
Software Engineering for Software-Intensive

Cyber-Physical Systems

Ilias Gerostathopoulos, Jaroslav Keznikl, Tomas Bures, Michal Kit, Frantisek Plasil

Faculty of Mathematics and Physics

Charles University in Prague

Malostranske Namesti 25

11800 Prague, Czech Republic

{iliasg, keznikl, bures, kit, plasil}@d3s.mff.cuni.cz

Abstract: In software-intensive cyber-physical systems (siCPS) the interplay of

software control with the physical environment has a prominent role. Nowadays,

siCPS are expected to (i) effectively deal with the issues of distribution, scalability,

and environment dynamicity, (ii) control their emergent behavior, and, at the same

time, (iii) be versatile and tolerant in face of changes and threats. Although

approaches that individually meet the above requirements of siCPS already exist,

their synergy in a comprehensive software engineering framework is far from

trivial. In this paper, we pinpoint the important characteristics of engineering

siCPS in an attempt to show that they introduce distinct challenges to traditional

software engineering. We argue that this can be addressed by a synergy and

adaptation of existing models and abstractions, show our proposal towards such a

synergy, and discuss its implications.

1 Introduction

Cyber-physical systems (CPS) are systems of collaborating elements which closely

interact with their environment by sensing and actuating. Typically, CPS are

characterized by being decentralized, distributed, and heterogeneous.

With the proliferation of smart embedded and mobile devices (smart phones, intelligent

cars, etc.) and wireless networks, there is a further trend of CPS becoming large-scale

pervasive systems, which combine data from various sources to control real-world

ecosystems (e.g., intelligent traffic control, which gathers data about traffic from cars

and other sensors in a city and uses them to navigate cars, control the traffic lights, and

manage parking allocation). An important feature of these systems is that they are

adaptive in order to adjust to situations in the physical environment, and they exhibit

emergent behavior (i.e., behavior that comes about as the joint product of behaviors and

interactions of many elements of the system). These CPS are also highly dependent on

software Ð they are software-intensive systems [HRW08]. This means that software is by

far the most important and most complex constituent of modern CPS.

Continuous dependable operation of CPS is particularly important as the close

connection to the physical environment frequently renders the functionality of CPS

safety-critical (e.g., operation of the traffic lights in the intelligent traffic control). In

addition to being dependable, the software of CPS has to be able to adapt to changing

situations in the physical environment. Ideally, it should possess some self-awareness

and self-healing properties to cope with not fully anticipated situations.

1179

Along the lines above, in this paper we consider a class of CPS that are software-

intensive and, at the same time, distributed at a large scale, inherently dynamic, self-

adaptive, self-aware, exhibiting emergent behavior, and safety-critical. It is also

important to note that these CPS are targeted by on going research agendas (e.g., EU

framework Horizon 2020). We will refer to these CPS as software-intensive CPS Ð

siCPS. We argue that siCPS have a number of specifics, which prevent to fully employ

traditional software models and software engineering methods. This calls for tailored

models and software engineering abstractions that address and potentially take advantage

of the specifics of siCPS [Le08]. In fact, siCPS reach the threshold when it is disputable

whether we are still dealing with tailored traditional software engineering or whether we

are encountering a new paradigm in computing.

As the particular contribution of this paper, (i) we overview these specifics (Section 2)

and analyze how they can be addressed by a synergy and adaptation of existing software

models and software engineering abstractions (Section 3). On the basis of this, (ii) we

give a practical example of such a synergy (Section 4), namely DEECo, an ensemble-

based component system [Bu13]. Finally, based on the lessons learned with DEECo, (iii)

we discuss potential challenges stemming from the interplay of the models and

abstractions in such a synergy (Section 5).

2 Software Engineering Specifics of siCPS

The large-scale physical distribution and interconnectedness within the physical

environment makes siCPS rather specific in terms of software engineering (SE). In this

section, we overview these specifics from the perspective of SE assumptions and

opportunities.

2.1 SE Assumptions Violated in siCPS

A number of assumptions that are typically presumed in traditional SE of general-

purpose software systems (GPSS) are violated in siCPS. The assumptions build on the

fact that a lot of complexity related to networking and the environment can be

considered low-level in GPSS and abstracted away by the operating system and

middleware. Of course, even in traditional SE some key assumptions may be violated

when developing GPSS with special needs (e.g., high-availability, open-endedness).

