response time: For
example, throughput-intensive application servers are modularised in order to balance the
load in an optimal way.
In order to establish a starting point with the goals of in this work, an empirical assessment
serves as a first proposal. This proposal is summarised in Figure 1. In this figure, a relation
denotes that improving a particular characteristic:

1. worsens the other, depicted by an umbrella,

2. has no general impact on the other, shown in the table as grey box,

3. implies the improvement of another characteristic,

4. results in improving another characteristic, indicated by green boxed smiley.

454



L
o
c
a
ti
o
n

o
f
P
ro

v
is

io
n

C
o
s
t

A
ff
il
ia

ti
o
n

R
e
li
a
b
il
it
y

A
v
a
il
a
b
il
it
y

S
a
fe

ty

S
e
c
u
ri
ty

B
a
n
d
w

id
th

R
e
s
p
o
n
s
e

T
im

e

R
e
s
o
u
rc

e
C
o
n
s
u
m

p
ti
o
n

M
a
in

ta
in

a
b
il
it
y

E
x
te

n
s
ib

il
it
y

D
e
p
lo

y
a
b
il
it
y

S
c
a
la

b
il
it
y

Flexibilise Location of Provision X ☂ ☂ ☂

Reducing Cost ☂ X ☂ ☂ ☂ ☂ ☂ ☂ ☞ ☞ ☞ ☞ ☂

Flexibilise Affiliation ☺ ☺ X ☂ ☂ ☂ ? ☞ ☞

Increasing Reliability ☂ X ☞ ☞ ☞ ☞ ☞

Increasing Availability ☂ X ☞ ☞ ☂ ☂ ☞ ☞

Improving Safety ☂ ☺ ☞ X ☞ ☞

Improving Security ☂ ☂ ☂ ☞ ☞ ☞ X ☂ ☂ ☞ ☞

Increasing Bandwidth ☂ X ☞ ☞ ☞

Reducing Response Time ☂ ☺ ☺ ☺ ☺ X ☞ ☞

Reducing Resource Consumption ☺ ☺ ☺ ☺ ☺ ☺ ☺ X

Improving Maintainability ☂ ☺ ☺ ☺ ☺ X ☞

Improving Extensibility ☞ ☺ ☺ ☺ ☺ ☺ ☞ X

Improving Deployability ☺ ☺ ☞ X

Improving Scalability ☂ ☺ ☺ ☺ ☺ ☺ ☺ ☺ X

Figure 1: Summary on Relations

This figure represents a first result on our personal assessment. Some of the mentioned
authors (e.g. [BMR+96]) already discuss implications of particular NFRs. However, to
our best knowledge, we are not aware of work that provides a comprehensive presentation.
Certainly, the particular relations as given by Figure 1 could be discussed in further detail.
However, due to space limitations, we can give only a brief summary on our assumptions:

• Location of provision implies a modularity to some certain extend, because specifi-
cation of special end user devices or particular location of provision improve with a
separation of the business logic from presentation concerns.

• A cost improvement generally reduces other QoS characteristics. However, some
non-functional characteristics result in improvement of the cost, such as low re-
source consumption or extensibility.

• To bring the affiliation into relation to other non-functional characteristics is gener-
ally difficult. It is listed here to demonstrate an unusual candidate in the discussion.

• The reliability implies some characteristics such as good response time or good
safety. The availability is related to the reliability w.r.t. the other characteristics.

• The safety implies the proper working of the system and also benefits from a good
maintainability.

455



• The security forms a trade off with performance characteristics and thus has also a
negative on resource consumption.

• The bandwidth and response time are performance characteristics and thus result in
good availability and reliability but worsen resource consumption and cost. They
both benefit from a good scalability. The scalability is a hidden characteristic that
results in other observable characteristics, such as reliability or response time.

• The maintainability has effects on most of the other characteristics. It results in good
reliability but can also result in more cost. The same applies to the extensibility.

• The deployability has an effect on the cost and on the location of provision. However
regarding the rest of the characteristics it develops neutral.

4 Conclusions and Future Work

This work has presented an overview on non-functional characteristics relevant for the
requirements engineering. In addition, it has presented the role and handling of non-
functional requirements in the requirements engineering field. Based on this, an outlined
overview on how NFRs could depend on each other was given. Our future aim is to elab-
orate on this work in iterations in order to provide a mature reference about dependencies
between NFRs. As the next steps in our future work we consider relevant an assessment of
the importance and popularity of different non-functional characteristics for requirements
engineering. This could involve 1) the analysis of projects where the results of require-
ments engineering is accessible, 2) the conduction of questionnaires and interviews, and 3)
further research in books and articles where particular implications are already discussed
for individual NFRs.

References

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture – Volume 1. Wiley &Sons, 1996.

[CDK02] George Colouris, Jean Dollimore, and Tim Kindberg. Verteilte Systeme. Pearson Edu-
cation Deutschland, München, Deustchland, 2002.

[ISO98] ISO/IEC. CD 15935 Information Technology: Open Distributed Processing - Reference
Model - Quality of Service. (CD Ballot), October 1998.

[OMG04] Object Management Group OMG. UML Profile for Modelling Quality of Service and
Fault Tolerance Characteristics and Mechanisms. ptc/2004-06-01, June 2004.

[Ran03] Shuping Ran. A Model for Web Services Discovery with QoS. SIGecom Exch., 4(1):1–
10, 2003.

[TG01] Andrew S. Tanenbaum and James Goodman. Computerarchitektur. Prentice Hall, Up-
per Saddle River, New Jersey, USA, 2001.

[Wer07] Matthias Werner. Eigenschaften Verlässlicher Systeme. Habilitationsschrift der Tech-
nischen Universität Berlin, 2007.

456


