
Delta Operation Language for Model Difference

Representation

Dilshodbek Kuryazov

Software Engineering Group

University of Oldenburg, Germany

kuryazov@se.uni-oldenburg.de

Abstract: Software models evolve over time undergoing various changes and result-
ing in several versions during their lifetime. Models are differentiated during the evo-
lution process and the differences between subsequent model versions are represented
in differences documents for further analysis and manipulations as history informa-
tion. Software models have rich data structures which differ from the code of software
systems. That is why, a representation approach for the model differences has to pro-
vide effective handling and management of difference information. Furthermore, the
model differences represented in the differences documents have to be easy to access
and reuse.

This paper introduces the Delta Operations Language (DOL), a meta-model in-
dependent and operation-based approach to model difference representations. The
approach represents the model differences in terms of DOL and provides several DOL
Services to access and reuse the DOL-based differences for further analysis and manip-
ulations. To explain ideas behind the approach, it is applied to UML activity diagrams
as a running example.

1 Motivation

Software models are designed using software modeling languages (cf. Unified Modeling

Language (UML) [UML]). Models are widely used as abstractions of systems structural

and behavioural artefacts. Abstraction of any software system is quite useful and practical

to understand and trace system aspects from different viewpoints.

Software models follow varying concepts than the code of a software because of the

paradigm shift between code and design levels. Software models have rich data structures

with different syntax and semantics. Though, like the code of software projects, software

models evolve over time undergoing various changes such extensions, corrections and im-

provements. These changes are applied to software models by a team of modellers using

Collaborative Modeling and Model Version Control tools.

Several version control systems exist for code-based software systems (e.g. Subversion

[CFP04], Git [Loe09] etc.). Software models can also be represented in the XMI (XML

Metadata Interchange) serialization [Obj]. But, it is commonly agreed that code-centric

version control systems can not completely handle the differences of software models

[Cic08], [EMF].

Subsequently applying changes to software models results in several versions of the

same model artefact. Since a model has several versions during its life time, the model

2221

histories has to be handled and the differences between subsequent model versions have

to be represented in appropriate ways.

Representing the model differences allows to store the histories of software models.

Therefore, finding an appropriate approach for model difference representation is the best

aid to build up various applications and tools such as model versioning, model history

analysis and collaborative modeling. Considering aforementioned challenges, this thesis

addresses the problem of model difference representation.

This paper introduces the general Delta Operations Language (DOL), meta-model

generic and operation-based approach for model difference representations. Conceptu-

ally, DOL is a set of domain specific languages for model difference representation in

terms of operations. A specific DOL for a specific modeling language is derived from

the meta-model of a modeling language. A specific DOL is fully capable of representing

the differences of models conforming the given meta-model in terms of DOL operations.

Only changed elements between model versions are calculated and represented in differ-

ence documents referred to as Modeling Deltas. The operations in a modeling delta are

called Delta operations.

Additionally, the DOL approach aims at providing several DOL Services which can

access and reuse delta operations. These operative DOL services improve applicability

and re-usability of the DOL-based modeling deltas in different application areas. The

operation-based DOL approach addresses several use cases in this PhD proposal. These

are Generic Model Versioning System (GMoVerS), Model History Analysis and Collabo-

rative Modeling that are discussed in Section 5.

The paper is structured as follows: The related approaches are discussed in Section 2.

Section 3 explains a simplified difference representation example of the DOL approach.

In Section 4, the main ideas behind the thesis are portrayed. Section 5 presents application

areas of the approach. Current and ongoing works are expressed in Section 6. The paper

ends up by defining expected contributions of the thesis in Section 7.

2 Related Work

There are several approaches to model difference representations providing some ad-

ditional services. This section discusses some of related difference representation ap-

proaches which provide a support to deal with some aspects and principles of model dif-

ference representation.