Nevertheless, siCPS stand out by the large number of such violated assumptions.

Therefore, below we identify and discuss a number of assumptions in traditional SE of

GPSS that we deem to have a significant simplifying effect on software development but

Ð according to our experience Ð cannot be preserved in engineering siCPS:

A1 Static physical structure Ð Even though data and code are subject to mobility in

GPSS, the physical nodes where the code is running are typically stationary. In

siCPS, the physical substratum is continuously evolving, as nodes move in the

physical environment. The fundamental challenge is how to map the ever-changing

substratum to the network of computational nodes so that stringent requirements on

the desired services are always met.

1180

A2 Location obliviousness Ð The cost and profit of reaching a particular node is

typically not significantly influenced by its physical location. This independence

facilitates the creation of open-ended and dynamic distributed GPSS and is

generally considered an asset. In siCPS, locality of peer nodes is a fundamental

design constraint, since physical proximity directly affects reachability and

connectivity on one hand and functional correctness on the other.

A3 Reachability (clique connectivity) Ð GPSS typically rely on the Internet network

stack for the underlying communication protocols (Internet-based systems [Fr07]).

This means that with high probability any node can successfully establish point-to-

point communication links with any other node in the system. In siCPS there is no

such guarantee, as nodes often operate over dynamic networks lacking a permanent

infrastructure, such as mobile ad-hoc networks (MANETs). This limitation imposes

a fundamental constraint in the design of siCPS, since nodes are expected to

operate in full autonomy, even detached from their peers.

A4 Stable connections Ð In most GPSS, on top of being able to reach and connect to

remote subsystems, connections are typically considered stable. This is manifested

in the handling of communication errors in such systems: errors are considered

exceptions and have to be handled accordingly. In siCPS, errors in communication

are the rule, not the exception. Thus, they can no more be handled as exceptions.

The property of unstable connectivity has to be acknowledged and ideally be

reflected in the employed SE abstractions.

A5 Availability of global state Ð Reasoning over the global state of a distributed system

is a requirement for many applications. Although techniques exist for traditional

distributed GPSS (e.g., distributed consensus), they are not directly applicable to

siCPS because of the loose connectivity among the nodes. Also, since the local

state in siCPS evolves continuously with the physical environment, attaining global

state is generally infeasible.

A6 Marginality of real-time aspects Ð GPSS typically do not impose hard real-time

constraints on their operation and communication. When time matters (e.g.,

Internet-based video streaming applications), it is mostly because late responses

may impede system performance rather than correctness. In siCPS, the passage of

time becomes a central feature of system behavior and design, since stringent

notion of time is fundamental for measuring, predicting and controlling properties

of the physical environment.

A7 Crisp consistency Ð In traditional distributed GPSS, there is a crisp notion of data

consistency Ð the data is either consistent or not (this includes also eventual

consistency etc.). On the other hand, in siCPS, where strict distributed

synchronization becomes too expensive, such interpretation of consistency is not

desirable. Rather, in siCPS it is important to quantify and/or guarantee the degree

of (in)consistency [Al14].

A8 Controlled dynamism Ð Many GPSS are dynamic in the sense that they

dynamically adapt to changes and recover from malign states. This kind of

dynamism, though, is typically a result of actions initiated by the system itself or its

administrator. On the contrary, in siCPS, dynamism is inherent, imposed by the

1181

physical environment itself. Thus, siCPS need to detect and recover from

contingent and often unforeseen situations in their environment in a non-disruptive

way and without supervision (they have to be self-aware and autonomic).

A9 Focus on reactive behavior Ð Outputs of a GPSS are typically reactions to explicit

stimuli, such as service requests and internal/external events (e.g., computation is

initiated as a response to user input). Instead of waiting for an event, siCPS have to

operate proactively in order to react to and also perform changes based on

properties that are either sensed or predicted. Relying on simple (e.g., rule-based)

reaction patterns is insufficient, since it may lead to oscillations and instability.

A10 Stateful communication Ð GPSS usually assume stateful communication in the

communication protocols they employ. This enables effective synchronization

among distributed components. Moreover, since stable connections are assumed

(A4), errors are treated as exceptional and detected and solved via explicit error

recovery. In siCPS, stateful communication does not scale. In fact, extreme

network dynamism, typical for siCPS, may incur recurrent error recovery.

