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Abstract: In software-intensive cyber-physical systems (siCPS) the interplay of 

software control with the physical environment has a prominent role. Nowadays, 

siCPS are expected to (i) effectively deal with the issues of distribution, scalability, 

and environment dynamicity, (ii) control their emergent behavior, and, at the same 

time, (iii) be versatile and tolerant in face of changes and threats. Although 

approaches that individually meet the above requirements of siCPS already exist, 

their synergy in a comprehensive software engineering framework is far from 

trivial. In this paper, we pinpoint the important characteristics of engineering 

siCPS in an attempt to show that they introduce distinct challenges to traditional 

software engineering. We argue that this can be addressed by a synergy and 

adaptation of existing models and abstractions, show our proposal towards such a 

synergy, and discuss its implications. 

1 Introduction 

Cyber-physical systems (CPS) are systems of collaborating elements which closely 

interact with their environment by sensing and actuating. Typically, CPS are 

characterized by being decentralized, distributed, and heterogeneous. 

With the proliferation of smart embedded and mobile devices (smart phones, intelligent 

cars, etc.) and wireless networks, there is a further trend of CPS becoming large-scale 

pervasive systems, which combine data from various sources to control real-world 

ecosystems (e.g., intelligent traffic control, which gathers data about traffic from cars 

and other sensors in a city and uses them to navigate cars, control the traffic lights, and 

manage parking allocation). An important feature of these systems is that they are 

adaptive in order to adjust to situations in the physical environment, and they exhibit 

emergent behavior (i.e., behavior that comes about as the joint product of behaviors and 

interactions of many elements of the system). These CPS are also highly dependent on 

software Ð they are software-intensive systems [HRW08]. This means that software is by 

far the most important and most complex constituent of modern CPS. 

Continuous dependable operation of CPS is particularly important as the close 

connection to the physical environment frequently renders the functionality of CPS 

safety-critical (e.g., operation of the traffic lights in the intelligent traffic control). In 

addition to being dependable, the software of CPS has to be able to adapt to changing 

situations in the physical environment. Ideally, it should possess some self-awareness 

and self-healing properties to cope with not fully anticipated situations. 
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Along the lines above, in this paper we consider a class of CPS that are software-

intensive and, at the same time, distributed at a large scale, inherently dynamic, self-

adaptive, self-aware, exhibiting emergent behavior, and safety-critical. It is also 

important to note that these CPS are targeted by on going research agendas (e.g., EU 

framework Horizon 2020). We will refer to these CPS as software-intensive CPS Ð 

siCPS. We argue that siCPS have a number of specifics, which prevent to fully employ 

traditional software models and software engineering methods. This calls for tailored 

models and software engineering abstractions that address and potentially take advantage 

of the specifics of siCPS [Le08]. In fact, siCPS reach the threshold when it is disputable 

whether we are still dealing with tailored traditional software engineering or whether we 

are encountering a new paradigm in computing. 

As the particular contribution of this paper, (i) we overview these specifics (Section 2) 

and analyze how they can be addressed by a synergy and adaptation of existing software 

models and software engineering abstractions (Section 3). On the basis of this, (ii) we 

give a practical example of such a synergy (Section 4), namely DEECo, an ensemble-

based component system [Bu13]. Finally, based on the lessons learned with DEECo, (iii) 

we discuss potential challenges stemming from the interplay of the models and 

abstractions in such a synergy (Section 5). 

2 Software Engineering Specifics of siCPS 

The large-scale physical distribution and interconnectedness within the physical 

environment makes siCPS rather specific in terms of software engineering (SE). In this 

section, we overview these specifics from the perspective of SE assumptions and 

opportunities. 

2.1 SE Assumptions Violated in siCPS 

A number of assumptions that are typically presumed in traditional SE of general-

purpose software systems (GPSS) are violated in siCPS. The assumptions build on the 

fact that a lot of complexity related to networking and the environment can be 

considered low-level in GPSS and abstracted away by the operating system and 

middleware. Of course, even in traditional SE some key assumptions may be violated 

when developing GPSS with special needs (e.g., high-availability, open-endedness). 

Nevertheless, siCPS stand out by the large number of such violated assumptions. 

