
An Optimum, System-Based Component Testing Approach

for Evaluating Software Reliability

Jayant Rajgopal, Mainak Mazumdar

Department of Industrial Engineering
University of Pittsburgh

Pittsburgh, PA 15261

Abstract: In a component testing approach for evaluating system reliability, one
tests units of the components or subsystems that make up a larger system in order
to draw conclusions about the reliability of the latter. An optimum, system-based

component test plan explicitly account for the relationship between component and
system reliabilities and also minimizes total testing effort. This paper reviews the
main features of such plans and describes an application to reliability testing of a
software system that is made up of several different components/modules.

1 Introduction

A dedicated program of testing is a crucial prerequisite for the design, development and
eventual deployment of complex and highly reliable systems. Examples include
mechanical, electrical/electronic, hardware and software systems. The objective of the
test program is to demonstrate that the system will perform at a level of reliability that is
acceptable with respect to the mission for which it is designed. These tests are required
to demonstrate at some specified level of confidence that the system reliability exceeds
some preassigned minimum. The reliability parameter for a generic system could be
expressed as (1) a mean time to failure, (2) as the probability of no failures over a
specified mission time such as a warranty period, or (3) the probability of no failure for a
randomly chosen operating condition from the set of all conditions for which the system
is designed. In particular, for software systems one might like the test plan to
demonstrate that (a) the system will (with a high probability) provide failure-free
operation for some specified mission time under specific conditions, or (b) that it will
(with a high probability) process a randomly chosen application instance correctly.

Reliability tests for a system can be conducted either exclusively or in combination at
various levels of assembly, such as component/module, subsystem, or system. They can
also be conducted under different conditions, in different locations, or at different times.
The most straightforward way to evaluate system reliability is to assemble the complete
system and then test it as required. However, this is often undesirable (or even
infeasible) because system-level tests can be prohibitively expensive due to the time and
effort required to first assemble the system prior to testing, and because testing a system
tends to be inherently more complex in terms of resources, facilities, instrumentation,
etc., than testing component or simpler subsystems.

63

Before looking at the practical advantages of component level testing, some theoretical
justification is also in order. We make the observation that in reliability theory there is a
fairly extensive literature on the development of models to express system reliability as a
function of component reliabilities (see for example, [BP75]). If one accepts the validity
of such models, it follows logically that it should be possible to use results from
component tests to make a valid inference on system reliability. This fact has not
entirely been lost on other researchers, and some literature exists (e.g., [MSS74]) on
obtaining interval estimates of system reliability based on component test data.
However, the design aspects of the component test plans that yield these data have
received relatively little attention, and this is the aspect that our research has sought to
emphasize. The objective is to determine how total resources should be allocated either
among tests of different components comprising a system or between components and
the entire system, so that inferences on the system reliability can be made in the most
cost-effective manner. This is an area where ad hoc decisions appear to be the norm and
there is little evidence that statistics and optimization are used effectively in practice.

Using component tests either exclusively or in conjunction with system level tests in
order to evaluate system reliability has numerous practical advantages:

They generally result in lower test costs and a shorter overall test schedule.
They provide more insight and information because more aspects of performance
can be instrumented at a component level than would be possible at a system level.
Component testing can be conducted by different organizational entities or
development teams, and proceed at different locations and different times.
It might be possible to postpone assembly of the entire system until its reliability
can be guaranteed.

In addition to these general advantages, system-based component tests are particularly
useful in the following situations:

Systems Mixing Old and New Components: Many systems are designed by combining
new components and/or subsystems together with others which have been successfully
used before in earlier designs. A good example of this would be software, where existing
modules are often re-used between different software systems or different versions of the
same system. Component/modular testing to demonstrate a system reliability
requirement is particularly effective here: for a subsystem or module that has been used
previously, little or no additional testing may be necessary, and only the new
components might need more testing (of course, from an overall system perspective).

Continuously Evolving Designs: Many systems follow an evolutionary pattern where
design improvement is continuous as technology advances. The product configuration is
temporarily fixed at some discrete point in time and the configuration is released into the
market. However, in actuality, the design process is continuous. Again, software
presents a good example: earlier versions are often subsumed by succeeding ones that
provide additional functionality. Component test plans are a good option in such cases.
When a particular component changes to the extent that it renders the previous version
obsolete, reliability tests can be conducted on it. Data from these tests can then be

64

combined with the most recent test results of other components in order to evaluate the
reliability of the new system.