2.2 SE Opportunities in siCPS

As pointed out in Section 2.1, none of the discussed assumptions can be generally

presumed in siCPS. This makes it a non-trivial challenge to develop siCPS by applying

traditional SE methods. However, it would be wrong to perceive all specifics of siCPS as

impeding their development, since they may provide opportunities for getting around the

violated assumptions. In this perspective, it is desirable to take advantage of such siCPS

specifics instead of aiming at adapting traditional SE methods, e.g., building a complex

middleware to provide a traditional programming model.

To pinpoint this idea, we have compiled a list of specifics, which we believe can be

advantageously exploited in addressing the violated assumptions. Although not

complete, we believe this list gives an important research direction for siCPS design

methods:

O1 Physical mobility Ð Devices used in siCPS span from stationary to portable and

mobile ones. Computational nodes deployed on mobile devices can carry

information while moving. This contributes to the overall connectedness of the

system, as a mobile node covers a much bigger physical area while moving, and

can effectively spread the information in the area and connect otherwise

disconnected network partitions. For example, a vehicle moving along a street

segment can aggregate temperature data measured from sensors positioned in the

tarmac along its route (which themselves cannot reach any external network), and

publish the data on a remote server, or spread it to other vehicles in the vicinity.

O2 Physical locality Ð The fact that devices in siCPS are physically close provides a

natural way to partition the system into subsystems based on geographical location.

This is, again, special to siCPS; general-purpose systems are rarely partitioned

based on physical location, because of the otherwise useful assumption on location

obliviousness. Having such a natural partitioning can be easily exploited to achieve

high levels of scalability.

1182

O3 Location-dependency of data Ð Data in siCPS are often location-dependent,

meaning that the value of certain measureable system attributes depend on the

physical location of the sensors that provide the raw data. This dependency, in

combination with the physical proximity of sensor nodes, allows for data sharing

and reuse among nearby nodes and has the potential to contribute to system

robustness (in face of sensor failures, etc.).

O4 Physical laws in data evolution Ð Since siCPS operation typically involves sensing

physical-environment properties (e.g., position, battery capacity, temperature), one

can take advantage of the physical laws that govern the evolution of the values of

such properties to estimate/predict their real values. In effect, a value that is slightly

stale can still be used, if certain safety bounds on its evolution in time can be

established [Al14]. As an example, consider a wireless-based adaptive cruise

control system: a stale value of the front vehicleÕs position can still be used by the

rear vehicleÕs cruise control, since it is possible to estimate the actual position

based on the maximum and minimum vehicle acceleration, typically provided by

car manufacturers.

3 Approaches that Partially Reflect the Specifics of siCPS

There are no comprehensive methods or supporting models that address the specifics of

siCPS in their entirety, as far as our research has indicated. Nevertheless, our experience

shows that some SE approaches target these specifics at least partially. In this section we

provide a short overview of such approaches (summarized in Table 1), with the goal to

later show how they can be combined in a comprehensive framework.

Agent-based systems. In order to deal with dynamicity in siCPS, one can be inspired by

autonomous agents. This abstraction brings conceptual autonomy to the loosely coupled

system parts. Each part is designed to operate with a partial view of the whole system,

beneficial when the global state is not available (A5). For example, in the Belief-Desire-

Intention (BDI) architectural model [RG95], agents maintain a belief about the rest of the

system to guide their autonomous decisions. In addition, multi-agent systems [SL08]

feature the concepts of agent roles and groups, which bring the autonomy to architecture

organization and allow building self-organized systems that do not rely on the

assumptions of controlled dynamism (A8) and static physical structure (A1). An

important problem is that industrial agent implementations do not translate the

conceptual autonomy and the other useful agent notions (goals, intentions, roles, groups)

into proper software engineering constructs that satisfy real-life requirements of

autonomous behavior. In particular, they still rely on the assumption of relatively stable

bindings between the agents (A4), which is not plausible in most siCPS.

Ensemble-based systems. Another important specific of siCPS is the opportunistic

fashion of operation in a dynamic environment at a massive scale. To this end, the

paradigm of attribute-based communication in ensemble-based systems has recently

gained attention [De13]. Here, the target of communication is determined according to

the values of its attributes rather than by a direct identifier. This paradigm can be

exploited to model a best-effort, dynamic coordination of components, effectively

dealing with cases when the assumptions of static physical structure (A1), reachability

1183

(A3), and controlled dynamism (A8) are violated. However, the application of this

paradigm typically relies on explicit and crisp handling of data consistency (A7).