Therefore, below we identify and discuss a number of assumptions in traditional SE of 

GPSS that we deem to have a significant simplifying effect on software development but 

Ð according to our experience Ð cannot be preserved in engineering siCPS: 

A1 Static physical structure Ð Even though data and code are subject to mobility in 

GPSS, the physical nodes where the code is running are typically stationary. In 

siCPS, the physical substratum is continuously evolving, as nodes move in the 

physical environment. The fundamental challenge is how to map the ever-changing 

substratum to the network of computational nodes so that stringent requirements on 

the desired services are always met. 
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A2 Location obliviousness Ð The cost and profit of reaching a particular node is 

typically not significantly influenced by its physical location. This independence 

facilitates the creation of open-ended and dynamic distributed GPSS and is 

generally considered an asset. In siCPS, locality of peer nodes is a fundamental 

design constraint, since physical proximity directly affects reachability and 

connectivity on one hand and functional correctness on the other. 

A3 Reachability (clique connectivity) Ð GPSS typically rely on the Internet network 

stack for the underlying communication protocols (Internet-based systems [Fr07]). 

This means that with high probability any node can successfully establish point-to-

point communication links with any other node in the system. In siCPS there is no 

such guarantee, as nodes often operate over dynamic networks lacking a permanent 

infrastructure, such as mobile ad-hoc networks (MANETs). This limitation imposes 

a fundamental constraint in the design of siCPS, since nodes are expected to 

operate in full autonomy, even detached from their peers. 

A4 Stable connections Ð In most GPSS, on top of being able to reach and connect to 

remote subsystems, connections are typically considered stable. This is manifested 

in the handling of communication errors in such systems: errors are considered 

exceptions and have to be handled accordingly. In siCPS, errors in communication 

are the rule, not the exception. Thus, they can no more be handled as exceptions. 

The property of unstable connectivity has to be acknowledged and ideally be 

reflected in the employed SE abstractions. 

A5 Availability of global state Ð Reasoning over the global state of a distributed system 

is a requirement for many applications. Although techniques exist for traditional 

distributed GPSS (e.g., distributed consensus), they are not directly applicable to 

siCPS because of the loose connectivity among the nodes. Also, since the local 

state in siCPS evolves continuously with the physical environment, attaining global 

state is generally infeasible. 

A6 Marginality of real-time aspects Ð GPSS typically do not impose hard real-time 

constraints on their operation and communication. When time matters (e.g., 

Internet-based video streaming applications), it is mostly because late responses 

may impede system performance rather than correctness. In siCPS, the passage of 

time becomes a central feature of system behavior and design, since stringent 

notion of time is fundamental for measuring, predicting and controlling properties 

of the physical environment. 

A7 Crisp consistency Ð In traditional distributed GPSS, there is a crisp notion of data 

consistency Ð the data is either consistent or not (this includes also eventual 

consistency etc.). On the other hand, in siCPS, where strict distributed 

synchronization becomes too expensive, such interpretation of consistency is not 

desirable. Rather, in siCPS it is important to quantify and/or guarantee the degree 

of (in)consistency [Al14]. 

A8 Controlled dynamism Ð Many GPSS are dynamic in the sense that they 

dynamically adapt to changes and recover from malign states. This kind of 

dynamism, though, is typically a result of actions initiated by the system itself or its 

administrator. On the contrary, in siCPS, dynamism is inherent, imposed by the 
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physical environment itself. Thus, siCPS need to detect and recover from 

contingent and often unforeseen situations in their environment in a non-disruptive 

way and without supervision (they have to be self-aware and autonomic). 

A9 Focus on reactive behavior Ð Outputs of a GPSS are typically reactions to explicit 

stimuli, such as service requests and internal/external events (e.g., computation is 

initiated as a response to user input). Instead of waiting for an event, siCPS have to 

operate proactively in order to react to and also perform changes based on 

properties that are either sensed or predicted. Relying on simple (e.g., rule-based) 

reaction patterns is insufficient, since it may lead to oscillations and instability. 

A10 Stateful communication Ð GPSS usually assume stateful communication in the 

communication protocols they employ. This enables effective synchronization 

among distributed components. Moreover, since stable connections are assumed 

(A4), errors are treated as exceptional and detected and solved via explicit error 

recovery. In siCPS, stateful communication does not scale. In fact, extreme 

network dynamism, typical for siCPS, may incur recurrent error recovery. 

