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Abstract: Metabolic engineering aims to improve the production of desired biochem-
icals and proteins in organisms and therefore, plays a central role in Biotechnology.
However, the design of overproducing strains is not straightforward due to the com-
plexity of metabolic and regulatory networks. Thus, theoretical tools supporting the
design of such strains have been developed. One particular method, CASOP, uses the
set of elementary flux modes (EFMs) of a reaction network to propose strategies for the
overproduction of a target compound. The advantage of CASOP over other approaches
is that it does not consider a single specific flux distribution within the network but the
whole set of possible flux distributions represented by the EFMs of the network. More-
over, its application results not only in the identification of candidate loci that can be
knocked out, but additionally proposes overexpression candidates. However, the uti-
lization of CASOP was restricted to small and medium scale metabolic networks so
far, since the entire set of EFMs cannot be enumerated in such networks. This work
presents an approach that allows to use CASOP even in genome-scale networks. This
approach is based on an estimation of the score utilized in CASOP through a sample of
EFMs within a genome-scale network. Using EFMs from the genome-scale metabolic
network gives a more reliable picture of the metabolic capabilities of an organism re-
quired for the design of overproducing strains. We applied our new method to identify
strategies for the overproduction of succinate and histidine in Escherichia coli. The
succinate case study, in particular, proposes engineering targets which resemble known
strategies already applied in E. coli. Availability: Source code and an executable are
available upon request.

1 Introduction

Using microorganisms to overproduce certain metabolites and proteins is the central objec-
tive of metabolic engineering [Lee09]. While many applications consider the improvement
of the production of native compounds, there is also an increasing number of attempts
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in which entire heterologous pathways have been engineered [NKL10, AS09]. Small
molecule compounds whose production have been engineered span from alcohols and
lipids, for instance, used in bio-fuel production, to plastics and pharmaceuticals. Usually,
the design of strains that overproduce a desired target compound involves a large number of
modifications of the metabolic and regulatory network including gene knockouts/knockins
and the overproduction of proteins [KJSW10]. Yet the complexity of metabolic and regu-
latory networks associated with the cost and effort to manipulate organisms is still a major
challenge in the development of improved production designs. A large set of theoretical
tools has been developed that aim at simplifying this process [BPM03, KR10, TS10]. A
common feature of these methods is the prediction of metabolic flux distributions prior
and after perturbations. These predictions are then combined with either deterministic or
stochastic procedures that try to identify knockout and knockin combinations that improve
the production of the target compound with as few genetic modifications as possible.

Recently, a new method called Computational Approach for Strain Opti-mization aiming
at high Productivity (CASOP, [HK10]) based on the concept of elementary flux modes
(EFMs, [SDF99]) has been proposed. However, this approach has been limited to small
and medium-scale metabolic networks, so far, since the enumeration of all EFMs can only
be performed in such networks [KS02]. In this work we want to outline an approach that
allows us to circumvent this limitation of CASOP. Instead of computing the scores utilized
in CASOP from the entire set of EFMs we compute them from a subset of the EFMs in a
genome-scale network. This subset of EFMs is obtained from a sampling procedure that is
similar to a previously described method to enumerate EFMs in genome-scale metabolic
networks [KdFBS09]. Using our approach, CASOP can be applied even to genome-scale
networks.

2 Methods

2.1 CASOP

Using the EFMs of a reaction network, CASOP calculates for each reaction a Z2-score that
indicates whether the flux through this reaction needs to be increased or decreased, in order
to improve the production of a particular target compound. Similar to other methods, the
reasoning behind CASOP is that the organism tries to optimize its growth yield. However,
in contrast to most methods, CASOP does not assume that the organism attains the optimal
flux, but rather uses a combination of optimal and, to a certain extent, sub-optimal flux
distributions.

Computing CASOP-scores

In the following we give a short overview over CASOP. For a more detailed description
see [HK10]. In order to determine scores for the knockout or overexpression of enzymes,
CASOP considers two versions of a metabolic network that contain a biomass reaction
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defining the proportion of building blocks the organism requires for its reproduction. The
first network corresponds to the wild-type model. In the second network, the biomass
reaction is coupled with the production of the target metabolite such that, in weights, 10%
of biomass and 90% of the target metabolite are consumed. EFMs are computed in both
networks. Afterward each EFM i is assigned a weight νi that depends on its yield in the
biomass reaction, Y i

Biomass/S (ratio between carbon source inflow and flux through the
(modified) biomass reaction). The weights of the EFMs are adjusted using a parameter k
such that increasing values of k attribute higher weights to EFMs with higher yields. In
this work we used a value of k = 5.