An operation-based difference representation is introduced by Alanen and Porres [AP03]

which is also meta-model independent. It detects differences and union of models and

represents the differences as a sequence of difference operations. The approach supplies

conflict resolver service that is extended by the combination of the difference operations.

Another operation-based approach is EMF Store framework [HK13] introduced by Helm-

ing and Koegel. EMF Store is a data model repository for EMF (Eclipse Modeling Frame-

work) models [EMF]. The framework supports collaborative modeling services such as

semantic versioning, branching and conflict detection services. The EMF Store platform is

extended by Krusche and Bruegge with Model-based Real-time Synchronization [KB14].

The EMF Store provides change tracking feature for atomic changes.

A meta-model independent and model-based difference representation is introduced by

Cicchetti et al. [Cic08]. The approach uses a difference model for representing the dif-

2222

ferences. The differences model conforms to the differences meta-model derived from the

base meta-model by automatic transformations. The approach provides a difference appli-

cation service which requires model matching between the differences and base models.

Cicchetti et. al. has conflict resolution support for differences merging. Another model-

based difference representation approach, EMF compare and merge [EMF] was introduced

for differencing EMF models.

SMOVER (Semantically enhanced Model Version Control System) [ABSK07] uses

standard SQL database approach to store the model differences and provides several stan-

dard versioning services such as add, checkout, commit and update. SMOVER mostly

addresses flexible difference merging technique and requires to have an adapter which lies

between external modeling tools and SMOVER.

DeltaEcore – A Model-Based Delta Language Generation Framework [SSA14] ad-

dresses engineering delta modeling languages for software product lines. The approach

aims at automatically derive delta operations for software architectures of software prod-

uct lines.

In contrast to the existing approaches, a number of additional contributions of the ap-

proach in this paper can be indicated. Deficiency of additional services to reuse and exploit

representation information diminishes the applicability of an approach in a wide range of

applications. Thus, the DOL-based difference representation approach aims at providing

a number of the DOL-services which can access and reuse difference representation infor-

mation. Meanwhile, the existing approaches provide only few services for exploitation and

manipulation of model difference information. The DOL-based difference representation

uses simple text-based notations instead of complex models to storage history by means of

delta operations i.e. text-based difference representation for the graphical software mod-

els. Moreover, DOL provides the specific orchestration of the DOL-services extending

application areas.

3 Example

This section describes a simple example of DOL-based model difference representation.

To explain the idea of the DOL approach, a simplified UML activity diagram [UML] is

employed in this section. The meta-model of a modeling language is required to repre-

sent the model differences in terms of DOL. The DOL operations are derived from the

simplified meta-model of UML activity diagram depicted in Figure 1. A specific DOL is

derived for this specific meta-model in this paper, but the DOL Generator is completely

independent from meta-models.

Figure 1: Simplified UML Activity Diagram meta-model

2223

All meta-classes are of type Node or Flow. Each Flow has the target and source at-

tributes and Actions have the name attribute whereas the other classes have no attributes.

Figure 2 portrays three subsequent versions of the same UML activity diagram per-

forming an Ordering System example. All model versions conform to the same simplified

meta-model shown in Figure 1.
Version 3Version 2Version 1

g1

g2

g3

g4

g5

g1

g2

g3

g14

g5

g6

g4

g7 g8

g9

g10 g11

g13g12

g1

g2

g3

g14

g5

g4

g7

g15

g12

Figure 2: Example activity diagram in three concurrent versions

Each model element is assigned to a persistent identifier (gx). The first version has an

Action named Receive, an Initial and a Final node and (Control) Flows connecting these

nodes. In the second version, the model has Fork, Join nodes, two Actions named Fill

Order and Send Invoice. The target end of Control Flow g4 is reconnected to the fork

node, the name of the Receive action g3 is changed and several control flows are created

connecting these nodes. Finally, the model reaches into the third version. A new action

with name Close Order is created, the target ends of g4, g12, and the source end of g14

are reconnected. Fork and Join-nodes, the Send Invoice action, and the control flows g10,

g11 and g13 are deleted.

