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Flexible Evaluation of Textual Labels in Conceptual Models
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Abstract:

This paper introduces a flexible and generic approach to define customised style rules for labels in
conceptual models. A rule-based language is presented which can express style rules in a flexible
and context-specific way. The formalised style rules are used to analyse and evaluate textual labels
of model elements. To analyse a textual label, a combination of standardised natural language pro-
cessing tools such as a part-of-speech tagger or a named entity recogniser are used. With the help of
these techniques, custom-defined information entities can be extracted from the model.
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1 Introduction

Conceptual models are typically used to document and communicate the architecture, envi-

ronment and processes of an organisation [HWPZ03]. Once created, they can be analysed,

discussed and gradually changed or improved to fit the constantly changing needs. Further-

more, they can be used as a source for designing and implementing software applications.

In order to serve as a means for communication, the models have to be not only correct,

but also easy to understand. Therefore, domain experts, companies and researchers have

defined modelling guidelines with the aim to improve the quality and understandability of

models [Si11].

[LSS94] elaborated three quality characteristics of conceptual models: syntactic quality,

semantic quality and pragmatic quality. One aspect of pragmatic quality is label qual-

ity, and one measurable aspect of label quality is the adherence to naming conventions

[SLG13]. Enforcing naming conventions can help to avoid misunderstandings. Mendling

et al. [MRR10] give several examples of labels that can raise understanding problems

when no naming convention is in use. For example, for “measure processing” it is un-

clear whether “to measure” or “to process” is the verb describing the action. Other authors

emphasise the importance of text labels for the understanding and comparison of process

models [MRR10, Be09b, NH15]. When models have to be compared (for purposes such

as benchmarking, compliance analysis or model merging) it is necessary to know which

nodes correspond to each other – even if a node is labeled “test software” in one model and
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“software testing” in another one. The same is true for approaches such as [HD15] where

process errors are found based on patterns which depend on the actions expressed by the

element labels. For such purposes, it is necessary to extract information entities from a

label. In the given example, one wants to know that “to test” describes the activity and

“software” is the object.

Recommendations for naming conventions are typically grounded on empirical studies

and related to a modelling language, but not to a business or organisation. However, in

certain domains, there can be special demands for label styles which are not covered by

existing naming conventions. For example, Combi et al. [Co12] suggest the modelling of

medical processes with activity labels that can contain time information such as “Patient

Evaluation [5,20] min”. Obviously, such a label would not fulfill any of the commonly

suggested style rules. Therefore, tools which can check only whether an activity label

follows some “standard” style, would recognise this label as irregular. Therefore, what is

needed is an approach that allows organisations to define own naming conventions.

In this paper, we introduce a flexible and generic approach that allows users to define style

rules for model element labels according to their specific needs. These style definitions

are expressed using a proprietary part-of-speech (POS) pattern description language. This

language also supports the extraction of specific semantic word groups of a label text

(such as a business object from an activity label). Based on these formalised label style

rules, we build up an algorithm to analyse and evaluate labels of model elements. We

utilise a combination of natural language processing (NLP) tools such as a POS tagger or

named entity recognition (NER) to determine the POS of words and validate them against

the formalised label style rule. Making use of the fact that there are mature NLP tools for

the English language, we implemented an algorithm for analysing English model element

labels.

This paper is structured as follows. First, we describe the idea of part-of-speech tagging,

the NLP technique on which our approach is grounded. Next, we analyse the related work

about label analysis and discuss the research gap that resulted in the approach presented in

this paper. In section 3 we explain our approach and discuss its advantages and shortcom-

ings. Finally, we summarise the work in section 4 and motivate further research.

2 Background

2.1 Part-of-Speech Tagging

NLP refers to a theoretically motivated range of computational techniques for analysing

and representing naturally occurring texts at one or more levels of linguistic analysis for the

purpose of achieving human-like language processing [Li01]. In the context of conceptual

models, one field of application of NLP is to recognise the part-of-speech (POS) of words

and phrases in a label of a model element. Based on this information, the word sequence

can be decomposed into information entities, e.g. the activity (verb) or the affected subject

(object).
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The process of determining the POS of words and phrases is called POS tagging. POS

taggers typically combine lexical databases with statistical algorithms to determine the

kind of a word or phrase within a sentence [Me02]. One of the most powerful and popular

POS taggers is the Stanford Tagger4 which is part of a toolset developed by the Stanford

Natural Language Processing Group5. Its tagging methods are based on statistical parsing,

where the frequency of grammar rules is exploited for finding the most probable POS of

a word. These frequencies were obtained from a manually preprocessed (hand-parsed)

collection of texts, called text corpus.