Complex Multi-Function Systems: With many complex systems, it is often the case that
as part of the overall project diverse design teams will have been assembled in different
locations and be working according to different (but coordinated) schedules. Many
large-scale software systems follow this model. Component test plans represent a more
practical approach to system reliability evaluation in these situations. It might be
possible to run tests independently at different locations, and the data can then be pooled
without having to first assemble the system into its final configuration.

The factors discussed above have been recognized in industry and component tests are
carried out for evaluating system reliability in numerous industrial applications.
Unfortunately, the required amount of testing for the individual components is typically
not determined in a rigorous fashion with a system-level view. In practice, a simplistic
approach that is commonly taken is to "allocate" the system reliability goal among
constituent components and then conduct tests on the latter to meet the allocated compo-
nent goal. This ad hoc approach completely ignores the specific system configuration.
In other words, these component tests are not system-based. It can be demonstrated
[Ea99] that when this naïve approach without explicit system-level objectives is used to
draw inferences, it can lead to serious errors and unreliable conclusions.

We also wish to emphasize that the component testing approach absolutely does not

imply the elimination of all system testing. Oftentimes component failures within a
system may not be independent, so that tests on individual components or modules will
not necessarily provide a completely accurate picture of system reliability. In such
instances system level tests are essential. Indeed, in most situations at least some amount
of system testing is always recommended (if not required) even if there is complete
independence between component failures. However, component testing is still a
superior option from an economic standpoint because it stands to reason that a sound
program of testing at component levels can substantially reduce the amount of expensive
system testing necessary at a later time. In such cases the issue to be addressed is the
relative amounts of system and component level testing in a minimum cost plan.

2 System-Based Component Test Plans

In this section we overview the history and development of system-based component test
plans and provide a generic problem formulation that holds across all test plans.

2.1 Background

The earliest work to address the topic of system-based component testing was a paper by
Gal [Ga74], which considered an arbitrary coherent system of n different components
with independent failures. In his plan, each component i is tested for ti time units, and

65

the system is "accepted" if no failure occurs for each of the components during these
prescribed testing periods. Suppose RS denotes the system reliability for a unit time
period (e.g., a suitably scaled version of the mission time) and ci denotes the cost of
testing component i for one unit of time. Given a value R0 such that the system is
considered definitely unacceptable if its reliability is below R0, and a suitably low
probability value , Gal described a general procedure for obtaining the optimum test
times that minimize the total testing cost C(t) = i citi subject to
 P{"accept system" when RS R0} . [1]
He also gave some specific examples for series systems, parallel systems, and a serial
connection of redundant units under the assumption that the component lifetimes are
exponentially distributed.

Mazumdar [Ma77] extended this idea by considering a formulation identical to that of
Gal but adding another probability constraint in keeping with standard statistical practice
for determining the sample size. Given a value R1 such that the system is considered
definitely acceptable if its reliability is above R1, and some suitably low probability
value , this probability constraint is:
 P{" accept system" when RS R1} (1-). [2]
These probability requirements are the same as those encountered in many conventional
testing plans that are found for example, in the Department of the Navy document MIL-
HDBK-781D [Mi87].

Since it is not always possible to satisfy both probability constraints [1] and [2] using
Gal’s criterion for system acceptance, a different criterion was needed. Mazumdar
considered a series system with exponentially distributed component lifetimes and
assumed that component testing took place with replacement. Suppose Xi denotes the
number of failures of component i that occur when it is tested for ti time units. He then

proposed the following acceptance criterion: "accept the system if iXi m," where m is a
constant to be determined. He also proved that the optimum component test times are
the same for each component irrespective of the testing costs, and that the optimum m is
given by the smallest value for which both [1] and [2] are satisfied.