In order to derive the specific DOL for UML activity diagrams, the meta-model in

Figure 1 is used and three atomic operations create, delete and change are applied

to the concepts of the meta-model (generation of a specific DOL is explained in Section

4.1). A delta-operation creates or deletes a model element or changes its attributes. The

DOL approach considers that three basic operations are sufficient for deriving the complete

set of the DOL operations for difference representations and the specific DOL is capable of

representing all differences by these three operations. Other change operations like moving

a group of elements from one place to another in a model can be achieved by changing one

(or several) association(s) between a part that should be moved and the rest of a model.

Like classical version management systems for source code (cf. Subversion [CFP04],

Git [Loe09]), the DOL approach follows a backward delta approach, where the most recent

version of a model and several modeling deltas are stored directly. The last version (the

third version in this example) is also represented by the DOL-operations which consists

only of the creation operations.

1 g1=createInitialNode();

2 g3=createOpaqueAction("Receive Order");

3 g7=createOpaqueAction("Fill Order");

4 g15=createOpaqueAction("Close Order");

5 g5=createActivityFinalNode();

6 g2=createControlFlow(g1,g3);

7 g4=createControlFlow(g3,g7);

8 g12=createControlFlow(g7,g15);

9 g14=createControlFlow(g15,g5);

Figure 3: Active delta

2224

Figure 3 depicts the modeling delta named active delta which gives directly the last

model version. Each delta operation has a Do part (cf. g1=createInitialNode();) which

describes the kind of change by means of operations (one of create, change, delete) and an

Object part (with attributes if required) (cf. g1=createInitialNode();) which refers to the

modeling concept. To refer to model elements from the delta operations, unique persistent

identifiers are used as references.

Likewise, the differences deltas are directed in reverse order i.e. each change leads

from the later version to the previous. Producing delta operations in reverse order is quite

practical for implementation of applications.

1 g6 = createForkNode();

2 g7 = createOpaqueAction("Send Invoice");

3 g9 = createJoinNode();

4 g4.changeTarget(g6);

5 g12.changeTarget(g9);

6 g14.changeSource(g9);

7 g10 = createControlFlow(g6,g7);

8 g11 = createControlFlow(g6,g8);

9 g13 = createControlFlow(g8,g9);

10 g15.delete();

Figure 4: Delta between active and the

second versions

1 g3.changeName("Receive");

2 g4.changeTarget(g5);

3 g6.delete();

4 g7.delete();

5 g8.delete();

6 g9.delete();

7 g10.delete();

8 g11.delete();

9 g12.delete();

10 g13.delete();

11 g14.delete();

Figure 5: Delta between the second

and first versions

The differences delta in Figure 4 depicts the differences between the third and second

versions. Finally, Figure 5 illustrates the differences delta between the second and first

versions.

The modeling deltas in these figures are executable descriptions of the differences.

Each of the difference deltas reverts the model to the previous versions. The modeling

delta in Figure 4 reverts the model to the second version from the third and the modeling

delta in Figure 5 reverts the model to the first version from the second.

4 Approach

This section discusses a general architecture of the proposed approach as depicted in Fig-

ure 6. It has three main levels such as DOL Generation (discussed in Section 4.1), DOL

Services (Section 4.2) and DOL Applications (Section 5).

DOL Generation defines generating a specific DOL by importing the meta-model of a

modeling language. The resulting DOL is produced in form of Java Interface. The DOL

approach also provides several services that lie at the DOL Services level. These services

serve to manage, manipulate and reuse the DOL-based modeling deltas stored in the repos-

itory. The third level depicts DOL Applications developed by the specific orchestrations

of the DOL-services.