However, even though NLP tools provide reliable results when being applied to natural

language texts [To03] they have to deal with difficult issues when processing labels in

conceptual models. In most cases, such labels consist of one up to three words and do

not fulfill a complete sentence structure [LSM12]. This makes it difficult to find the POS

of a word, given the fact that in English derivation (such as from a noun to a verb) can

occur without any change of form (this phenomenon is called conversion or zero deriva-

tion) [Di08]. For instance, the English word “log” can be a verb or a noun. Additionally,

the accuracy of NLP tools decreases if the label contains special characters, for instance

“Read/save/print notification [A5 page size]”.

2.2 Related work

Combining techniques of NLP tools with conceptional models has been applied to many

fields. On the one hand, there are several approaches to create conceptional models from

natural language text or vice versa. Montes et al. [Mo08] use a POS tagger and parser to

automatically generate a conceptual model from the textual descriptions of use case scenar-

ios. Other authors are using parsers and WordNet6 (a lexical database which provides infor-

mation about semantic and lexical relations between words [Fe98]) to create BPMN Pro-

cess Models, ER-Models or UML-Models from text [FMP11, GSD99, BC12]. Approaches

to generate text from conceptual models are described in [Da92, MAA08, LRR96]. All

these approaches have in common that they use a conceptual model either as source or as

target of a transformation. On the other hand, there are algorithms for inspecting a single

model. Some authors developed approaches to increase the understandability and con-

sistency by reducing linguistic variations and enforcing naming conventions of model ele-

ment labels. This is done by relying on WordNet or domain-specific terminology databases

[vdVGvdR97, KHO11, Be09b]. Other authors are using labels for measuring the quality

or similarity [EKO07, NH15] or for detecting semantic errors [GL11, HD15]. A detailed

overview of existing approaches can be found in [Le13].

Reducing naming variations and enforcing style guidelines can help to avoid errors and

misunderstandings. Therefore, modelling and label style guidelines have been developed.

Algorithm and tools can be designed to determine and enforce the compliance to such

style rules. In the case of business process models, Leopold et al. [LSM11] introduced

4http://nlp.stanford.edu/software/tagger.shtml
5http://www-nlp.stanford.edu/
6http://wordnet.princeton.edu/



20 Arian Storch, Ralf Laue, Volker Gruhn

an algorithm to recognise the style of labels for describing activities. Assuming that there

are seven labeling styles used in business process models [LSM12], they designed an al-

gorithm to recognise the label style by comparing words, their order within the word se-

quence and their POS to grammatical phrase structures that have been derived from the

style rules. The POS determination is done with the help of WordNet and the Stanford

Tagger. If a label can not be recognised clearly, it is examined whether this word can be

found and assigned to its POS in other labels of the same model or in other models in

a repository. However, Leopold et al. do not recommend the application of the Stanford

Tagger (cf. [LSM12, LSM09]) because labels often do not meet the requirement of proper

sentences. Anyhow, they observed a considerable increase of accuracy when using com-

plements to extend the label text to a full sentence [LSM09]. It has to be noted that in the

tools described [LSM12, LSM09, LSM11] the allowed style guidelines are hard-coded in

the software. This does not allow easy customisation to specific needs or adaption to new

modelling languages whose model elements express other concepts.

In [Le13], Leopold et al. describe impressive results for validating labels in business pro-

cess models. They used linguistic patterns built from sequences of POS to operationalize

style rules. A desirable style for activity labels of business process models (called verb-

object style) was defined as “Verb(Imperative) + Noun [+ Preposition + Noun]” (square

brackets denote optional elements). When analysing whether activities in the SAP refer-

ence model adhere to this style, they achieved an F-measure (the harmonic mean of pre-

cision and recall) of 96.7%. The algorithm presented in [Le13] relies on manually tagged

corpora and can therefore be used even if no other NLP tools for a language exist. It first

determines the POS of each word and then checks whether this sequence of POS corre-

sponds to the defined style. As an example, the label “Provide service” would be classified

as correct (a verb followed by a noun), but “Project planning” won’t. Additionally, Leopold

et al. [Le13] exploit information about labels of other model elements and from other mod-

els in a model repository. On the downside, such information is not available when a new

model is created and no model repository exists so far.

