
Statistical Symbolic Execution with Informed Sampling∗

Antonio Filieria, Corina S. Păsăreanub, Willem Visserc, and

Jaco Geldenhuysc

aUniversity of Stuttgart, Stuttgart, Germany
bCarnegie Mellon Silicon Valley, NASA Ames, Moffet Field, CA, USA

cStellenbosch University, Stellenbosch, South Africa

Abstract:
Probabilistic program analysis aims at quantifying the probability of a target event

to occur during a program execution. Recent approaches exploit symbolic execution
to compute the constraints on the inputs leading to the occurrence of a target event;
the solution space for such constraints is then quantified given a probabilistic usage
profile, which characterizes each input variable by a probability distribution over its
possible values. Despite their generality and accuracy, these exhaustive approaches
suffer scalability issues for large programs.

To address this issue, we propose a statistical symbolic execution technique that
performs Monte Carlo sampling of the symbolic program paths and uses the obtained
information for Bayesian estimation and hypothesis testing with respect to the prob-
ability of reaching the target events. To speed up the convergence of the statistical
analysis, we propose Informed Sampling, an iterative symbolic execution that first
explores the paths that have high statistical significance, prunes them from the state
space and guides the execution towards less likely paths. The technique combines
Bayesian estimation with a partial exact analysis for the pruned paths leading to prov-
ably faster convergence of the statistical analysis. We have implemented statistical
symbolic execution with informed sampling in the Symbolic PathFinder tool and eval-
uated experimentally its effectiveness.

Several techniques have been proposed recently for the probabilistic analysis of programs

[BFd+14, FPV13, GDV12, LPD+14]. These techniques have multiple applications, rang-

ing from program understanding and debugging, to computing reliability of software oper-

ating in uncertain environments, to probabilistic programming. For example, in previous

work [FPV13, GDV12], we described a bounded symbolic execution of a program that

uses a quantification procedure over the collected symbolic constraints to count the inputs

that follow the explored program paths. These counts are then used to compute the prob-

ability of executing different paths through the program (or of violating program asser-

tions), under given probabilistic usage profiles. While promising, these exact techniques

have scalability issues due to the large number of symbolic paths to be explored.

To address this problem we describe a statistical symbolic execution technique that uses

randomized sampling of the symbolic paths. For deciding termination of sampling we

investigate two different criteria: Bayesian estimation and hypothesis testing. The first

is used to estimate the probability of executing designated program paths while the latter

is used to test a given hypothesis about such probability. Unlike in a typical statistical

setting where one samples randomly across a concrete input domain, our samples are

∗This paper reports a summary of [FPVG14]. Please refer to the original paper for a complete exposition.

51



done in the context of symbolic execution, according to conditional probabilities com-

puted at each branching point in the program. This approach is similar to statistical model

checking [YS02, ZPC13], with the difference that we work with code and compute the

probability of executions based on the provided probabilistic usage profile.

When using Bayesian estimation, the randomized sampling terminates when pre-specified

confidence and error bounds (accuracy) have been achieved. The answer to the analysis

problem is not guaranteed to be correct, but the probability of a wrong answer can be made

arbitrarily small [ZPC13]. However, in practice, the convergence to an answer might be

very slow. Hypothesis testing can be faster [ZPC13], but both techniques may require a

very large number of sample paths to achieve the desired statistical confidence.

To speed up both methods, we propose Informed Sampling (IS), an iterative technique

combining statistical methods with partial exact analysis. At each iteration, IS randomly

samples a set of execution paths and performs a statistical analysis of the sample. The

probability of sampling each path is proportional to the number of input values following

it under the specified usage profile not to bias the sample. If the statistical method con-

verged, its result is returned. Otherwise, the already sampled paths are pruned out from

the execution tree and analyzed exactly. The next iteration will then focus on the analysis

of only the remaining part of the execution tree, increasing also the chances of selecting

low probability paths that might have not been sampled (and pruned) previously.

For pruning the sampling space we propose an efficient procedure that leverages the counts

of the inputs associated with each explored symbolic path and subtracts them from the

counts of all the prefixes along the path. For estimating the probability results we propose

a combination of exact analysis (for the paths that are pruned in previous iterations) and

Bayesian statistical analysis (for the paths sampled in the current iteration over the pruned

state space). The combined estimator converges faster to the prescribed confidence goals,

it is provably unbiased, and guarantees the termination of the analysis [FPVG14].

For a complete description of the approach and its experimental evaluation see [FPVG14].

References

[BFd+14] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Păsăreanu, and Willem
Visser. Compositional Solution Space Quantification for Probabilistic Software Analy-
sis. PLDI, pages 123–132. ACM, 2014.

[FPV13] Antonio Filieri, Corina S. Păsăreanu, and Willem Visser. Reliability Analysis in Sym-
bolic Pathfinder. ICSE, pages 622–631. IEEE, 2013.

[FPVG14] Antonio Filieri, Corina S. Păsăreanu, Willem Visser, and Jaco Geldenhuys. Statistical
Symbolic Execution with Informed Sampling. FSE, pages 437–448. ACM, 2014.

[GDV12] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic Symbolic Exe-
cution. ISSTA, pages 166–176. ACM, 2012.

[LPD+14] Kasper Luckow, Corina S. Păsăreanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and Approximate Probabilistic Symbolic Execution for Nondeterministic
Programs. ASE, pages 575–586. ACM, 2014.

[YS02] Håkan L. S. Younes and Reid G. Simmons. Probabilistic Verification of Discrete Event
Systems Using Acceptance Sampling. CAV, pages 223–235. Springer, 2002.

[ZPC13] Paolo Zuliani, Andr Platzer, and Edmund M. Clarke. Bayesian statistical model checking
with application to Stateflow/Simulink verification. Form Method Syst Des, 43(2):338–
367, 2013.

52