Each DOL-service has a particular task and is involved in constructing the specific or-

chestrations in the framework of the DOL applications. For instance, models are designed

in external modeling tools and parsed into the internal representations by the Adapter. The

difference calculator is used to detect the differences between the compared models and

produce the differences and active deltas by implementing the DOL interface. The differ-

ence calculator uses an Optimizer to produce the optimized modeling deltas and to write

them into the repository. After all, other DOL-services such as a Patcher and a Change

2225

Tracer utilize the DOL operations. The patcher reverts older model versions. The change

tracer tracks a specific model element and reports the change history information of that

element. Then, these change reports can be browsed to see and analyse the change history.

DOL Generation

DOL Services

DOL Applications

DOL Generator
imports generates

Meta-model

Delta

Operations

Language

DOL

Service

DOL-based

Repository

Adapter CalculatorOptimizer

Patcher Tracer

manipulates

implements

DOL

Application

Model Versioning

Model History

Analysis

Collaborative

Modeling

orchestration

Figure 6: Overall architecture of the approach

These DOL-services are employed in developing the DOL applications such as Model

Versioning, Collaborative Modeling and Model History Analysis (discussed in Section 5).

4.1 DOL Generation

The Delta Operations Language (DOL) is a family of the operation-based languages for

model difference representations. This section shows how a specific DOL is generated

for a specific modeling language. As mentioned above, the meta-model of a modeling

language is required to derive a specific DOL. The DOL Generator imports the meta-model

depicted in Figure 1 as the example and applies three basic operations to each concept of

that meta-model.

Figure 7: Meta-model of the specific DOL operations

2226

The specific meta-model in Figure 7 depicts an abstraction of the specific DOL opera-

tions shown in Figure 8.

Each model element can be deleted and created with relevant parameters if they have at-

tributes. Only attributes can be changed and all associations are associated with attributes.

The specific DOL is generated as an Java Interface. The methods of the resulting interface

are parametrized with the meta-model concepts including one of the create, delete and

change operations (Figure 8). Implementations of these methods result in an analogous

operation with relevant parameters.

1 //------ Creations ------

2 InitialNode createInitialNode();

3 OpaqueAction createOpaqueAction(String name);

4 ForkNode createForkNode();

5 JoinNode createJoinNode();

6 DecisionNode createDecisionNode();

7 MergeNode createMergeNode();

8 ActivityFinalNode createActivityFinalNode();

9 ControlFlow createControlFlow(Node source, Node Target);

10 ObjectFlow createObjectFlow(Node source, Node Target);

11 //------ Changes ------

12 void changeName(String newName);

13 void changeSource(Node newSource);

14 void changeTarget(Node newTarget);

15 //------ Deletion ------

16 void delete();

Figure 8: Interface generated from UML Activity Diagram meta-model

The DOL Generator is completely independent from modeling languages. Eventually,

each interface method has the same structure: a Do part and an Object part. The delta

operations are produced by implementations of that interface by assigning persistent iden-

tifiers.

4.2 DOL Services

In order to reuse and exploit the DOL-based modeling deltas, the difference representation

approach introduces a set of reasonable DOL-services as depicted in Figure 6. The DOL-

services consist of an Adapter, a difference Calculator, a delta Optimizer, a Patcher and a

change Tracer which are discussed in detail, below.

Adapter. Software models are designed in model designing tools. Integrating version

management or collaborative modeling tools with model designing tools is a challenge.

But, these tools provide export/import feature for software models by XML Metadata

Interchange (XMI) [Obj] format without layout information. Therefore, the Adapter is

developed to exchange models between external modeling tools and the DOL applications.

In the DOL applications, models are represented as TGraphs internally [ERW08] to

make them generally processable. The Adapter can parse models in the XMI serializations

to TGraphs and vice versa.

Calculator. The difference calculator detects the differences between the differentiated

model versions using state-based comparison and produces modeling deltas in terms of

the DOL operations. Several approaches already exist for difference calculation. There-

fore, Küpker [Kü13] investigated existing approaches such as UMLDiff [XS05] and SiDiff

[SG08] [TBWK07] and combined them to gDiff (generic differentiating).