MANET and gossip protocols. At the network layer, extensive research in the areas of

mobile ad-hoc networks (MANETs) has resulted into a number of routing protocols (see

[NPD12] for a comprehensive review), which are able to operate over infrastructure-less

dynamic networks. In MANETs, each node acts both as a host and as a router. Node

mobility results in dynamically changing network topology. As such, MANET protocols

lift the assumption of static physical structure (A1) and work even when the reachability

assumption (A3) is violated, thus becoming very relevant to siCPS. Moreover, MANET

protocols lift the assumption of location obliviousness (A2), as they enable position-

based packet routing [MWH01] (sometimes called geocast routing). A promising

synergy for siCPS is to combine geocast protocols at the network layer with gossip

protocols at the data dissemination layer, effectively enabling proactive, opportunistic

communication (A9) in MANETs [Fr07]. Integration of gossiping brings a remedy in

cases of unstable connections (A4) and inherent dynamism (A8).

Real-time and control systems. As to strong interaction with physical environment,

many techniques already exist in the domain of embedded real-time systems [Bu05] and

software control systems [Pa12]. Such techniques promote proactive behavior (A9) and

focus on real-time attributes (A6). They employ control feedback loops, which

continuously maintain the operational normalcy (stability) of a system by adequate

scheduling of periodic tasks. These techniques stand as a promising way to handle data

outdatedness in absence of crisp consistency interpretation (A7) in siCPS, by effectively

setting the bounds that define the range of normal system operation. Communication in

embedded real-time systems is also typically stateless (A10); consider, e.g., data

publishing on CAN bus. Nevertheless, real-time analysis and design typically rely on the

assumption of predictable environment, which itself relies on controlled dynamism (A8)

and stable connections (A4) assumptions.

Assumption: A
g

en
t-

b
as

ed

sy
st

em
s

E
n

se
m

b
le

-b
as

ed

sy
st

em
s

M
A

N
E

T
 &

g
o

ss
ip

 p
ro

to
co

ls

R
ea

l-
ti

m
e

&

co
n

tr
o

l
sy

st
em

s

 D
E

E
C

o

A1 Static physical structure + + +

A2 Location obliviousness + + +

A3 Reachability + + +

A4 Stable connections - + - +

A5 Availability of global state + + +

A6 Marginality of real-time aspects + (+)

A7 Crisp consistency - + (+)

A8 Controlled dynamism + + + - +

A9 Focus on reactive behavior + + +

A10 Stateful communication + +

Table 1: Assumptions from Section 3 and DEECo: lifting Ò+Ó, partially lifting Ò(+)Ó, and
specific reliance upon Ò-Ó.

1184

4 DEECo: A Synergy

In order to evaluate the potential for a synergy of the approaches discussed in Section 3,

as a particular example we present DEECo [Bu13, Ke12] Ð an Ensemble Based

Component System that we have proposed specifically for architecting siCPS.

In DEECo, we take the approach of adopting component-based development (CBD) as

the basic substratum on top of which we embed selected SE approaches from Section 3.

CBD employs reuse, encapsulation and separation of concerns in order to manage the

complexity of building and maintaining large applications [CL02]. In CBD, and thus

also in DEECo, systems are built around well-defined architectures based on a

composition of components, which themselves are seen as encapsulated, reusable, and

substitutable entities.

In the remainder of this section, we describe the individual constituents of the DEECo

component model with focus on how we approached the synergy. We refer the interested

reader to [Bu13] for a detailed technical description of DEECo and for the formal

semantics of DEECo. Also, a Java implementation is available
1
.

4.1 Component

Adopting the ideas of agent-based and self-adaptive systems, the concept of component

in DEECo is centered on the features of autonomy, self-adaptation, and belief (A5).

Specifically, a component is an autonomous, encapsulated, and composable software

entity constituting its own state and behavior.