2.2 SE Opportunities in siCPS 

As pointed out in Section 2.1, none of the discussed assumptions can be generally 

presumed in siCPS. This makes it a non-trivial challenge to develop siCPS by applying 

traditional SE methods. However, it would be wrong to perceive all specifics of siCPS as 

impeding their development, since they may provide opportunities for getting around the 

violated assumptions. In this perspective, it is desirable to take advantage of such siCPS 

specifics instead of aiming at adapting traditional SE methods, e.g., building a complex 

middleware to provide a traditional programming model. 

To pinpoint this idea, we have compiled a list of specifics, which we believe can be 

advantageously exploited in addressing the violated assumptions. Although not 

complete, we believe this list gives an important research direction for siCPS design 

methods: 

O1 Physical mobility Ð Devices used in siCPS span from stationary to portable and 

mobile ones. Computational nodes deployed on mobile devices can carry 

information while moving. This contributes to the overall connectedness of the 

system, as a mobile node covers a much bigger physical area while moving, and 

can effectively spread the information in the area and connect otherwise 

disconnected network partitions. For example, a vehicle moving along a street 

segment can aggregate temperature data measured from sensors positioned in the 

tarmac along its route (which themselves cannot reach any external network), and 

publish the data on a remote server, or spread it to other vehicles in the vicinity. 

O2 Physical locality Ð The fact that devices in siCPS are physically close provides a 

natural way to partition the system into subsystems based on geographical location. 

This is, again, special to siCPS; general-purpose systems are rarely partitioned 

based on physical location, because of the otherwise useful assumption on location 

obliviousness. Having such a natural partitioning can be easily exploited to achieve 

high levels of scalability. 
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O3 Location-dependency of data Ð Data in siCPS are often location-dependent, 

meaning that the value of certain measureable system attributes depend on the 

physical location of the sensors that provide the raw data. This dependency, in 

combination with the physical proximity of sensor nodes, allows for data sharing 

and reuse among nearby nodes and has the potential to contribute to system 

robustness (in face of sensor failures, etc.). 

O4 Physical laws in data evolution Ð Since siCPS operation typically involves sensing 

physical-environment properties (e.g., position, battery capacity, temperature), one 

can take advantage of the physical laws that govern the evolution of the values of 

such properties to estimate/predict their real values. In effect, a value that is slightly 

stale can still be used, if certain safety bounds on its evolution in time can be 

established [Al14]. As an example, consider a wireless-based adaptive cruise 

control system: a stale value of the front vehicleÕs position can still be used by the 

rear vehicleÕs cruise control, since it is possible to estimate the actual position 

based on the maximum and minimum vehicle acceleration, typically provided by 

car manufacturers. 

3 Approaches that Partially Reflect the Specifics of siCPS 

There are no comprehensive methods or supporting models that address the specifics of 

siCPS in their entirety, as far as our research has indicated. Nevertheless, our experience 

shows that some SE approaches target these specifics at least partially. In this section we 

provide a short overview of such approaches (summarized in Table 1), with the goal to 

later show how they can be combined in a comprehensive framework. 

Agent-based systems. In order to deal with dynamicity in siCPS, one can be inspired by 

autonomous agents. This abstraction brings conceptual autonomy to the loosely coupled 

system parts. Each part is designed to operate with a partial view of the whole system, 

beneficial when the global state is not available (A5). For example, in the Belief-Desire-

Intention (BDI) architectural model [RG95], agents maintain a belief about the rest of the 

system to guide their autonomous decisions. In addition, multi-agent systems [SL08] 

feature the concepts of agent roles and groups, which bring the autonomy to architecture 

organization and allow building self-organized systems that do not rely on the 

assumptions of controlled dynamism (A8) and static physical structure (A1). An 

important problem is that industrial agent implementations do not translate the 

conceptual autonomy and the other useful agent notions (goals, intentions, roles, groups) 

into proper software engineering constructs that satisfy real-life requirements of 

autonomous behavior. In particular, they still rely on the assumption of relatively stable 

bindings between the agents (A4), which is not plausible in most siCPS. 