Much of the subsequent work that has been done builds on the basic framework
advocated in the two seminal papers mentioned above. Numerous papers, including
ones by Altinel [Al92, Al94], Altinel and Ozekici [AO97], Easterling et al. [Ea92],
Mazumdar [Ma80], Raghavachari [Ra98], Rajgopal and Mazumdar [RM88, RM95,
RM96, RM97], Vellaisamy and Sankar [VS02], Yan and Mazumdar [YM86, YM87a,
YM87b], etc. have all considered the problem of designing component tests with
different distributions for component lifetimes, different basic system configurations,
different censoring schemes, and different amounts of a priori information about
components. Systems with dependent components or with imperfect interfaces where a
suitable combination of component and system tests may be required have not been
considered as widely; some examples of work in this area include Altinel and Ozekici
[AO98], Mazumdar and Rajgopal, [MR00], and Rajgopal, Mazumdar and Majety
[RMM99]. Finally, there has also been some recent work that looks at other objectives
such as minimizing the variance of the system reliability estimate [JC99].

66

With respect to software testing, the system-based component testing approach has not
received much attention. While there is a wealth of literature on the use of operational
profiles for software testing, such testing has always been addressed at the system level.
Smidts and Sova [SS99] have noted some of the advantages from the use of “atomic”
models in which the reliability assessment of the entire system is done based on the
testing of its constituent modules or components. However, the only work that we are
aware of that uses the general approach described earlier is some recent work by the
authors [RM02].

2.2 A General Formulation for the Component Test Design Problem

To formulate the design of the component test plan as an optimization problem, suppose
that the system has n different components and associated with the jth component
(j=1,2,…,n) is a parameter set j that determines its reliability. For example, with an
exponentially distributed component lifetime, the component reliability is measured by
the single parameter (say j) representing its failure rate; so j j. It should be
emphasized that the exact values of the parameters in this set are unknown. The system
reliability RS may be expressed as a function of 1, 2, etc., i.e., RS = R(), where (a)
=[1, 2, ..., n] is a collection of n parameter sets, and (b) the exact form of the
function R() depends on the system configuration (series, parallel, serial connection of
parallel systems, etc.). Let us define the two sets:

 S1 = { | R() R1} [3]
 S0 = { | R() R0} [4]

Thus S1 is the set of all combinations of values for the component reliability parameters
that lead to a system with a definitely acceptable reliability, while S0 is the set of all
values that leads to a system with a definitely unacceptable reliability. Suppose further
that associated with each component j we define a function Cj that measures the cost of
testing component j. Once again, the specific form of Cj will depend on the format
followed by the test plan. The optimization problem of minimizing total test costs
subject to constraints [1] and [2] may then be stated as follows:

Problem P: Minimize Z = jCj

 st Minimum
1S {P("Accept the system")} 1- [5]

 Maximum
0S {P("Accept the system")} [6]

Note that values of R1, R0, and are typically specified for specific applications, (c.f.,
[Mi87]). Also note that the probability of accepting the system will in general be some
function of the reliability of the components and how long we test them, i.e., of (i) the
test-time vector t, and (ii) the parameter set . Problem P above is a two-stage
optimization problem since each of its constraints is also an optimization problem.

67

At the “inner” stage, assume that we are given a vector of test times t. Consider [2]:
there may be many different in S1 (each representing a different combination of
component reliabilities) that lead to an acceptable system with RS R1, and [2]
requires that the probability of system acceptance should be at least (1-) for all

such S1. Equivalently, the minimum probability of acceptance across all S1

should be at least (1-). This yields the first constraint of Problem P, namely [5],
which imposes a restriction on the minimum probability of accepting an acceptable
system. Along similar lines, the second constraint [6] imposes a restriction on the
maximum probability of accepting an unacceptable system. Thus, given t, the LHS
of [5] and [6] lead to two optimization subproblems (in) over the sets S1 and S0

respectively. If the optimum values of these subproblems are respectively (1-)
and then the corresponding vector of test times t is feasible in the main problem.
The “outer” stage optimization problem is to find among all such feasible t the
particular vector that also minimizes the objective function.

2.2 More on the General Formulation

Problem P represents the optimization problem in its most general form. Specific test
formats, system configurations, and failure time distributions of the components lead to
specific definitions of the set , the function R(), the costs Cj, and the sets S0 and S1.
In all cases though, observations on component failures must be combined into some
statistic, which must then be incorporated into a decision rule for system acceptance.
These in turn lead to specific mathematical translations of the probabilities in [5] and [6].
The choice of the best statistic and the corresponding decision rule are both open
research issues. To be useful though, classes of rules must be limited to those that (a)
make sense for the specific system under consideration, (b) offer insight into the system
reliability, and (c) lead to analytically tractable formulations.