As is typical for software agents, component state is expressed in terms of knowledge

(e.g., line 3 in Figure 1). Note that in DEECo, all the data accessible to a component is

referred to as knowledge. In alignment with the BDI architectural model, knowledge of a

component comprises both the private component state (e.g., !"#$%&"') and the

componentÕs belief about the rest of the system (e.g., ("')*%+,-"*#".*#*/0). In slight

difference from traditional BDI approach, rather than being updated explicitly by the

component itself, the belief is updated automatically (by the execution environment,

Section 4.3) as a result of component composition (Section 4.2). This decision further

stresses the componentÕs autonomy and separation of concerns.

The behavior of a component is represented by a set of processes (e.g., lines 4-7 in

Figure 1). Following the notions of control systems and self-adaptive systems, a process

is essentially a feedback loop, continuously and proactively maintaining the operational

normalcy of a component (A9). At the same time, each process executes concurrently,

independently of the other processes, i.e. it atomically reads its inputs, executes its body,

and atomically writes its outputs. A process operates strictly upon the knowledge of the

corresponding component; it may thus interact with other components only through the

(externally updated) belief (A4, as there is no ÒdirectÓ communication among

components).

1
 https://github.com/d3scomp/JDEECo

1185

4.2 Component Composition

For component composition we adopt the approach of ensemble-based systems and

multi-agent systems by employing autonomic self-organization of components into

component ensembles (in multi-agent systems called groups). This self-organization is

based on a declarative representation of a componentÕs membership in an ensemble,

based on the componentÕs context (A1 and A3). In order to distinguish in which

ensemble the membership is being decided upon, every ensemble has a coordinator.

Membership in an ensemble with a given coordinator is based on whether a component

is able to assume the role of a member w.r.t. the coordinator. This is expressed

technically via a membership condition, which decides whether two given components

can form a coordinator-member pair. Following the idea of attribute-based

communication, the membership condition is defined upon the attributes (i.e., knowledge

exposed for this purpose) of the components in question (e.g., line 21 in Figure 1). Note,

that the ensemble definition is generic and determines ensemble instantiation for each

group of components meeting the membership condition (w.r.t. particular coordinator).

Also, a component can be a member or coordinator of multiple ensembles at the same

time. Within an ensemble, we adopt the idea of stateless, proactive communication

employed in control systems and gossip-based systems (A9 and A10). Specifically, the

communication takes the form of stateless knowledge exchange. Its objective is to update

the belief of the components within the ensemble recurrently and proactively, based on a

given prescription (e.g., line 23 in Figure 1). This form of communication aligns well

with the proactive, cyclic execution of component processes. Note, that the statelessness

and proactivity make knowledge exchange suitable for cases of faulty connections (A4)

and inherent dynamism (A8).

12 !"#$"%&%'(3$4*!#$55

62)%"*+&,-&75

82 !"#$%&"'95("')*%+,-"*#".*#*/095(#"%952225

:2 $."!&//(!;<(=/$>#"%?0%(!"#$%&"'950%(("')*%+,-"*#".*#*/095"1'((#"%@75

A2 21%!'0"%75

B2 (#"%5!5!"#$%&'()*%%&$2+",-#.&()*%?!"#$%&"'95("')*%+,-"*#".*#*/0@5

C2 /!3&,1+0%-75$&.0",0!?5/000,15@5

D2 2225

E2 5

1F2 !"#$"%&%'(>"')*%+G;/555

112)%"*+&,-&75

162 (;H*/*;%95"-"*#".*#*/0952225

182 $."!&//(<;%*/;',-"*#".*#*/0?"1'("-"*#".*#*/0@75

1:2 I5

1A2 5

1B2 JJ5=(&"/$H53$4*!#$KH5.$#*$L5".;=/5"-"*#".*#*/05;L5"##5>"')*%+G;/H5"#;%+5/4$5';=/$5

1C2 &%/+&(M(&"/$,-"*#".*#*/0N%L;'<"/*;%75

1D2 !"".,0%5'".753$4*!#$5

1E2 #&.75>"')*%+G;/5

6F2 #&./30$75

612 5"5$-$%/5#5!"".,0%5'".2!"#$%&"'75231.*%+&?#&.2(;H*/*;%95$-$%/2(;H*/*;%@5<5OPQRSTGU5

662)%"*+&,-&(&6!35%-&75

682 !"".,0%5'".2("')*%+,-"*#".*#*/05!5#&./2$&2#+&?#&.2"-"*#".*#*/0@5

6:2 /!3&,1+0%-75$&.0",0!?56FFF<H5@55

Figure 1: Example of a DEECo component and ensemble definition in a DSL.