Ensemble-based systems. Another important specific of siCPS is the opportunistic 

fashion of operation in a dynamic environment at a massive scale. To this end, the 

paradigm of attribute-based communication in ensemble-based systems has recently 

gained attention [De13]. Here, the target of communication is determined according to 

the values of its attributes rather than by a direct identifier. This paradigm can be 

exploited to model a best-effort, dynamic coordination of components, effectively 

dealing with cases when the assumptions of static physical structure (A1), reachability 
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(A3), and controlled dynamism (A8) are violated. However, the application of this 

paradigm typically relies on explicit and crisp handling of data consistency (A7). 

MANET and gossip protocols. At the network layer, extensive research in the areas of 

mobile ad-hoc networks (MANETs) has resulted into a number of routing protocols (see 

[NPD12] for a comprehensive review), which are able to operate over infrastructure-less 

dynamic networks. In MANETs, each node acts both as a host and as a router. Node 

mobility results in dynamically changing network topology. As such, MANET protocols 

lift the assumption of static physical structure (A1) and work even when the reachability 

assumption (A3) is violated, thus becoming very relevant to siCPS. Moreover, MANET 

protocols lift the assumption of location obliviousness (A2), as they enable position-

based packet routing [MWH01] (sometimes called geocast routing). A promising 

synergy for siCPS is to combine geocast protocols at the network layer with gossip 

protocols at the data dissemination layer, effectively enabling proactive, opportunistic 

communication (A9) in MANETs [Fr07]. Integration of gossiping brings a remedy in 

cases of unstable connections (A4) and inherent dynamism (A8). 

Real-time and control systems. As to strong interaction with physical environment, 

many techniques already exist in the domain of embedded real-time systems [Bu05] and 

software control systems [Pa12]. Such techniques promote proactive behavior (A9) and 

focus on real-time attributes (A6). They employ control feedback loops, which 

continuously maintain the operational normalcy (stability) of a system by adequate 

scheduling of periodic tasks. These techniques stand as a promising way to handle data 

outdatedness in absence of crisp consistency interpretation (A7) in siCPS, by effectively 

setting the bounds that define the range of normal system operation. Communication in 

embedded real-time systems is also typically stateless (A10); consider, e.g., data 

publishing on CAN bus. Nevertheless, real-time analysis and design typically rely on the 

assumption of predictable environment, which itself relies on controlled dynamism (A8) 

and stable connections (A4) assumptions. 
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A1 Static physical structure  + +  + 

A2 Location obliviousness  + +  + 

A3 Reachability  + +  + 

A4 Stable connections -  + - + 

A5 Availability of global state + +   + 

A6 Marginality of real-time aspects    + (+) 

A7 Crisp consistency  -  + (+) 

A8 Controlled dynamism + + + - + 

A9 Focus on reactive behavior   + + + 

A10 Stateful communication    + + 

Table 1: Assumptions from Section 3 and DEECo: lifting Ò+Ó, partially lifting Ò(+)Ó, and 
specific reliance upon Ò-Ó. 
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4 DEECo: A Synergy 

In order to evaluate the potential for a synergy of the approaches discussed in Section 3, 

as a particular example we present DEECo [Bu13, Ke12] Ð an Ensemble Based 

Component System that we have proposed specifically for architecting siCPS. 

In DEECo, we take the approach of adopting component-based development (CBD) as 

the basic substratum on top of which we embed selected SE approaches from Section 3. 

CBD employs reuse, encapsulation and separation of concerns in order to manage the 

complexity of building and maintaining large applications [CL02]. In CBD, and thus 

also in DEECo, systems are built around well-defined architectures based on a 

composition of components, which themselves are seen as encapsulated, reusable, and 

substitutable entities. 

In the remainder of this section, we describe the individual constituents of the DEECo 

component model with focus on how we approached the synergy. We refer the interested 

reader to [Bu13] for a detailed technical description of DEECo and for the formal 

semantics of DEECo. Also, a Java implementation is available
1
. 

4.1 Component 

Adopting the ideas of agent-based and self-adaptive systems, the concept of component 

in DEECo is centered on the features of autonomy, self-adaptation, and belief (A5). 

Specifically, a component is an autonomous, encapsulated, and composable software 

entity constituting its own state and behavior. 