2227

The difference calculator calculates the model similarities using the similarity metrics

such as a name [XS05] and a structural similarity [TBWK07]. Created, deleted or changed

elements are detected for each candidate element with the highest similarity.

The calculator produces two modeling deltas in the operation-based format by imple-

menting a specific DOL Interface: the active and the differences delta. If the first version

of a model is given, the calculator produces only the active delta without the differences

delta. The persistent identifiers are assigned to delta operations by the difference calculator

while matching model elements.

Optimizer. After the difference calculator produces the modeling deltas, they are opti-

mized to improve their efficiency. For instance, if a particular model element is created

and later deleted in the same delta, these two operations (create and delete) are registered

for one element where both have no affect. Another example might be changing one ele-

ment several times in one modeling delta. In this case, it is optimal to save only the last

change instead of several change operations for that model element.

Moreover, the order of delta operations in modeling deltas is also important to avoid

the lost and fuzziness of change information. The creation operations are placed on the

first place in a modeling delta, changes come second and deletions are dropped to the end.

Patcher. The patcher reverts a model to earlier versions by applying (sequences of) mod-

eling deltas to the last version. Modellers may need to revert a model to an older versions

in the case of lost or damage of data. The inputs for the patcher are a model and several

modeling deltas. An input delta is applied to an input model resulting in previous version

of a model.

Since the delta operations are the executable descriptions, they are implemented by

in-place model transformations [Kah06].

Tracer. To comprehend and analyse the histories of evolving models, the DOL approach

provides a Change Tracer service which contributes to detect necessary information about

each change history.

The change tracer receives the set of modeling deltas from the repository as input and

searches for change information about a considered model element based on its persistent

identifier. Detected change information is used by history analysis application (Section 5).

For instance, Figure 9 illustrates all history information of the control flow g4 in the

example in Section 3. The traced element was referred to in three versions. Information

about these states is tracked by slicing three modeling deltas, the active delta in Figure 3

and two differences deltas in Figures 4 and 5.

1 g4 = createControlFlow(g3,g7);

2 g4.changeTarget(g6);

3 g4.changeTarget(g5);

Figure 9: History information of Control Flow g4.

5 DOL Applications

As a proof of concept, the DOL-approach is being prototypically implemented. To demon-

strate its applicability, it is planned to use the approach in the context of three use cases

namely Modeling Versioning, Model History Analysis and Collaborative Modeling. The

architectures of these applications are built by the specific orchestrations of the DOL-

2228

services.

Model Versioning. Model versioning aims at managing and manipulating models as well

as storing and reusing the model differences. Model versioning systems are essential on

handling models and their histories. To this end, the DOL difference representation ap-

proach is applied to develop Generic Model Versioning System (GMoVerS). GMoVerS

uses the DOL operations to represent the model differences.

Current implementations of GMoVerS support adding models to the versioning system,

committing changes and reverting older versions. In each of these activities, the relevant

DOL-services are involved in a certain order based on data-flow. Figure 10 displays a

screen-shot of the GMoVerS development environment.

Meta-models

Models

Modeling

Deltas

Version 1
Version 2 Version 3

diff. delta diff. delta active delta

Terminal to execute

commands

Figure 10: A screen-shot of GMoVerS

First of all, a model has to be added under version control to start model versioning.

The Adapter is required to parse a model in the exchange format to internal representation,

then the calculator is involved to produce the active delta for the new model. Similarly,

committing changes requires the adapter to parse new versions to internal representation,

the patcher to revert the previous model version, again the calculator to calculate the dif-

ferences between the previous and committed versions and produce the differences and

active deltas. Reverting needs the patcher firstly to revert the recent model version, then it

is again called to revert requested version.