Afterward, a reaction importance measure is computed for each reaction in both networks
as the sum of the weights of the EFMs containing this reaction. As the name suggests, the
reaction importance measure allows to assess the impact of a perturbation of an enzyme
catalyzing it on the production of biomass and/or the target metabolite. If one reaction has
a high importance within the network containing the production of the target metabolite,
but a low importance in the other network, this reaction is a candidate for overexpression
since increasing the flux through it increases the flux through EFMs producing the target
metabolite. In contrast, a reaction that has a low importance for the production of the target
metabolite, but a high importance for sole biomass production can be removed, since it fa-
vors the flux through EFMs that do not produce the target metabolite. Hence, the Z2-scores
of CASOP, that indicate candidates for knockout and overexpression, are computed as the
difference between the reaction importances of each reaction between the two networks.
These scores take values between -1 and +1. A positive score indicates a reaction that is
candidate for overexpression and a negative score indicates a knockout candidate. Please
note that, in contrast to [HK10] we split reversible reactions in irreversible forward and
backward directions. Thus, reversible reactions are assigned two CASOP scores allowing
us to assess the role of forward and backward direction separately.

Building on the Z2-scores, the CASOP procedure then knocks out the enzymes in silico
that catalyzes the reaction with the most negative score by removing all EFMs containing
this reaction (or other reactions catalyzed by this enzyme). Subsequently, the Z2-scores
are recomputed for the reduced set of EFMs and the procedure is iterated.

Assessing the production of the desired product

CASOP allows one to assess the impact of a genetic modification on the production of
a specific target metabolite. However, no statement about the change of the production
after several consecutive modifications, such as multiple knockouts, is possible. In order
to observe the improvement in the production of the target metabolite, we introduce the
measure YM which allows us to assess the relative change in yield of metabolite M after
several knockouts. We make use of the weights νi that CASOP assigns to each EFM
i (see [HK10]) in the network in which the production of the target metabolite is not
associated with biomass production. Given a set of n EFMs in this network with the
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individual yields in the target metabolite Y i
M/S of each EFM i, we derive YM as

YM =
n∑

i=1

νi · Y i
M/S .

Since we multiply the weight of each EFM with the production of the target metabo-
lite, YM can be considered as a weighted average of the yields of the EFMs in the target
metabolite. If YM increases after a knockout, we expect this knockout to increase the pro-
duction of the target metabolite M . Note that YM does not correspond to an actual yield,
but serves as an indicator of the effect of a knockout strategy.

2.2 Enumeration of EFMs in genome-scale metabolic networks

Until recently, the computation of EFMs has been limited to small and medium-scale
metabolic networks. However, fluxes within small-scale networks might be inconsistent
with the corresponding fluxes within the underlying genome-scale network [KdFS09].
Several approaches for the computation of EFMs in genome-scale metabolic networks
have been developed. One approach, the so-called K-shortest procedure, computes EFMs
in increasing number of reactions [dFPR+09]. Another approach, the EFMEvolver [KdFBS09]
uses a genetic algorithm to sample large numbers of EFMs in these networks more effi-
ciently.

Here we used a more direct approach than EFMEvolver to compute EFMs. The similarity
between both methods concerns the linear programming formulation to compute a single
EFM given a metabolic network (for more details see [KdFBS09]). However, instead of
using a genetic algorithm, we used an iterative procedure to enumerate EFMs. Starting
from an initial EFM using the target reaction, one of its reactions is selected randomly.
Subsequently this reaction is blocked by setting its flux to zero and therefore, a new EFM
is computed by solving the linear programming formulation. Iterating this procedure,
several EFMs are obtained while the number of blocked reactions increases. If no EFM is
found given a particular set of blocked reactions, the last reaction is removed from this set.
Additionally, with a small probability, all reactions are removed from the set of blocked
reactions. This procedure allows one to increase the diversity of the EFMs that are detected
since resetting the set of blocked reactions corresponds to initializing a new independent
sampling procedure. More details on the sampling procedure will be given elsewhere.