The discussion above demonstrates the complexity of the problem, from the statistical
standpoint as well as the optimization standpoint; both of these aspects are closely tied
together. From the statistical perspective the issues to address include the choice of the
underlying failure time distributions, the relationship between component and system
reliabilities, consideration of dependence, the choice of an appropriate test statistic and
an appropriate acceptance rule, and the formulation of the optimization problems in
terms of the distribution/test parameters. From the optimization perspective, the
challenge is in developing algorithms to solve the optimization problems, deriving good
approximations when the problem is otherwise intractable, and incorporating problem
specific information into the solution methodology. An interesting feature of Problem P
is that of the two optimization subproblems at the inner stage (minimization over S1 and
maximization over S0) one problem typically turns out to be fairly easy, while the other
is usually very hard to solve. That is, a test plan that satisfies one of producer’s and
consumer’s risks is relatively easy to find, but simultaneously satisfying both is usually
very challenging. For examples of different problem formulations and solution
strategies the reader is referred to the references mentioned in the penultimate paragraph
of Section 2.1.

68

3 An Application to Operational Testing of Software

It is a commonly recognized fact that software costs are far higher than those of hard-
ware when considering the total cost of a computer-based system. Consequently,
characterizing, measuring and evaluating software reliability have become crucial
activities when developing large computerized systems ([He88], [MIO90]). Software
testing models used in practice tend mostly to test the entire system as one unit without
paying particular attention to its individual component modules and the logical
connections that exist among them. However, researchers have begun to advocate the
use of “atomic” models in which the entire system is evaluated based on the testing of its
constituent modules or components, since such models more readily allow for reliability
assessment and determination of optimal testing strategies [SS99]. As an example,
different modules of complex software systems are often developed simultaneously by
independent teams and then integrated. As another example one might have commercial-
off-the-shelf (COTS) components that are used in different software systems or versions.
In both cases, if these modules are tested on an individual basis then explicit
consideration must be given to how they will fit together in the overall system. In this
section we describe an application of our approach of system-based component testing to
the area of operational testing of such components. In this testing mode, instead of
actively looking for failures, one waits for the failures to surface through repeated testing
using random samples from the hypothesized statistical distribution of the input values.
The reader is referred to [Fr98] for a further discussion of this subject.

3.1 Representation of System Reliability

A challenge in using a component testing approach is that software systems do not
necessarily have series/parallel structures and one must develop other ways to define
system reliability in terms of module reliabilities. In [KMM99] the authors use a
Bayesian approach to do this. We take a different approach based on classical statistics.
As proposed in [PMM93], we first define a software system as a "collection of programs
and system files such that the system files are accessed and altered only by the programs
in the collection." Each element in this collection (e.g., program, subprogram, file) is
called a module. The performance (and hence the reliability) of the system depends
upon (1) the reliability of each of the constituent modules, and (2) the relationship
between these modules in the context of the system. In this regard a software system is
exactly like any other type of system. However, unlike other systems the actual
relationship between system and module reliabilities is quite unique and in addition to
the system structure, it also depends upon the specific definition of software reliability.

It is possible to view software reliability from the standpoint of a mission time.
However, with the emphasis on reusable software we view it from the more common
perspective of general use on a variety of different inputs. In this case, the reliability is
simply defined as the probability that the system will correctly process a randomly
chosen input. Given that the precise nature of the applications on which some general-
purpose software system will be used is not known in advance, software use is usually
quantified by defining a suitable distribution or operational profile [MIO90]. Essentially,

69

one may view this as a description of all possible inputs to the software system along
with the relative frequency with which each input might be encountered. The
operational profile and the program structure allow us to develop a statistical distribution
of inputs for each individual module and in the modular testing approach, inputs are
randomly selected from this distribution.