The explorer on the left side of Figure 10 displays the workspace including the meta-

model in Figure 1, the models and modeling deltas in Section 3. Here, all DOL-based

modeling deltas belong to the GMoVerS repository. On the upper row of the right side,

Figure 10 displays three subsequent versions of the example model in Figure 2 in exchange

formats. The central part of the right shows two differences deltas and the active delta. Fi-

nally, the most bottom of the screen-shot is a terminal to type and execute aforementioned

version control commands such as add, commit and patch.

Model History Analysis. Analyzing the model histories is crucial to understand what

2229

changes are made to models and to know how a model evolves during its life-time. History

analysis is built on the top of the change history tracer. The change tracer fetches a set

of modeling deltas from the repository and detects history information from these deltas

based on persistent identifiers. After detecting necessary history information, it is browsed

as depicted in Figure 11.

Figure 11: A screen-shot of the history analysis application

The screen-shot in Figure 11 displays the example model in Section 3. The change

tracer firstly builds a tree for each model version running throughout all modeling deltas

and outlines them in Model Tree as shown on the left side of Figure 11 including all model

elements. If a specific element is selected and show history button is clicked, the tracer

detects history information of the selected model element based on its persisted identifier

and shows it in Tabular View. For example, the table on the right side shows the history of

the g4:Control Flow in Figure 9.

Collaborative Modeling. Another prominent application of DOL is collaborative mod-

eling which facilitates a teamwork of several designers on a shared model repository at

runtime.

The implementation of the application is planned to rely on representing changes in

terms of the DOL operations and exchanging these changes by the appropriate modeling

deltas. To this end, it is planned to develop extra DOL-services named runtime opera-

tion recorder to detect operations embodying changes. The operation recorder will be

integrated into end-user model designing tools and it detects changes made by modellers.

While manipulating a model, the DOL-based change operations are recorded in modeling

deltas. An evolving model has several development branches and synchronization is re-

quired among various development branches. The synchronization of changes basically is

synchronization of the DOL-based modeling deltas among various branches.

6 Current and Ongoing Work

Extensive literature research has been done to become familiar with the existing difference

representation techniques and additional services related to this thesis. A first sketch of the

DOL approach was published in 2012 [KJW12].

The DOL-based difference representation approach is applied to versioning Sustain-

ability Reports at companies in [KSW13]. As sustainability reports at companies are also

subject to constant changes and evolution, companies intend to report and analyse sustain-

ability information to provide the sustainable future. Thus, reports have to be versioned to

2230

analyse the histories of sustainability reports.

The DOL generator and the DOL services such as the adapter, the difference calcula-

tor, the delta optimizer, the delta patcher and the change tracer (depicted in Figure 6) are

implemented so far. GMoVerS and Model History Analysis applications are elaborated by

the specific orchestrations of these DOL-services.

Building the specific orchestration of Collaborative Modeling is remaining as ongoing

work. Further services are requested to build up the collaborative modeling application.

Therefore, the DOL-services will be extended with a runtime operation recorder and a

synchronizer for collaborative modeling. A runtime operation recorder facilitates the end-

users with runtime operation registration. These modeling deltas will be synchronized by

a DOL-synchronizer.

Finalizing extension and evaluation of the model versioning and history analysis appli-

cations on the large scaled software models is expected till August 2014. Implementation

of further DOL-services and writing actual thesis is planned within the year 2014. Proof

read and submission of the thesis is scheduled for the beginning of 2015.

7 Expected Contributions

This paper proposed the PhD thesis focusing on development of an approach towards

model difference representation. The DOL approach is designed using existing software

engineering technologies. The operation-based difference representation approach facili-

tates several additional DOL services to employ and reuse the DOL-based modeling deltas.

The approach satisfies several reasonable principles and requirements: (1) Meta-model

Generic – applicable to various modeling languages with respect to their meta-models,

(2) Tool Independent – has own Adapter, (3) Operation-based – embodies all necessary

information about a change using a meaningful syntax and completely follows compound

modeling concepts, (4) Delta-based – only changed model objects are referred to in mod-

eling deltas, (5) Complete – carries precise information about each change, (6) Reusable

– provides several DOL-services which can directly access and manage the DOL-based

modeling deltas making modeling deltas straightforward and accessible.