As is typical for software agents, component state is expressed in terms of knowledge 

(e.g., line 3 in Figure 1). Note that in DEECo, all the data accessible to a component is 

referred to as knowledge. In alignment with the BDI architectural model, knowledge of a 

component comprises both the private component state (e.g., !"#$%&"') and the 

componentÕs belief about the rest of the system (e.g., ("')*%+,-"*#".*#*/0). In slight 

difference from traditional BDI approach, rather than being updated explicitly by the 

component itself, the belief is updated automatically (by the execution environment, 

Section 4.3) as a result of component composition (Section 4.2). This decision further 

stresses the componentÕs autonomy and separation of concerns. 

The behavior of a component is represented by a set of processes (e.g., lines 4-7 in 

Figure 1). Following the notions of control systems and self-adaptive systems, a process 

is essentially a feedback loop, continuously and proactively maintaining the operational 

normalcy of a component (A9). At the same time, each process executes concurrently, 

independently of the other processes, i.e. it atomically reads its inputs, executes its body, 

and atomically writes its outputs. A process operates strictly upon the knowledge of the 

corresponding component; it may thus interact with other components only through the 

(externally updated) belief (A4, as there is no ÒdirectÓ communication among 

components). 

 

                                                             
1
 https://github.com/d3scomp/JDEECo  
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4.2 Component Composition 

For component composition we adopt the approach of ensemble-based systems and 

multi-agent systems by employing autonomic self-organization of components into 

component ensembles (in multi-agent systems called groups). This self-organization is 

based on a declarative representation of a componentÕs membership in an ensemble, 

based on the componentÕs context (A1 and A3). In order to distinguish in which 

ensemble the membership is being decided upon, every ensemble has a coordinator. 

Membership in an ensemble with a given coordinator is based on whether a component 

is able to assume the role of a member w.r.t. the coordinator. This is expressed 

technically via a membership condition, which decides whether two given components 

can form a coordinator-member pair. Following the idea of attribute-based 

communication, the membership condition is defined upon the attributes (i.e., knowledge 

exposed for this purpose) of the components in question (e.g., line 21 in Figure 1). Note, 

that the ensemble definition is generic and determines ensemble instantiation for each 

group of components meeting the membership condition (w.r.t. particular coordinator). 

Also, a component can be a member or coordinator of multiple ensembles at the same 

time. Within an ensemble, we adopt the idea of stateless, proactive communication 

employed in control systems and gossip-based systems (A9 and A10). Specifically, the 

communication takes the form of stateless knowledge exchange. Its objective is to update 

the belief of the components within the ensemble recurrently and proactively, based on a 

given prescription (e.g., line 23 in Figure 1). This form of communication aligns well 

with the proactive, cyclic execution of component processes. Note, that the statelessness 

and proactivity make knowledge exchange suitable for cases of faulty connections (A4) 

and inherent dynamism (A8). 

12 !"#$"%&%'(3$4*!#$55

62 )%"*+&,-&75

82 !"#$%&"'95("')*%+,-"*#".*#*/095(#"%952225

:2 $."!&//(!;<(=/$>#"%?0%(!"#$%&"'950%(("')*%+,-"*#".*#*/095"1'((#"%@75

A2 21%!'0"%75

B2 (#"%5!5!"#$%&'()*%%&$2+",-#.&()*%?!"#$%&"'95("')*%+,-"*#".*#*/0@5

C2 /!3&,1+0%-75$&.0",0!?5/000,15@5

D2 2225

E2 5

1F2 !"#$"%&%'(>"')*%+G;/555

112 )%"*+&,-&75

162 (;H*/*;%95"-"*#".*#*/0952225

182 $."!&//(<;%*/;',-"*#".*#*/0?"1'("-"*#".*#*/0@75

1:2 I5

1A2 5

1B2 JJ5=(&"/$H53$4*!#$KH5.$#*$L5".;=/5"-"*#".*#*/05;L5"##5>"')*%+G;/H5"#;%+5/4$5';=/$5

1C2 &%/&#4+&(M(&"/$,-"*#".*#*/0N%L;'<"/*;%75

1D2 !"".,0%5'".753$4*!#$5

1E2 #&#4&.75>"')*%+G;/5

6F2 #&#4&./30$75
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682 !"".,0%5'".2("')*%+,-"*#".*#*/05!5#&#4&./2$&2#+&?#&#4&.2"-"*#".*#*/0@5

6:2 /!3&,1+0%-75$&.0",0!?56FFF<H5@55

Figure 1: Example of a DEECo component and ensemble definition in a DSL. 
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4.3 Execution Environment 

The main task of the DEECo execution environment is performing knowledge exchange 

in a distributed setting. For this purpose, we combine the protocols for geographical 

routing in MANETs with gossip protocols so as to enable location-aware communication 

of belief (A2) in mobile ad-hoc environments (A1 and A3) with unstable connections 

and inherent dynamism (A4 and A8). Specifically, the execution environment 

proactively advertises the knowledge of a (source) component to all the other 

potentially-interested (target) components via a geocast protocol. Then, in case the 

source and target components meet the membership condition of an ensemble, the 

execution environment updates the belief of the target component according to the 

knowledge exchange prescription of the ensemble. 

