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Abstract: Protecting computational resources and digital information against unau-
thorized access is one of the fundamental security requirements in modern computer
systems. Usage control addresses the control of computational resources after access
has been granted. Despite its fundamental importance, no systematic methods exist
to implement formal usage control specifications. This paper presents a model driven
approach to solve this problem based on graph transformation. Using the precise se-
mantics of graph transformation, access control models and policies can be formally
analyzed in an early phase. The existing solutions on automated verification and ef-
ficient implementation of graph transformation show that this approach is suitable to
address security concerns throughout the overall software development process.

1 Introduction and Motivation

Protecting computational resources and digital information against unauthorized access
is one of the fundamental security requirements in modern computer systems. Access
control models provide a formal foundation for expressing access control rules that specify
which subjects (e.g., persons) are authorized to perform a specific operation (e.g., read or
write) on a certain object (e.g., a computational resource). A set of access control rules
intended to protect a specific system is called an access control policy. An access decision
is the process of evaluating an access control policy to decide whether a given subject is
authorized to perform a given operation on a given object.

Access decisions are typically made once for a request, and in case of a positive autho-
rization decision, no ongoing control of the resource usage is performed. Nowadays, as
digital information is exchanged in distributed computer systems, there is an increasing
interest in controlling access beyond the initial access decision, which is addressed by the
proposed usage control model (UCON) [PS04].

As in existing access control models, UCON utilizes attributes for access decisions that
characterize subject and object properties. Addidionally, the main innovations of UCON
are (i) mutable attributes and (ii) obligations. Mutable attributes can change their values as
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a result of access decisions or other not directly influenceable factors. As a consequence,
authorizations can become invalid during an ongoing access, which requires the access
decisions to be reevaluated every time an attribute changes. As an example consider poli-
cies that require the reduction of an account balance based on resource usage. Obligations
specify mandatory tasks to be performed by a subject before (pre-obligation) or during
(on-obligation) resource usage. While on-obligations have to be evaluated continuously
during resource usage, pre-obligations require a “history function” to check if the manda-
tory activities where previously performed. For example, medical personnel must sign a
privacy policy before reading patient records.

Most access control models (including UCON as defined in [PS04]) do not explicitly sup-
port access decisions based on structural relational dependencies between objects and sub-
jects. Although such dependencies can be expressed by arbitrary valued attributes, making
them explicit often facilitates the specification and implementation of access control poli-
cies. Consider, for example, a social network scenario where access decisions are mainly
based on friendship relations. Expressing this as an attribute requires every user to main-
tain an attribute (e.g. a list) that stores the names (i.e. unique identifiers) of all friends,
which has to be kept consistent. In this case, encoding “friendship” as a structural relation
(e.g., as an association) can lead to simpler and more readable access control policies.

Mutable attributes, obligations and explicit structural constraints impose new requirements
concerning the formalism for specifying and the techniques for implementing such sys-
tems. The formalism should capture the combination of temporal aspects introduced by
the obligations as well as structural relation. The need for a continuous evaluation of at-
tributes and structural constraints combined with temporal constraints requires non-trivial
run-time monitoring techniques.

As a consequence, deploying access control subsystems in real-world applications requires
a systematic approach to realize systems that behave as expected. From an end-user per-
spective, the following basic requirements can be identified:
Formal model of the access control policy. To faithfully capture and analyze access
control policies, a theoretical framework is needed that (i) provides a set of high-level con-
cepts to specify a policy and (ii) is amenable to formal analyzing and verifying desired
properties.
Systematic implementation. In practical applications, the security of usage control sys-
tem does not only depend on the correctness of the policy, but also on its correct imple-
mentation. To implement a policy, the high-level specification has to be translated into an
executable implementation. The more systematic this translation, the easier it is to ensure
that the properties proven for the policy model also hold for the implementation.
Seamless integration. As systems are typically not built from scratch, it must be possible
to integrate access control modules into legacy systems. To this end, it must be possible to
tailor the implementation to the needs of the system.
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2 Related Work

Several formal languages [Mar07, PHB06] have been introduced to express UCON poli-
cies with temporal logic or process algebra. These approaches focus on the specification
of the control flow (i.e., the sequence of actions required to gain access) and do not address
complex structural constraints. On the other hand, there exist different implementations to
enforce usage control [GNC10, WPH11]. Most of these approaches focus on a specific ap-
plication domain such as service-oriented architectures or assume specific infrastructures.
Other more general approaches offer implementations of access control decision modules
[NPDG11, KZB+08], which can handle policies written in a specific language, but are dif-
ficult to integrate into legacy systems as they cannot be easily adopted. Although [KP12]
investigates how to systematically translate high-level policy specifications to implemen-
tation specific policies, their implementation is based on a static policy decision module
and requires a manual implementation of modules for managing operations and attributes.
Complex structural constraints are also not supported.

3 Sketch of the Solution

I propose a model-driven approach based on graph transformation, which is a rule-based
description for the manipulation of graph structures. Based on the precise semantics of
graph transformation, access control models and policies can be formally analyzed in an
early phase. The existing solutions on automated verification and on translation of graph
transformation specifications into efficient implementations show that this approach is suit-
able to address security concerns throughout the overall software development process.
Nevertheless, there are still open challenges regarding UCON. Existing approaches based
on temporal logic or process algebra are suitable for expressing temporal constraints but
lack support for expressing structural constraints. The situation for a graph transformation
based approach is exactly the opposite: structural constraints can be easily expressed and
verified, but temporal constraints are difficult to handle as graph transformation does not
offer an explicit mechanism for the control flow. As none of the approaches is necessarily
superior, I propose to investigate how to combine the strengths of both approaches. This
leads to several challenges regarding the formalism as well as its efficient implementation.