1186

4.3 Execution Environment

The main task of the DEECo execution environment is performing knowledge exchange

in a distributed setting. For this purpose, we combine the protocols for geographical

routing in MANETs with gossip protocols so as to enable location-aware communication

of belief (A2) in mobile ad-hoc environments (A1 and A3) with unstable connections

and inherent dynamism (A4 and A8). Specifically, the execution environment

proactively advertises the knowledge of a (source) component to all the other

potentially-interested (target) components via a geocast protocol. Then, in case the

source and target components meet the membership condition of an ensemble, the

execution environment updates the belief of the target component according to the

knowledge exchange prescription of the ensemble.

Adopting the approach of embedded real-time systems, the execution environment is

also responsible for execution of component processes and activities related to

knowledge exchange in a (soft) real-time fashion (A6 and partially A7), featuring both

periodic and event-based scheduling.

5 Discussion of Implications

Engineering siCPS with the basic building blocks (autonomous components, ensembles)

offered by the proposed synergy in DEECo offers several advantages, but also poses new

challenges. As seen in Table 1, DEECo addresses all of the identified challenges of A1-

A10, which we deem a step forward. Certainly, there could be other assumptions, e.g.,

predictability of underlying platform and global synchronization of beliefs, which still

remain to be addressed. Building on our experience in applying the ensemble-based

component system paradigm to two real-life case studies, namely the intelligent vehicle

navigation [Bu13] and the firefighter tactical coordination [Bu14], this section discusses

the implications of merging different methods.

Exploitation of the opportunities. A close synergy of geocast MANET protocols and

attribute-based communication, and an integration of membership evaluation and routing

in particular, allows exploiting new opportunities based on physical locality (O2) and

location-dependency of data (O3) (i.e., membership can effectively exploit physical

location). Further, the proactive gossip-based advertisement of belief enables exploiting

the physical mobility (O1). The cyclic and real-time nature of component processes also

facilitates use of models that estimate/predict the safety bounds of knowledge evolution

[Al14]. This is done by exploiting the physical laws that govern the evolution of certain

knowledge values (O4).

Components as autonomous agents. Borrowing the ideas of belief and autonomous

operation from agent-based systems and coupling them with the encapsulation and

deployment facilities of component-based systems results into a dependable platform for

robust component-based agent implementations. The robustness is achieved by grafting

such ÒagentsÓ with implicit component binding and communication. Contrary to other

agent-based frameworks, the autonomous components thus do not communicate directly,

e.g., via sending messages; instead, component knowledge serves as a communication

medium. A componentÕs belief, i.e., the part of its knowledge that reflects knowledge of

1187

other components, plays a role of ÒsmartÓ sensors and actuators. For instance, a belief

could represent a ÒsmartÓ sensor providing Òpositions of up to 10 closest parking lots,

which are availableÓ. All in all, a componentÕs belief is updated externally Ð via

knowledge exchange handled by execution environment.

Stateless interaction. Adopting the idea of attribute-based communication in component

interaction has many advantages when considering that components in siCPS recurrently

appear and disappear and form dynamic groups of best-effort coordination. At the same

time, having no means of direct component binding and addressing makes it challenging

Ð but certainly not impossible, as we have observed Ð to realize some forms of protocol-

based communication. This is essential in certain interactions, e.g., reserving of a

parking place by a specific vehicle at a specific parking lot. Stateless interaction dictates

knowledge design in a way that it is always possible to reconstruct the state of the

session from the knowledge, e.g. by assigning each parking reservation request a

globally unique identifier (GUID), so that a reservation response could refer to it.

Embedded feedback loops. When designing siCPS, special means have to be provided

for feedback loops. By building on the ideas of control and real-time systems, DEECo

embeds the feedback loop operation both at design time and runtime. Systems based on

feedback loops typically require a description of operational normalcy, usually in terms

of periodic scheduling of tasks. However, the adoption of this idea needs a paradigm

change in the design process, to explicitly focus on the normalcy that each process is

expected to maintain as opposed to goals to be achieved [Ke13].