Becker et al. [Be09a] introduced an approach to define naming conventions based on a

linguistic grammar which describes phrase structures. This approach is applicable for any

modelling language. With the help of the grammar, particular style rules can be expressed.

As an example, the expression < verb, imperative >< noun,singular > can be used to

define a label style for a process activity. The POS determination and expression matching

is realised by utilising a domain-specific terminology database and word relations (for

instance, synonyms) queried from WordNet. By restricting the set of available words by

the terminology database, there is no need to use additional NLP tools. If a word and its

POS can not be analysed automatically because of unknown words or missing relations,

the modeller has to interact with the modelling system to resolve the problem [Be09b].

Flexible style rules have been used to define linguistic patterns for describing natural lan-

guage requirements by de Almeida Ferreira and da Silva [dd13]. However, their approach

for checking the style cannot directly be transferred to conceptual models, because de

Almeida Ferreira and da Silva make use of a deterministic set of keywords frequently

occurring in requirements (for instance, “x IS y” or “x HAS y”).
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Object POS tags (see Tab. 2)

Cheque NN

Salary Cheque NN NN

Valid cheque JJ NN

A complete list of overdue salary cheques DT JJ NN IN JJ NN NNS

Tab. 1: Various Word Sequences Forming an Object

2.3 Motivation

The related work discussed in section 2.2 shows that there is quite some research in the

field of analysing labels of conceptual models. However, we still observe a notable gap

when adapting common style guidelines to concrete domains, for example in order to

allow labels such as “Patient Evaluation [5,20] min” mentioned in Sect. 1.

By studying labels of different conceptual model collections we observed that even without

such specific style guidelines, the pattern “Verb(Imperative) + Noun [+ Preposition +

Noun]” used in [Le13] for describing an activity would be far too strict. As an example, the

label “Choose non-available item” would be classified as being wrong because adjectives

are not permitted. But in our opinion, this label should be regarded as having the verb-

object style as well. Moreover, we noted that from a linguistic point of view an object

can consist of a wide range of words with different POS. For instance, the label “print

list of overdue cheques” contains the object “list of overdue cheques” which is built from

multiple nouns, a preposition and an adjective. Some kinds of objects and their POS are

shown in Tab. 1. The tags are explained in Tab. 2. Considering the variety of conceptual

models and domain specific needs, we believe that there is a need of a flexible linguistic

pattern expression language.

As already mentioned by other researches, one main problem of POS determination is the

fact that words sharing the same form belong to different word classes. For instance, the

word “test” can be a noun or a verb. To obtain a correct decision, more context information

is needed. One type of context can be the surrounding words. Using a word sequence such

as “test the software” allows classifying the word correctly. Another type of context is

the type of the model element carrying the label. For instance, the label “Review” gets

a different understanding when being used in an activity or a resource model element

respectively.

Becker et al. [Be09a] avoid the problem of words sharing the same form by requiring that

all words used in a label must be taken from a set of words defined by a domain-specific ter-

minology database. We acknowledge the advantages of using such a terminology database.

However, in many situations maintaining such a database will not be feasible.

In order to offer the possibility for checking labels styles in as many situations as possible,

it was our aim to create an approach that...

• allows to define the style rules in a flexible manner,
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• does not restrict the vocabulary by requiring that all words belong to a terminology

database, and

• does not require the presence of a model repository.

3 Customised Pattern-Based Label Evaluation

In this section, we present our approach to increase the reliability and flexibility of a textual

label analysis. First, we introduce a pattern description language that is used to define the

expected grammatical phrase structure and POS of word sequences in a model element

label. Then, we describe the three stages of our algorithm. Figure 2 illustrates these stages;

the steps shown in this figure will be explained in the following subsections.