Adopting the approach of embedded real-time systems, the execution environment is 

also responsible for execution of component processes and activities related to 

knowledge exchange in a (soft) real-time fashion (A6 and partially A7), featuring both 

periodic and event-based scheduling. 

5 Discussion of Implications 

Engineering siCPS with the basic building blocks (autonomous components, ensembles) 

offered by the proposed synergy in DEECo offers several advantages, but also poses new 

challenges. As seen in Table 1, DEECo addresses all of the identified challenges of A1-

A10, which we deem a step forward. Certainly, there could be other assumptions, e.g., 

predictability of underlying platform and global synchronization of beliefs, which still 

remain to be addressed. Building on our experience in applying the ensemble-based 

component system paradigm to two real-life case studies, namely the intelligent vehicle 

navigation [Bu13] and the firefighter tactical coordination [Bu14], this section discusses 

the implications of merging different methods. 

Exploitation of the opportunities. A close synergy of geocast MANET protocols and 

attribute-based communication, and an integration of membership evaluation and routing 

in particular, allows exploiting new opportunities based on physical locality (O2) and 

location-dependency of data (O3) (i.e., membership can effectively exploit physical 

location). Further, the proactive gossip-based advertisement of belief enables exploiting 

the physical mobility (O1). The cyclic and real-time nature of component processes also 

facilitates use of models that estimate/predict the safety bounds of knowledge evolution 

[Al14]. This is done by exploiting the physical laws that govern the evolution of certain 

knowledge values (O4). 

Components as autonomous agents. Borrowing the ideas of belief and autonomous 

operation from agent-based systems and coupling them with the encapsulation and 

deployment facilities of component-based systems results into a dependable platform for 

robust component-based agent implementations. The robustness is achieved by grafting 

such ÒagentsÓ with implicit component binding and communication. Contrary to other 

agent-based frameworks, the autonomous components thus do not communicate directly, 

e.g., via sending messages; instead, component knowledge serves as a communication 

medium. A componentÕs belief, i.e., the part of its knowledge that reflects knowledge of 
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other components, plays a role of ÒsmartÓ sensors and actuators. For instance, a belief 

could represent a ÒsmartÓ sensor providing Òpositions of up to 10 closest parking lots, 

which are availableÓ. All in all, a componentÕs belief is updated externally Ð via 

knowledge exchange handled by execution environment. 

Stateless interaction. Adopting the idea of attribute-based communication in component 

interaction has many advantages when considering that components in siCPS recurrently 

appear and disappear and form dynamic groups of best-effort coordination. At the same 

time, having no means of direct component binding and addressing makes it challenging 

Ð but certainly not impossible, as we have observed Ð to realize some forms of protocol-

based communication. This is essential in certain interactions, e.g., reserving of a 

parking place by a specific vehicle at a specific parking lot. Stateless interaction dictates 

knowledge design in a way that it is always possible to reconstruct the state of the 

session from the knowledge, e.g. by assigning each parking reservation request a 

globally unique identifier (GUID), so that a reservation response could refer to it. 

Embedded feedback loops. When designing siCPS, special means have to be provided 

for feedback loops. By building on the ideas of control and real-time systems, DEECo 

embeds the feedback loop operation both at design time and runtime. Systems based on 

feedback loops typically require a description of operational normalcy, usually in terms 

of periodic scheduling of tasks. However, the adoption of this idea needs a paradigm 

change in the design process, to explicitly focus on the normalcy that each process is 

expected to maintain as opposed to goals to be achieved [Ke13]. 