Decentralized operation. Coupling best-effort data dissemination of MANET protocols

with attribute-based communication and decentralized system operation can result in

situations when different parties act based on inconsistent local beliefs Ð so-called split-

brain scenarios. For instance, a component can believe itself to be a member of an

ensemble, while the ensembleÕs coordinator does not recognize this situation (or vice-

versa). This behavior is in a way inevitable, however it has to be accounted for in the

design, e.g., by making components only weakly synchronized or by relying on an

underlying network or physical environment to provide some guarantees (thus making

these split-brain situations temporary with an upper bound for duration).

Ensembles as component connectors. The duality between components and ensembles

resembles the classical problem of components and connectors Ð especially whether

connectors are only special types of components and what functionality should be in

connectors and what functionality should be in components. In particular, this holds

when connectors comprise complex adaptation logic. In DEECo though, this problem is

partially remedied by distinguishing that (i) although stateful, a component has a direct

access solely to its local knowledge, (ii) an ensemble embodies only stateless exchange

of knowledge among its member components. This is a strong conceptual difference

pushing ensembles into the role of simple connectors and components into the role of

entities performing the actual computation and data aggregation.

Parallel process execution. The physical world is inherently concurrent. Software

engineering abstractions for engineering siCPS have to deal with concurrency by

allowing execution of processes in parallel. This leads to challenges with regard to the

handling of shared resources, which, if not dealt with, can result into race conditions,

1188

deadlocks, etc., effectively jeopardizing the safety of the system. Similar to actor-based

design, where the exchanged data are considered immutable, DEECo avoids introducing

any dedicated synchronization constructs. Rather, it employs the simple semantics of

atomically operating over knowledge while applying the rule of single-writer for each

knowledge field. The downside of the approach is that it sometimes leads to the

necessity of having a special ÒaggregationÓ process in a component, which merges data

coming from different sources (similar situation happens in actor-based approaches as

well). However, this seems a reasonable price to pay for preventing race conditions by

design.

6 Related Work

Since CPS is an emerging class of systems, there are multiple research efforts trying to

shed light on the state of the art and the challenges ahead [KK12, Sh09]. Unfor- tunately,

not as many solutions are proposed, especially when considering guidance via proper

software engineering abstractions specific to CPS. Our work highlights the problems in

CPS software engineering, while, at the same time, we propose solutions to these

problems and evaluate their implications. In the same spirit, in [DLS12], Derler, Lee and

Vincentelli focus on the challenges with modeling CPS caused by the intrinsic

heterogeneity, concurrency, and sensitivity of such systems. Backed up by a hybrid-

system-modeling environment called Ptolemy II, their approach emphasizes determinism

and predictability in modeling and simulations of safety-critical CPS. In [Le08], Lee

reviews the requirements/specifics of CPS and identifies the absence of timing behavior

in core abstractions in computing as the main impediment in developing future CPS. In

our work, we focus on the subset of CPS that is software-intensive, where structural

models and systematic engineering methods become more relevant.

Our aim at a synergy can be compared to frameworks proposed for self-adaptive/self-

organizing systems, e.g., [DFR10], and autonomic agent-based systems, e.g., [LPH04].

In [DFR10], Di Marzo Serugendo, Fitzgerald and Romanovsky propose a synergy of

self-organization, agent-inspired autonomy and rule-based reasoning into a service-

oriented architectural framework. Their approach is centered around the concepts of self-

describing components, component metadata and interaction policies executed at

runtime, resembling the concepts of components, component knowledge and ensembles,

respectively. In [LPH04], Liu, Parashar and Hariri present a component-based

framework for autonomic agents building on agent-based middleware infrastructure. The

difference from these and other similar approaches lies in the fact that we deal with the

specifics of siCPS, where unreliable communication and extreme dynamism loom large.

7 Conclusion

Building software for software-intensive cyber-physical systems (siCPS) is far from

trivial. In this paper, we attempted to pinpoint the challenges and pitfalls associated with

applying traditional software engineering (SE) methods in siCPS and to show how these

challenges can be met by a comprehensive synergy and adaptation of existing SE

models, methods and abstractions. This we exemplified on the DEECo component

model. The evaluation of the proposed synergy in DEECo outlines a number of

1189

interesting research topics in terms of addressed and waiting-to-be-addressed issues,

such as design based on maintaining operational normalcy.

References

[Al14] Al Ali, R. et al.: Architecture Adaptation Based on Belief Inaccuracy Estimation. In:

Proc. WICSAÕ14, Sydney, Australia, 2014. IEEE, 2014; pp. 87-90.