3.1 Pattern Expression Language

Tag Part-of-Speech

CC coordinating conjunction

DT Determiner

EX Existential there

IN preposition

JJ Adjective

NN Noun

VB Verb

VBN Verb, past participle

VBZ Verb, 3rd person singular present

Tab. 2: Short Extract of the Penn Treebank Tag Set

In our previous work [SLG14], we gave examples how patterns for label styles can be

expressed using a combination of tags from the Penn Treebank Tag Set (PTTS) and the

Extended Backus-Naur Form (EBNF, ISO standard 14977). The PTTS defines a standard-

ised set of tags denoting the POS of a word that has been processed by a POS tagger

[Sa90]. Table 2 shows a subset of the tags defined in the PTTS. With the help of this no-

tation, we defined style rules for the goal-oriented modelling language ı̇∗. In subsequent

work, some elements of the style rule specification language have been redefined in order

to improve the readability, modularity and flexibility.

Listing 1 and 2 show the style rule specifications for a task and a goal in the language ı̇∗.

For example, the rules for task labels define that the text must start with a verb in base

form and may be followed by a conjunction and another verb in base form7. Then, there

must be a word sequence optionally headed by a preposition that matches the object rule.

Optionally, an additional conjunction followed by an object may complete the label text.

7One might argue that it is not a good idea to allow two verbs in a label [BK04], but our point is that such a

rule should not be generally defined but decided by the organisation according to their specific needs.
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For example, a task label could be: “debit (VB) the credit card (object, DT NN NN)”

while a goal label according to Listing 2 could look like: “transfer (object, NN) is com-

pleted (VBN)”.

task {

nnseq = (NN|NNS)+;

attrNoun = DT? JJ* VBN? nnseq;

object = attrNoun ((IN|TO) attrNoun )?;

verbImp = VB (RP|IN)?;

task = verbImp (CC verbImp )? (IN|TO)? object

(CC object )?;

[] = "You have to $.";

}

List. 1: Task Style Rule

goal {

nnseq = (NN|NNS)+;

attrNoun = DT? JJ* VBN? nnseq;

object = attrNoun ((IN|TO) attrNoun )?;

goal = object (CC object )? ("is"|"are") VBN;

[] = "The $.";

}

List. 2: Goal Style Rule

A rule definition starts by naming the process model element to which the rule shall be

applied to. Then, within the curling brackets, sub-rules are defined. Though, different rules

can share the same sub-rules without re-defining them, the declaration here has been made

redundant to clarify the intention. Table 3 lists the meaning of the special characters.

+ At least one occurrence

* Zero or more occurrences

? Optional occurrence

(...) Groups occurrences or expressions

“...” Exact match

... | ... Alternative match; At least one expression must match (within a group)

$ Origin label text

Tab. 3: Overview of the Special Characters to express Operators

As already mentioned, POS taggers can produce more reliable results when operating

on full sentences. Therefore, our style rules define a prefix so that the label text can be

completed to full sentences (in the expression after the “[]”symbol). The special character

“$” defines the location to insert the original label text. For instance, the activity label

“Complete first test” will be complemented to “You have to complete first test.”. A text

matches the style rule if and only if it becomes a full sentence when completed using the

given complement.
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When analysing real-world model element labels, we realised that the use of some words or

phrases can lead to problems. For example, in an activity label “perform investigation”, it

would be wrong to conclude that “perform” is the verb and “investigation” is the business

object. Instead, verbs such as “perform”, “execute” etc. should be avoided, and the text

should be “investigate [object]” instead. Similarly, in a model in the language ı̇∗ , we do not

want to have labels such as “achieve [something]” (which would rather be a goal than an

activity); or in VDML models (describing the process of value delivering), an activity label

should not be “provide [something]” (which would rather be a value proposition element).

For this reason, our rule definitions allow to exclude certain words or word groups, using

constructs such as

verb = VB;

verb != "perform" | "execute";

In this way, our language can use both a whitelist (listing all words or word groups that are

allowed at a certain position) and a blacklist (listing all words that are not allowed, despite

the fact that their use would be correct from a grammatical point of view).

There are further notation elements to express prefix and postfix of words, words sur-

rounded by special characters, etc. Due to space limits, we won’t give a full overview

here.