With these principles, the DOL approach has the following contributions for its appli-

cations:

GMoVerS. The model differences are represented in terms of DOL and stored in small

modeling deltas. Only changes are referred to in modeling deltas. The delta operations are

directly executable descriptions of the model differences allowing model manipulations

when needed.

Model history analysis. The delta operations assigned to persistent identifiers allow the

change tracer to rapidly detect all necessary information about the change histories by ver-

ifying small modeling deltas.

Collaborative modeling. Synchronization of changes will be eased by exchanging small

DOL-based deltas. The various model designing tools which are running on different

platforms can communicate with each other in terms of DOL.

2231

References

[ABSK07] K. Altmanninger, A. Bergmayr, W. Schwinger, and G. Kotsis. Semantically Enhanced
Conflict Detection between Model Versions in SMoVer by example. In Proceedings of
the Int. Workshop on Semantic-Based Software Development at OOPSLA, 2007.

[AP03] M. Alanen and I. Porres. Difference and union of models. In UML 2003. LNCS, pages
2–17. Springer, 2003.

[CFP04] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with Subver-
sion. O’Reilly Media, 2004.

[Cic08] A. Cicchetti. Difference Representation and Conflict. PhD thesis, University of
L’Aquila, (Italy), April 2008.

[EMF] EMF: Eclipse Modeling Framework (Compare). http://www.eclipse.org/emf/compare.

[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering, The
TGraph Approach. In 10th Workshop Software Reengineering (WSR 2008), volume
126, pages 67–81. GI (LNI), 2008.

[HK13] J. Helming and M. Koegel. EMFStore., 2013. http://eclipse.org/emfstore.

[Kah06] S. Kahle. JGraLab: Konzeption. Entwurf und Implementierung einer Java-
Klassenbibliothek für TGraphen, 2006.

[KB14] S. Krusche and B. Bruegge. Model-based Real-time Synchronization. In Inter. Work-
shop on Comparison and Versioning of Software Models (CVSM’14), Feb. 2014.

[KJW12] D. Kuryazov, J. Jelschen, and A. Winter. Describing Modeling Delta By Model Trans-
formation. In Softwaretechnik Trends (Issue on International Workshop on Comparison
and Versioning of Software Models (CVSM 2012)), no. Band 32 Heft 4. Gesellschaft für
Informatik, November 2012.

[KSW13] D. Kuryazov, A. Solsbach, and A. Winter. Versioning Sustainability Reports. In
5.BUIS-Tage: IT-gestütztes Ressourcen- und Energiemanagement, pages 409–419.
Springer-Verlag, 2013.

[Kü13] C. Küpker. General Model Difference Calculation. Bachelor Thesis, Carl von Ossietzky
University of Oldenburg, June 2013.

[Loe09] J. Loeliger. Version Control with Git: Powerful Tools and Techniques for Collaborative
Software Development. O’Reilly Media, 2009.

[Obj] Object Management Group. XMI Specification, v1. 2.

[SG08] M. Schmidt and T. Gloetzner. Constructing Difference Tools for Models Using the
SiDiff Framework. ICSE 2008, pages 947–948, May 10-18 2008.

[SSA14] C. Seidl, I. Schaefer, and U. Aßmann. DeltaEcore - A Model-Based Delta Language
Generation Framework. In Modellierung, pages 81–96, 2014.

[TBWK07] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference Computation of Large Mod-
els. In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference, pages 295–304. ACM Press, 2007.

[UML] UML: Unified Modeling Language. http://www.uml.org.

[XS05] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-Oriented Design Differ-
encing., pages 54–65. 6. ACM, 2005.

2232