One particular characterization for relating system and module reliabilities is through the
use of Markov chains ([Li75], [Ch80], [MLW95]). Specifically, we make use of
Cheung's model [Ch80], which is based on the assumption that the transfer of control
between individual modules of a software system takes place according to a Markov
chain; this model has been used elsewhere as well ([Si88], [PMM93]). In essence, the
probability pij that control transfers from module i to another module j is independent of
how module i was entered. First, consider a perfectly reliable system with n modules
(components), where module 1 represents the initial state (e.g., this could be the main
program called by the user). Also define an additional “terminal” module S to which
control is transferred upon successful program completion (e.g., S might be the operating
system) with probability piS of being entered from state i. Note that for all i we have

.1
1

n

j ijiS pp

Since we consider systems that are not 100% reliable, suppose that module i is imperfect
and has reliability ri, i.e., P(the module i does not fail any time that control enters it) = ri.
To model this (imperfect) system, define an additional state F to represent program
failure. Since each module is imperfect F can be entered from any module (except S).
Note that unlike the transient states 1,2,…,n, the states F and S are absorbing states and
represent (respectively) program failure and successful program completion. The
Markov chain thus has n+2 states (1,2,…,n,F,S) and a transition matrix Q with transition
probabilities given by qFF=qSS=1, qiF = (1-ri) for i=1,2,…,n; qij = ripij for i=1,2,…,n and
j=1,2,…,n,S; and all other qij=0. Note that qij captures the probability that module i does
not fail and successfully transfers control to module j. For a 4-component system the
transition matrix Q is as shown below:

FS

F

S

rprprprprpr

rprprprprpr

rprprprprpr

rprprprprpr

Q
S

S

S

S

4321

4

3

2

1

100000

010000

1

1

1

1

444444434424414

333343333323313

222242232222212

111141131121111

Assuming that state 1 represents the initial state (i.e., control is initiated by module 1),
one may use a standard method of computing absorption probabilities [Ci75], to show
that the reliability RS of the system can be computed via

RS = iSi

n

i in prQI
1

1
1]ˆ[[7]

70

where In is the identity matrix of order n, and Q̂ is the (n n) submatrix of Q obtained by
dropping its last two rows and columns. In other words, the reliability of the system is
the inner product of the first row of the inverse of the matrix (In- Q̂) and the column of

Q̂ corresponding to state S.

Just as we assumed in Section 2.2 that the component reliability parameters given by i

were unknown, we assume here that the values of all ri are unknown (indeed, if these
were known there would be no reason to do any testing). However, we assume that the
pij are known/computed based on the operational profile; recall that the operational
profile provides the probability of encountering a specific type of input, and the logic of
the software provides the specific path of modules through which control is transferred
for that input. Thus one may compute the probability that control transfers from module
i to module j for any input from the use distribution. Clearly, this probability depends on
the operational profile. Thus one must pay special attention to the development of the
operational profile, and a caveat that we offer is that the proposed approach is accurate
only as long as the operational profile is accurate. However, this is generally true
whenever any statistical approach is used to test software and this point is also discussed
at length in [MIO90]. If the operational profile changes over time one should compute
new probabilities pij for the new profile. However, the formulae used to compute these
would be identical to the ones used initially as long as the software itself is not altered.

3.2 Formulation of an Optimum System-Based Component Test Plan Model

In our test plan, we run ki unit tests on module i where each test uses inputs drawn at
random from the use distribution for the module. Suppose further that we observe Xi

failures among the ki test instances of module i. It is assumed that X1, X2 ,…, Xn are
mutually independent random variables. The following rule is then used for the overall
system: "Accept the system as reliable as long as iXi = 0." Note that this test plan is
virtually identical to the one used in Gal’s original paper on component testing [Ga73].
Similar to Gal’s work we only consider Type II error, i.e., we wish to ensure that the
probability of the plan accepting a system with reliability RS R0 is smaller than some
specified small fraction , where R0 is a prespecified value and RS follows from [7]. In
optimizing the design of this test plan the objective is minimize test effort by finding the
smallest value for each ki that provides us with this level of protection from Type II error.
Note that with inputs drawn at random from the use distribution, the proposed test
format effectively subjects each module to a series of independent functional tests with
inputs representative of the frequency of use in the final operational environment.