For applying the style rules, we transform them into regular expressions. This allows us to

use standard library functions for checking whether the output of a POS tagger (and hence

the label) conforms to the style rule. For example, the rules of Listing 3 are transformed

into the regular expression ˆ(/DT[ˆ/A-Z]*)?(/JJ[ˆ/A-Z]*)?(/NN[ˆ/A-Z]*)+$.

nnseq = NN+;

object = DT? JJ? nnseq;

List. 3: Object style rule excerpt

All existing style rules will be aggregated and analysed. For each model element type, the

result will be written in a label metadata repository. Figure 1 illustrates this process.

Fig. 1: Creating Label Metadata

3.2 Evaluation of Phrase Structure and POS of a Model Element Label Text

This section outlines our approach to evaluate the phrase structure and POS of model

element labels. The designed algorithm consists of three stages as illustrated in Figure 2.
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Fig. 2: Process Stage Model

Stage I: Sentence Completion / POS Determination / Named Entity-Recognition (op-

tional) When analysing a label, we start by building a sentence using the sentence com-

plement defined for the model element type. Then, the POS tagger is applied to determine

the POS of each word of the text. Afterwards, a named entity recogniser (NER) can be

used to improve the sequence of POS tags. It looks up words and word groups in a domain-

specific terminology database which might be created by domain experts beforehand and

re-tags it if necessary. Such a terminology database may also include domain-specific ab-

breviations. Additionally, the recogniser uses a collection of globally known named enti-

ties to regard non-domain-specific named entities (e.g., names of locations, organisations,

titles of laws, etc.), too.

Stage II: POS Tag Filtering After each word has been annotated with its most likely

POS, we have to apply a tag filter. It removes irrelevant POS tags for those words which

have been added as a complement to the original label in stage I. At the end of stage II we

have a tag sequence that represents the POS tags of the label.

Stage III: Regular Expression Matcher A regular expression matcher is finally used to

compare the actual POS tag sequence with the expected one. Only if the sequence matches

the regular expression, we conclude the label to be valid. In this case, we can additionally
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extract the phrases associated with a matching sub-rule, for example we can conclude

that in “approve all valid insurance claims” the object is denoted by the phrase “all valid

insurance claims”.

3.3 Analysis Results

To validate our approach at an early development stage, we analysed two collections of

labels taken from different model collections. The first is a collection of 100 task labels

taken from an ı̇∗ model repository. The second is a collection of 100 EPC function labels

taken from the SAP reference model. We analysed these collections twice. The first time,

we used a derived definition of the verb-object style as given in [Le13]: “Verb(Imperative)

+ Noun [+ Preposition + Noun]”. Its formalisation in our rule language is shown in List.

4. Though Leopold et al. mentioned composite nouns (e.g., service order), it is not fully

described how they recognise them. Therefore, we decided to use a pattern which conforms

to the given formal definition. The second time, we used the definition according to List. 1.

Following these definitions, we manually classified each label within these collections. We

then compared the manual results with those of our algorithm. Tab. 4 gives an overview

of the collections and the running time of our algorithm on a Lenovo X1 Carbon 2014

with a 1.50 GHz Intel Core i7-4550U processor, 8 GB RAM and a SSD device, running

on Windows 7 and a JVM 1.8. The initialisation time of the Stanford POS Tagger and

WordNet has not been measured.

activity {

noun = (NN|NNS);

prep = (IN|TO);

activity = VB noun (prep noun )?;

}

List. 4: Strict Verb-object Style according to Leopold et al.

As shown in Tab. 4, both collections have very different numbers of labels written in verb-

object style. Due to the strict definition of the style rule following [Le13], many labels

do not match. E.g., “Get relevant items” does not match because it contains an adjective.

By contrast, the more tolerant style rule according to List. 1 allows amongst others the

existence of adjectives before a noun. Therefore, the number of labels adhering to this

style rule is much higher.

As part of our evaluation, we run our algorithm four times for each style rule definition.

We used the Stanford Tagger as POS tagger. For correctly classifying named entities and

business terms, we made use of the glossary in the terminology base sapterm.com which

lists various common business terms. Additionally, we utilised WordNet to correct POS

tags of words that may have been tagged wrongly by the Stanford Tagger (due to the used

complement) but are actually unambiguous.