[Bu05] Buttazzo, G. et al.: Soft Real-Time Systems: Predictability vs. Efficiency. Springer,

2005.

[Bu13] Bures, T. et al.: DEECo: An Ensemble-based Component System. In: Proc. CBSEÕ13,

Vancouver, Canada, 2013. ACM, 2013; pp. 81-90.

[Bu14] Bures, T. et al.: Adaptation in Cyber-Physical Systems: from System Goals to

Architecture Configurations. Tech. Rep. D3S-TR-2014-01, Charles University.

[CL02] Crnkovic, I.; Larsson, M.: Building Reliable Component-Based Software Systems.

Artech House, Inc., Norwood, MA, USA, 2002.

[De13] De Nicola, R. et al.: A Language- Based Approach to Autonomic Computing. In:

Formal Methods for Components and Objects, Springer, 2013; pp. 25-48.

[DFR10] Di Marzo Serugendo, G.; Fitzgerald, J.; Romanovsky, A.: Meta-Self: An Architecture

and a Development Method for Dependable Self-* Systems. In: Proc. 25th ACM

Symp. on Applied Computing, Sierre, Switzerland, 2010. ACM, 2010; pp. 457Ð461.

[DLS12] Derler, P.; Lee, E. A.; Sangiovanni-Vincentelli, A.: Modeling Cyber-Physical Systems.

In: Proceedings of the IEEE, 100(1):13-28, Jan 2012.

[Fr07] Friedman, R. et al.: Gossiping on MANETs: The Beauty and the Beast. In: ACM

SIGOPS Operating Systems Review, 41:67Ð74, 2007.

[HRW08] H�lzl, M.; Rauschmayer, A.; Wirsing, M.: Software-Intensive Systems and New

Computing Paradigms. In: Engineering of Software-Intensive Systems: State of the Art

and Research Challenges, Springer-Verlag, 2008; pp. 1-44.

[Ke12] Keznikl, J. et al.: Towards Dependable Emergent Ensembles of Components: The

DEECo Component Model. In: Proc. of WICSA/ECSAÕ12. IEEE, 2012; pp. 249Ð252.

[Ke13] Keznikl, J. et al.: Design of Ensemble-based Component Systems by Invariant

Refinement. In: Proc. of CBSEÕ13, Vancouver, Canada, 2013. ACM, 2013;pp. 91-100.

[KK12] Kim, K.-D.; Kumar, P.R.: Cyber-Physical Systems: A Perspective at the Centennial.

In: Proceedings of the IEEE, 100 (Special Centennial):1287-1308, May 2012.

[Le08] Lee, E. A.: Cyber Physical Systems: Design Challenges. In: Proc. ISORCÕ08, Orlando,

Florida, USA, 2008. IEEE, 2008; pp. 363Ð369.

[LPH04] Liu, H.; Parashar, M.; Hariri, S.: A Component-Based Programming Model for

Autonomic Applications. In: Proc. ICACÕ04, New York, USA, 2004. IEEE; pp. 10-17.

[MWH01] Mauve, M.; Widmer, A.; Hartenstein, H.: A Survey on Position-based Routing in

Mobile Ad Hoc Networks. In: IEEE Network, 15(6):30-39, Nov 2001.

[NPD12] Natesapillai, K.; Palanisamy, V.; Duraiswamy, K.: A Review of Broadcasting Methods

for Mobile Ad Hoc Network. In: International Journal of Advanced Computer

Engineering, Serial Publications, New Dehli India, Sep 2012.

[Pa12] Patikirikorala, T. et al.: A Systematic Survey on the Design of Self-Adaptive Software

Systems using Control Engineering Approaches. In: 2012 ICSE Workshop on Soft.

Eng. for Self-Adaptive and Self-Managing Systems, Jun 2012. ACM; pp. 33Ð42

[RG95] Rao, A. S.; Georgeff, M. P.: BDI Agents: From Theory to Practice. In: Proc. of the 1st

Int. Conf. on Multi-Agent Systems, 1995; pp. 312Ð319.

[Sh09] Sha, L. et al.: Cyber-Physical Systems: A New Frontier. In: Machine Learning in

Cyber Trust, Springer US, 2009; pp. 3Ð13.

[SL08] Shoham, Y.; Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game- Theoretic,

and Logical Foundations. Cambridge University Press, 2008.

1190