Let r Rn denote the (unknown) module reliabilities, i.e., r = [r1, r2, …, rn]. Clearly, Xi

has a binomial distribution with parameters ki and (1-ri) so that E[Xi]=ki(1-ri). Since ki is
likely to be large and (1-ri) to be small, we can use a Poisson approximation for the
distribution of Xi. The fact that the tests on the modules are independent of each other
then implies that iXi is also approximately Poisson with parameter iki(1-ri). Thus the

71

probability of system acceptance = P(iXi=0) = exp[-(iki(1-ri)]. Finally, (along the
lines of the set S0 that we defined via [4]) let us define
 Q0 = { r Rn | 0 r 1, RS(r) R0}, [8]
where RS(r) is the reliability of a system whose module reliabilities are given by the
vector r and is computed using the formula in [7]. Note that (like the set S0 in [4]) Q0

denotes the set of all module reliability vectors for which the system is definitely
unreliable. In general, Q0 could have infinitely many elements. The problem of
designing a test plan may now be stated as the following mathematical program:

Minimize (k1+k2+…+kn)

subject to i ii rk
e

)1(
 for all r Q0 [9]

ki 0 and integer for i=1,2,…,n.

Note that the above problem is an integer linear program in ki with infinitely many
constraints (one for each member of Q0). In order to solve the problem we develop an
inner-stage optimization problem to replace the constraint given by [9]. This is exactly
the same as our general approach described in Secton 2.2 (where we used [6] to replace
the basic constraint given by [1]). Since exp[-(iki(1-ri)] is equivalent to iki(1-ri)]
-ln() it follows that the above optimization problem may be rewritten as follows:

Minimize k1+k2+…+kn

st {Minimum i ki(1-ri), st r Q0} -ln () [10]
ki 0 and integer for i=1,2,…,n.

Again, note that as in Section 2.2 we have a two-stage mathematical program:
In the "inner" stage we assume we are given a vector k=[k1, k2,…, kn] and solve a
problem in the ri; this problem has a linear objective and one nonlinear constraint
(corresponding to RS(r) R0) in addition to simple upper and lower bounds on the ri.
If the resulting optimum objective value exceeds -ln (), then k is feasible.
In the "outer" problem the objective is to find among all feasible k the particular
vector that minimizes iki.

3.3 A Cutting-Plane Algorithm to Solve the Problem

As a matter of simplicity we ignore the integer restrictions on ki and solve a continuous
problem. If the optimum values are rounded the solution will obviously remain feasible,
and as long as the ki are large, deviations from the optimum will be negligible. The
procedure is as follows:

STEP 0: Choose a set of elements from the set Q0 - say n vectors r1, r2,…,rn - and use
these to define an initial set of constraints in [9] – note that these constraints will be in
terms of the variables k1,k2,…,kn.. Solve the resulting linear program where the
objective is to minimize jkj subject to these n constraints and ki 0. Call the solution k.

72

STEP 1: Use the vector k to define the (nonlinear) optimization problem in ri as given by
the LHS of [10]. Solve this second-stage optimization problem and let the optimum
solution be r=[r1, r2, …, rn]. If i ki(1-ri) -ln () then stop; the current vector k is
optimal. Otherwise proceed to Step 2.

STEP 2: Redefine the current linear program with the extra constraint i ki(1-ri) -ln (),
where the ri come from Step 1. Clearly, this cuts out the current solution vector k, which
is now infeasible. Solve the linear program and obtain a new solution vector and replace
k with this vector. Then go to Step 1.

3.4 A Numerical Example

To illustrate the approach, we present the system pictured in the figure below which was
motivated by a radar software system discussed in [SR84].

Figure 1: A Modular Software System

Suppose that a value of 0.95 is specified for R0 and a value of 0.05 for . The reliability
RS for this system derived using the procedure in Section 2 yields

321321321

321
321 016.0)4.01(08.0)4.01)(4.01)(8.01(

008.0
),,(

rrrrrrrrr

rrr
rrrRS

Note that in general [7] requires the use of a system capable of symbolic algebra (such as
Maple® or Mathematica®) for nontrivial problems. The constraint RS(r) 0.95 for the
inner-stage problem yields the following after some algebraic manipulation:

0.8r1+ 0.4r2 + 0.4r3 - 0.24r1r2 - 0.32r1r3 - 0.16r2r3 + [0.112+(0.008/0.95)]r1r2r3 1.