We started without a prefix or NER. Then, we successively added each feature, using “You

have to $.” as prefix. The results of each evaluation are shown in Tab. 5 and 6.
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Model collection ı̇∗ SAP

100 ı̇∗ Tasks 100 EPC Functions

Average no. of words per label 2.98 3.23

Minimum no. of words per label 1 1

Maximum no. of words per label 7 9

No. of labels in verb-object style

As defined in Listing 4 38 5

As defined in Listing 1 80 28

Performance results applying Listing 1

Avg. running time per label (ms) 1.38 2.02

Max. running time per label (ms) 2.0 52.0

Tab. 4: Model Collections Details and Performance Results

Model Collection ı̇∗ SAP

Precision Recall F-Measure Precision Recall F-Measure

No prefix, no NER 100.0 % 63.2 % 77.4 % -8 0.0 % -

No prefix, NER 100.0 % 71.1 % 83.1 % -8 0.0 % -

Prefix, no NER 100.0 % 86.8 % 93.0 % 33.3 % 100.0 % 50.0 %

Prefix, NER 100.0 % 97.4 % 98.7 % 83.3 % 100.0 % 90.9 %

Tab. 5: Evaluation Results of Verb-Object Style according to List. 4

Model Collection ı̇∗ SAP

Precision Recall F-Measure Precision Recall F-Measure

No prefix, no NER 100.0 % 67.5 % 80.6 % 100.0 % 28.6 % 44.4 %

No prefix, NER 100.0 % 73.8 % 84.9 % 100.0 % 32.1 % 48.6 %

Prefix, no NER 100.0 % 90.0 % 94.7 % 65.8 % 89.3 % 75.8 %

Prefix, NER 100.0 % 98.8% 99.4 % 100.0 % 96.4 % 98.2 %

Tab. 6: Evaluation Results of Verb-Object Style according to List. 1

We assessed the accuracy of our algorithm using the metrics precision, recall and F-

measure (harmonic mean of precision and recall). According to the results, the combi-

nation of using a prefix and NER gains best results. In this case, the lowest F-measure

is 90.9 % when applying the strict verb-obect style rule to the SAP label collection. The

best result is gained when applying the more tolerant verb-object style rule to the ı̇∗ label

collection.

We identified two issues that may significantly reduce the accuracy of the analysis. First,

if a word is misspelled, it is not possible to correctly determine its POS by the POS tagger

because it can not be found in the corpus. For instance, if a word sequence is given as

“check paymend” instead of the correct form “check payment”, the resulting POS tag

sequence is “VB VBD” instead of the correct one “VB NN”. We can observe another aspect

of misspelling when the change of just one character leads to another POS or even word

8Neither True nor False Positives have been measured
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meaning. E.g., “write advice” gets the tag result “VB NN” while “write advise” is tagged

as “NNP VBP”.

Another issue is the text corpus that has been used to build/train the POS tagger. POS tag-

ging works such that a POS with a high occurrence rate within the text corpus is preferred.

But this occurrence rate is mainly influenced by the manually annotated texts in the corpus.

Therefore, different corpora may lead to different tagging results. In general, we assume

that corpora built on texts out of business domains will lead to more reliable results.

4 Conclusion and Future Work

In this paper, we present an approach to define highly customisable style rules for model

element labels. These rules are expressed using a pattern-based language. It allows domain

experts or modellers to define style rules according to their specific needs. We believe that

our pattern expression language is very flexible, well to read and to understand. Therefore,

it may be helpful in the context of end-user-programming.

One main benefit of our approach is that it can be used without referring to a model repos-

itory or a lexical database. Furthermore, it is fully automated and needs no user input once

the style rules have been defined. Complements added to the labels provide the possibil-

ity to build proper sentences that can be processed by the POS tagger. In addition, the

accuracy can be improved by using NER and a terminology database.

By applying standard NLP tools to the label, the POS of each word can be determined,

and it can be checked whether a label conforms to a style rule. With the help of custom

definable sub-rules, information entities can be extracted from analysed labels. This offers

the possibility to transform a model (e.g., into another conceptual model type or natural

text) or to analyse the label parts in another way.

The accuracy of this approach is mainly influenced by the spelling of the textual labels.

Therefore, we plan to add additional preprocessing stages to our algorithm in order to

deal with misspelled words. In addition, we plan to add the possibility to transform a

label from a given custom style into another style to support the maintenance of model

repositories. This will be important for the purpose of merging models that have been

created in different organisations.
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