3.1 Expressing Access Control Policies with Graph Transformation

The general viability of graph transformation to express and analyze access control models
and policies is illustrated in [KMPP02]. The approach demonstrates that role based access
control (RBAC) [SCFY96] with separation of duty constraints, which prohibit assigning
two particular roles to the same subject, can be expressed by graph transformation. The
basic idea is to model the system state by a graph called a system model and state changes
by applying graph transformation rules to the system model. A graph transformation rule
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consists of three graphs called the left-hand side (LHS), the right-hand side (RHS), and the
negative application condition (NAC). The LHS together with a NAC defines the applica-
tion condition of a rule. A rule is applied to the system model by (i) finding a match (i.e.,
a structural identical part) of the pattern described by the LHS, (ii) checking the negative
application condition (which prohibits the presence of certain structures) and (iii) replac-
ing the match in the system model by the RHS. Separation of duty constraints are mapped
to graph constraints which is a graph that specifies a forbidden pattern. A system model
is said to be in an allowed state if it does not contain a forbidden pattern. By proving that
none of the rules can transform an allowed state into a forbidden one, it can be guaranteed
that the system never evolves into a forbidden state, provided that the initial system model
was an allowed state. Such a static analysis can be performed in an automated fashion.
Moreover, the rules can be adopted automatically by adding NACs that prevent rules to be
applied for exactly those situations that would lead to a forbidden system model state.

This powerful constructive approach is well understood for structural patterns [HW95]. As
UCON strongly relies on non-structural constraints (e.g., constraints on integers or strings)
it has to be investigated how the approach can be extended to also handle non-structural
constraints. From a theoretical point of view, non-structural constraints can be treated as
invariants and proven inductively. However, in general applications, such invariants are
hard to check automatically. Based on the rule based character and explicit treatment of
NACs, graph transformation might be feasible for such an automated analysis. Inspired by
the treatment of non-structural constraints [AVS12], I consider an approach that can verify
structural as well as non-structural constraints as feasible.

As previously discussed, obligations require temporal constraints to express before/after
relations. The integration of temporal logic with graph transformation has been studied
in [GHK00, RS06] from a theoretical point of view. However, regarding the implementa-
tion, it is still an open topic how to efficiently realize run-time monitors that can evaluate
constraints combining structural and temporal expressions.

3.2 Implementation

Several graph transformation engines have been proposed to execute a formal graph trans-
formation specification or to check constraints in a graph. All engines have to solve a
common problem: the efficient querying of complex graph-based model structures, which
can be expressed as an NP-complete graph pattern matching problem. In general, the so-
lutions can be categorized into batch and incremental approaches. While batch algorithms
start the search for a pattern for each request from scratch, incremental approaches explic-
itly store all matches and incrementally maintain these matches when the system model
is updated. Using this approach, it is possible to obtain all matches of a pattern in con-
stant time, which makes it ideally suited for monitoring graph structures. However, this is
achieved at the expense of extra memory for maintaining the matches and additional time
in the update phase.

During my previous work, I was involved in developing heuristics for improving the run-
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time of an batch pattern matching process [VDWS12]. These techniques may be also
applied to incremental approaches to reduce the time for updates and memory consump-
tion.

Monitoring temporal constraints requires a “history function” to check if an activity was
performed in the past. As access control systems usually run for long periods, logging all
activities is not feasible. Several algorithms [BKM10, MJG+12] to efficiently maintain
such “history functions” exists, however, a combination of these approaches with incre-
mental pattern matching is still an open topic.

4 Plan of Action

I plan to implement a framework based on graph transformation for (i) modeling usage
control policies (ii) formally analyzing usage control policies and (iii) generating efficient
monitors for usage control, which requires appropriate extensions of the pattern matching
engine that is currently under development at our group [VAS12]. More specifically:

Modeling usage control policies. In a first step it has to be investigated how the usage
control model can be formalized using graph transformation. This includes how to exactly
identify the concepts that are difficult to express by graph transformation. Based on these
results, an appropriate extension to graph transformation can be developed.

Analyze and formal verify access control policies. It has to be investigated to what
extent constraints that combine structural and non-structural restrictions can be verified
statically. Moreover, it has to be investigated whether this is also possible for temporal
constraints. Constraints that cannot be statically verified have to be checked at runtime by
monitoring techniques.

Generate efficient monitors for usage control. In the first step, the pattern matching
engine currently developed at our group has to be extended to support incremental pattern
matching. In a next step, it has to be investigated how temporal aspects can be integrated.

Finally, the viability of the approach has to be evaluated based on a non-trivial case study.
Additionally, I plan to develop a benchmark to provide a basis for a performance compar-
ison with other approaches.
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[MJG+12] PatrickOâNeil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rou.
An overview of the MOP runtime verification framework. International Journal on
Software Tools for Technology Transfer, 14:249–289, 2012.

[NPDG11] R. Neisse, A. Pretschner, and V. Di Giacomo. A Trustworthy Usage Control Enforce-
ment Framework. In Proc. ARES ’11, pages 230 –235, aug. 2011.

[PHB06] A. Pretschner, M. Hilty, and D. Basin. Distributed usage control. Commun. ACM,
49(9):39–44, 2006.

[PS04] J. Park and R.S. Sandhu. The UCONABC usage control model. ACM Trans. Inf. Syst.
Secur., 7(1):128–174, 2004.
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