We thus minimize k1(1-r1)+ k2(1-r2)+ k3(1-r3) subject to the above constraint and the
restriction that r1, r2, r3 [0,1]. The algorithm converged to the optimum solution k =
[2564.6, 857.2, 288.8]. Rounding up, we would thus test 2,565 random inputs on the
first module, 858 on the second, and 289 on the third, and the system would be accepted
as reliable as long as we observe no failures from these tests.

1 2 3 S

31=0.4

p
SS=1.0

p
3S=0.2p

12
p

23 =0.2

p
33=0.4

p
22=0.4p11=0.8

p
21=0.4

=0.2

p

73

4 Conclusions

This paper extends the idea of optimum, system-based component testing from the
general domain to software reliability evaluation. This is done in the context of a
specific Markov model for software reliability. A model and procedure are described for
finding the minimum number of test cases required for the different modules of a
software system while ensuring that there is no more than some small prespecified
probability of accepting a system whose reliability is below a prescribed lower bound. It
is worth mentioning that if the cost of testing were different from one module to the
other, this would be easy to incorporate into our solution procedure. The only change
would be in the objective function of the linear program, which would now be iciki

instead of iki where ci is the test cost for module i. There are numerous opportunities
for future work such as more extensive testing of this procedure on large-scale software,
incorporation of Type 1 error bounds, evaluation of other possible software reliability
models, and the use of other testing regimens.

Bibliography

[Al92] Altinel, I.K.: “The Design of Optimum Component Test Plans in the Demonstration
of a Series System Reliability,” Computational Statistics and Data Analysis, 14,
1992, pp. 281-292.

[Al94] Altinel, I.K.: “The Design of Optimum Component Test Plans in the Demonstration
of System Reliability,” European Journal of Operations Research, 78, 1994, pp. 97-
115.

[AO97] Altinel, I.K.; Ozekici, S.: “A Dynamic Model for Component Testing,” Naval

Research Logistics, 44, 1997, pp. 187-197.

[AO98] Altinel, I.K.; Ozekici, S.: “Optimum Component Test Plans for Systems with
Dependent Components,” European Journal of Operations Research, 111, 1998, pp.
175-186.

[BP75] Barlow, R.E.; Proschan, F.: Statistical Theory of Reliability and Life Testing, New
York: Holt, Rinehart and Winston, 1975.

[Ch80] Cheung, R. C.: “A User-Oriented Software Reliability Model,” IEEE Transactions

on Software Engineering, SE-6, 1980, pp. 118-125.

[Ci75] Cinlar, E.: Introduction to Stochastic Processes, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1975.

[Ea91] Easterling, R.G.; Mazumdar, M.; Spencer, F.W.; Diegert, K.V.: "System Based
Component Test Plans and Operating Characteristics: Binomial Data,"
Technometrics, 33, 1992, pp. 287-298.

[Fr98] Frankl, P.G.; Hamlet, R.G.; Littlewood B.; Strigini, L.: "Evaluating Testing
Methods by Delivered Reliability," IEEE Transactions on Software Engineering, 24,
1998, pp. 586-601.

74

[Ha74] Gal, S.: "Optimal Test Design for Reliability Demonstration," Operations

Research, 22, 1974, pp. 1236-1242.

[He88] Hetzel, W.C.: Complete Guide to Software Testing, QED Information Sciences, Inc.,
Wellesley, MA, 1988.

[JC99] Jin, T.; Coit, D.: "Allocation of Test Units to Minimize System Reliability
Estimation Variability," Rutgers University Industrial Engineering Department,
Working Paper 99-122, 1999.

[KMH99] Kuball, S.; May, J.; Hughes, G.: "Building a System Failure Rate Estimator by
Identifying Component Failure Rates," Proceedings of the Tenth International

Symposium on Software Reliability Engineering, 1999, pp. 32-41.

[Li75] Littlewood, B.: "A Reliability Model for Systems with Markov Structure," Journal

of the Royal Statistical Society, Series C (Applied Statistics), 24, 1975, pp. 172-177.

[MSS74] Mann, N.R.; Schafer, R.E.; Singpurwalla, N.D.:, Methods for Statistical Analysis

and Life Data, New York: John Wiley, 1974.

[Ma77] Mazumdar, M.: "An Optimum Procedure for Component Testing in the
Demonstration of Series System Reliability," IEEE Transactions on Reliability, R-

26, 1977, pp. 342-345.