3 Results and Discussion

We applied our method to two cases: the production of succinate from glucose (studied
in [HK10]) and the production of histidine from fructose in Escherichi coli. In each case,
we started with an initial sample of 106 EFMs for the two networks that are required in our
procedure. As a genome-scale metabolic model of E. coli, we used iAF1260 [FHR+07].
Besides the carbon source, we supplied the network with the following compounds: NH+

4 ,

74 Bohl et al.



NO−
3 , S02−

4 , Fe2+, Fe3+, CO2, H+, K+, Ca2+, cobalt, molybdate, Na+, Pi, O2, H2O,
Cl−, Cu2+, Mg2+, Mn2+ and Zn2+ that are required for the survival of the cell.

3.1 Case study I: Succinate production

Figure 1: Z2 scores of central metabolism of the wild-type network for succinate overproduction.
The width of the arrows corresponds to the values of the scores. Dashed lines indicate negative
scores, bold lines positive scores. Metabolite nodes connected by straight lines are identical. A list
of abbreviations can be found in the supplementary material of [FHR+07].

The Z2-scores for reactions within central metabolism are displayed in Fig. 1. While the
relative scores for many reactions matched those discussed in [HK10] there were some
differences. For instance, reactions of the glyoxylate shunt have high overexpression rat-
ings, while this was not the case in [HK10]. The importance of such a modification to
increase succinate production has been demonstrated by [LBS05]. Additionally, the over-
expression of Ppc, as indicated by our analysis, is also known to improve succinate produc-
tion [LBS05]. Most interestingly, fumarase (Fum) that reversibly converts fumarate into
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malate received the highest knockout rating. This case exemplifies the advantage of com-
puting the Z2-scores of both directions of reversible reactions independently. In [HK10]
both directions of reversible reactions were not considered independently and, in conse-
quence, the score of Fum was relatively low. However, knocking out fumarase increases
YSUCC almost ten-fold (Fig. 2A). This strong increase in production is probably due to
the fact that this deletion interrupts the TCA cycle. In consequence, the concentration
of fumarate increases which entails an increase in the concentration of the desired target
metabolite succinate. Furthermore, fumarate, which is a side-product of several biosyn-
thetic pathways, can only be disposed through conversion into succinate after this knock-
out if fumarate is not excreted.
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Figure 2: YM in the two case-studies. Knockouts are cumulative from left to right. A Succinate
production. B Histidine production.

After knocking out fumarase, the fumarate transporter (Dcu) that exists in 3 isoforms,
received the lowest Z2-score. Knocking out the corresponding genes yielded a strain in
which succinate production is coupled to growth. That is, biomass can only be produced
when co-producing succinate. Interestingly, after this knockout, the Z2-score of the succi-
nate dehydrogenase SdhABCD, which is known to improve succinate production [LBS05]
and had the second lowest score in the wild-type, indicates that there is no influence of a
SdhABCD knockout on the production of succinate anymore. Thus, the knockout of fu-
marase and the fumarate transporter appears to represent an alternative knockout strategy
to the knockout of succinate dehydrogenase.

In the next step, the ribulose-5-phosphate-3-epimerase (Rpe) was suggested for knockout.
The forth proposed knockout involves the inflow reaction of ammonium. Knocking out
this reaction corresponds to removing ammonium from the growth medium. This mod-
ification is not lethal, since we provided nitrate as alternative nitrogen source, but at the
expense of reducing the growth rate [BZ90]. Moreover, nitrate can only serve as nitrogen
source in the absence of oxygen [LK87]. Indeed, oxygen inflow is also assigned a rela-
tively low Z2-score. This indicates that the utilization of nitrate as electron acceptor and
ammonium source under anaerobic conditions can improve succinate production. The fifth
proposed knockout removed the export of α-ketoglutarate further reducing the number of
possible pathways to excrete TCA cycle intermediates besides succinate.
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3.2 Case study II: Histidine production