Decentralized operation. Coupling best-effort data dissemination of MANET protocols 

with attribute-based communication and decentralized system operation can result in 

situations when different parties act based on inconsistent local beliefs Ð so-called split-

brain scenarios. For instance, a component can believe itself to be a member of an 

ensemble, while the ensembleÕs coordinator does not recognize this situation (or vice-

versa). This behavior is in a way inevitable, however it has to be accounted for in the 

design, e.g., by making components only weakly synchronized or by relying on an 

underlying network or physical environment to provide some guarantees (thus making 

these split-brain situations temporary with an upper bound for duration). 

Ensembles as component connectors. The duality between components and ensembles 

resembles the classical problem of components and connectors Ð especially whether 

connectors are only special types of components and what functionality should be in 

connectors and what functionality should be in components. In particular, this holds 

when connectors comprise complex adaptation logic. In DEECo though, this problem is 

partially remedied by distinguishing that (i) although stateful, a component has a direct 

access solely to its local knowledge, (ii) an ensemble embodies only stateless exchange 

of knowledge among its member components. This is a strong conceptual difference 

pushing ensembles into the role of simple connectors and components into the role of 

entities performing the actual computation and data aggregation. 

Parallel process execution. The physical world is inherently concurrent. Software 

engineering abstractions for engineering siCPS have to deal with concurrency by 

allowing execution of processes in parallel. This leads to challenges with regard to the 

handling of shared resources, which, if not dealt with, can result into race conditions, 
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deadlocks, etc., effectively jeopardizing the safety of the system. Similar to actor-based 

design, where the exchanged data are considered immutable, DEECo avoids introducing 

any dedicated synchronization constructs. Rather, it employs the simple semantics of 

atomically operating over knowledge while applying the rule of single-writer for each 

knowledge field. The downside of the approach is that it sometimes leads to the 

necessity of having a special ÒaggregationÓ process in a component, which merges data 

coming from different sources (similar situation happens in actor-based approaches as 

well). However, this seems a reasonable price to pay for preventing race conditions by 

design. 

6 Related Work 

Since CPS is an emerging class of systems, there are multiple research efforts trying to 

shed light on the state of the art and the challenges ahead [KK12, Sh09]. Unfor- tunately, 

not as many solutions are proposed, especially when considering guidance via proper 

software engineering abstractions specific to CPS. Our work highlights the problems in 

CPS software engineering, while, at the same time, we propose solutions to these 

problems and evaluate their implications. In the same spirit, in [DLS12], Derler, Lee and 

Vincentelli focus on the challenges with modeling CPS caused by the intrinsic 

heterogeneity, concurrency, and sensitivity of such systems. Backed up by a hybrid-

system-modeling environment called Ptolemy II, their approach emphasizes determinism 

and predictability in modeling and simulations of safety-critical CPS. In [Le08], Lee 

reviews the requirements/specifics of CPS and identifies the absence of timing behavior 

in core abstractions in computing as the main impediment in developing future CPS. In 

our work, we focus on the subset of CPS that is software-intensive, where structural 

models and systematic engineering methods become more relevant. 

Our aim at a synergy can be compared to frameworks proposed for self-adaptive/self-

organizing systems, e.g., [DFR10], and autonomic agent-based systems, e.g., [LPH04]. 

In [DFR10], Di Marzo Serugendo, Fitzgerald and Romanovsky propose a synergy of 

self-organization, agent-inspired autonomy and rule-based reasoning into a service-

oriented architectural framework. Their approach is centered around the concepts of self-

describing components, component metadata and interaction policies executed at 

runtime, resembling the concepts of components, component knowledge and ensembles, 

respectively. In [LPH04], Liu, Parashar and Hariri present a component-based 

framework for autonomic agents building on agent-based middleware infrastructure. The 

difference from these and other similar approaches lies in the fact that we deal with the 

specifics of siCPS, where unreliable communication and extreme dynamism loom large. 

7 Conclusion 

Building software for software-intensive cyber-physical systems (siCPS) is far from 

trivial. In this paper, we attempted to pinpoint the challenges and pitfalls associated with 

applying traditional software engineering (SE) methods in siCPS and to show how these 

challenges can be met by a comprehensive synergy and adaptation of existing SE 

models, methods and abstractions. This we exemplified on the DEECo component 

model. The evaluation of the proposed synergy in DEECo outlines a number of 
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interesting research topics in terms of addressed and waiting-to-be-addressed issues, 

such as design based on maintaining operational normalcy. 
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