[Ma80] Mazumdar, M.: "An Optimum Component Testing Procedure for a Series System
with Redundant Subsystems, Technometrics, 22, 1980, pp. 23-27.

[MR00] Mazumdar, M.; Rajgopal, J.: “Minimum Cost Test Plans for a Series System with
Imperfect Interfaces," in Perspectives in Statistical Science, (Basu, A.K., Ghosh,
J.K., Sen, P.K. and Sinha, B.K., Eds.), Oxford University Press, New Delhi, 2000.

[MLW95] Meyer, J. F.; Littlewood, B.; Wright, D. R.:"Dependability of Modular Software in a
Multiuser Operational Environment," Proceedings of the Sixth International

Symposium on Software Reliability Engineering, 1995, pp. 170-179.

[Mi87] MIL-HDBK-781: Washington: Department of the Navy, Space and Naval Warfare
Systems Command, Washington DC 20363, July 14, 1987.

[MIO90] Musa, J. D.; Iannino A.; Okumoto, K.: Software Reliability, McGraw-Hill
Publishing Co., N.Y., 1990.

[PMM93] Poore, J. H.; Mills, H. D.; Mutchler, D.:“Planning and Certifying Software Systems
Reliability,” IEEE Software, 1993, pp. 88-99.

[Ra98] Raghavachari, M.: “A Note on Optimal Component Test Plans for Series System
Reliability With Exponential Failure Times,” Technometrics, 40, 1998, pp. 345-347.

[RM98] Rajgopal, J.; Mazumdar, M.: "A Type-II Censored, Log Test-Time Based
Component Testing Procedure for a Parallel System," IEEE Transactions on

Reliability, 37, 1988, pp. 406-412.

75

[RM95] Rajgopal, J.; Mazumdar, M.: "Designing Component Test Plans for Series System
Reliability via Mathematical Programming", Technometrics, 37, 1995, pp. 195-212.

[RM96] Rajgopal, J.; Mazumdar, M.: “A System Based Component Test Plan for a Series
System, with Type-II Censoring,” IEEE Transactions on Reliability, 45(3), 1996, pp.
375-378.

[RM97] Rajgopal, J.; Mazumdar, M.: “Minimum Cost Component Test Plans for
Demonstrating Reliability of a Parallel System,” Naval Research Logistics, 44,
1997, pp. 401-418,.

[RM02] Rajgopal, J.; Mazumdar, M.:" Modular Operational Test Plans for Inferences on
Software Reliability Based on a Markov Model," IEEE Transactions on Software

Engineering, 28(4), 2002, pp. 358-363.

[RMM99] Rajgopal, J.; Mazumdar, M.; Majety, S.V.: "Optimum Combined Test Plans for
Systems and Components," IIE Transactions, 31(6), 1999, pp. 481-490.

[Si88] Siegrist, K.: "Reliability of Systems with Markov Transfer of Control. IEEE

Transactions on Software Engineering, 14, 1988, pp. 1049-1053.

[SS99] Smidts and D. Sova, "An Architectural Model for Software Reliability
Quantification: Sources of Data," Reliability Engineering and System Safety, 64,
1999, pp. 279-290.

[SR84] Soistman, E.C.; Ragsdale, K.B.: Combined Hardware/Software Reliability
Prediction Methodology. Rome Air Development Center Contract Report OR-18-
173, II,, 1984.

[VS02] Vellaisamy, P.; Sankar, S.: "Two-Stage Component Test Plans for Testing the
Reliability of a Series System," Naval Research Logistics, 49(1), 2002, pp. 95-116.

[YM86] Yan, J.H.; Mazumdar, M.: "A Comparison of Several Component Testing Plans for
a Series System,” IEEE Transactions on Reliability, R-35, 1986, pp. 437-443.

[YM87a] Yan, J.H.; Mazumdar, M.: "A Component Testing Plan for a Parallel System with
Type II Censoring,” IEEE Transactions on Reliability, R-36, 1987, pp. 425-428.

[YM87b] Yan, J.H.; Mazumdar, M.: "A Comparison of Several Component Testing Plans for
a Parallel System," IEEE Transactions on Reliability, R-36, 1987, pp. 419-424.

76