As a second case study we examined the production of histidine from fructose (Fig. 2B).
In the first step, pyruvate dehydrogenase was suggested as knockout (Fig. 3). In the second
step, the phosphoribosylglycinamide formyltransferase (PurN) was suggested as knockout.
Removing this reaction drastically increased YHIS (Fig. 2B). This knockout illustrates the
need of considering all reactions within a genome-scale metabolic network as knockout
candidates. The reaction catalyzed by PurN consumes 10-Formyltetrahydrofolate (10-
FTHF) as a co-factor. However, 10-FTHF is also required for histidine biosynthesis. In
purine biosynthesis, the reaction catalyzed by PurN can also be catalyzed by the trans-
formylase PurT that uses formate rather than 10-FTHF. Thus, knocking out PurN in-
creases the 10-FTHF pool available for histidine biosynthesis. Furthermore, a strain with
a PurN knockout grows slower than the wild-type [BAH+06], indicating that the capac-
ity of purine production might be reduced. This is of additional advantage for histidine
production, since 5-Phospho-α-D-ribose-1-diphosphate (PRPP) is a common precursor of
histidine and purine biosynthesis. In the following two steps, threonine dehydrogenase
and pyruvate kinase were knocked out. Especially, the knockout of the threonine dehy-
drogenase is of interest, since it removes one of the two pathways of glycine biosynthesis
from threonine. Thus, glycine biosynthesis via serine might be increased which in turn in-
creases the cellular 10-FTHF pool whose major source is glycine biosynthesis via serine.
In the fifth step, the formyltetrahydrofolate deformylase PurU that converts 10-FTHF to
formate and tetrahydrofolate was knocked out.

3.3 Influence of sample sizes on Z2-scores

In order to test the reliability of the Z2-scores we obtained using a sample of 106 EFMs
(Sample A), we recomputed the scores for independent samples with a higher number of
EFMs: 2·106 EFMs (Sample B) and 3.7·106 EFMs (Sample C). The maximum deviations
over the five knockouts between sample A and B increased over the knockout depth from
0.05 to 0.09 after the forth knockout. In all cases this maximum deviation was smaller
between sample B and sample C. Here, the maximum deviation was 0.07. Slight deviations
occurred in the order by which the reactions were knocked out in the three samples. After
the forth knockout, the export of pyruvate rather than α-ketoglutarate received the lowest
Z2-score in the larger samples. Thus, the Z2-scores are relatively robust if sample sizes are
sufficiently large. However, for greater knockout depths, larger samples of EFMs might
be required.

4 Conclusions

In this work we have presented CASOP GS as an approach that allows one to apply
CASOP to genome-scale metabolic networks. Furthermore, we have introduced a mea-
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Figure 3: Z2 scores for histidine production. For details see Fig. 1.

sure that allows one to assess the changes in the production of a target metabolite after
multiple genetic modifications. Besides these improvements of CASOP, our approach
offers several important advantages over other theoretical methods for strain improve-
ment such as OptKnock [BPM03], OptGene [PRFN05] and other recently proposed ap-
proaches [KR10, TS10].

First, and most importantly, our approach provides the user with a ranking of reactions
whose removal/overexpression improves the production of a target metabolite. Thus,
rather than presenting a complete knockout strategy, the user has the possibility to choose,
which reaction is most suitable for knockout or overexpression. This is of particular im-
portance for the incorporation of prior knowledge about difficulties and side-effects of
certain gene-manipulations. For example the principal knockout candidate might require
removing a gene whose deletion is known to cause pleiotropic effects (e.g. a slow growth
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rate), while the second rated knockout might yield a strain with a only slightly reduced
growth rate.

Second, some approaches only consider a specific part of the metabolic network due to
computational limitations. In contrast, our approach takes all reactions within an organ-
ism into account. In consequence, we do not only identify candidates for knockouts in
the primary metabolism, but also in other parts of the metabolism. This is of particular
importance for the overproduction of histidine, since reactions from nucleotide and amino
acid metabolism appear to be suitable knockout targets.

Third, most approaches concentrate only on knockouts, while our approach, since it is an
extension of CASOP, also proposes overexpression candidates to increase the production
of the target metabolite. This is important since the overexpression of genes is frequently
used for strain improvement.

CASOP GS offers many advantages over other approaches for the design of production
strains. However, a shortcoming is that the regulatory network is not considered. In or-
der to circumvent this problem, we are currently working on an improved version that
takes into account regulatory rules by only allowing for EFMs that are consistent with the
regulation of metabolism. This, regulation will be implemented in the form of Boolean
logic. Moreover, the proposed knockouts of the histidine case study are currently being
implemented in E. coli in order to validate our results.
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