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Abstract: Software product lines (SPLs) and software ecosystems (SECOs) represent
families of closely related software systems in terms of configurable variable assets.
Delta modeling is an approach for capturing variability resulting from different con-
figurations and for deriving concrete software products of an SPL or SECO through
transformation. Even though the general concepts of delta modeling are language-
independent, custom delta languages are required for all source languages, which are
tedious to create and lack interoperability due to different implementation technologies.
In this paper, we present a framework to automatically derive delta languages for textual
or graphical languages given as EMOF-based meta models. We further illustrate how
to automatically generate the syntax and large parts of the semantics of the derived
delta language by inspecting the source language’s meta model. We demonstrate our
approach by applying our implementation DeltaEcore to four selected source languages.

1 Introduction

Software product lines (SPLs) [PBvdL05] and software ecosystems (SECOs) [Bos09] are

approaches to reuse in the large where families of closely related software systems are

modeled in terms of configurable functionality often referred to as features. An SPL has a

closed variant space where the set of all possible features is explicitly known making it

(theoretically) possible to determine all valid variants of the SPL a priori [PBvdL05]. In

contrast, SECOs have an open variant space [Bos09] where not necessarily all features

are known by a central instance at any particular time. A configuration for one member

of the software family is represented by a valid subset of all possible features. In order to

derive a concrete software system for a configuration, a variability mechanism has to build a

variant from all realization parts related to the features present in the configuration. As most

software systems consist of multiple artifacts for different purposes (e.g., design models,

source code, configuration files, documentation material etc.), a variety of languages has

to be made subject to variability in SPLs and SECOs. With suitable meta models for the
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respective languages, all these artifacts can uniformely be regarded as models allowing to

handle textual as well as graphical languages.

In our work, we chose the transformational variability mechanism delta modeling [SBB+10]

to represent variability due to its ability to handle both SPLs and SECOs as well as

configuration and evolution (see Section 2). Delta modeling alters a given base variant of

an SPL or SECO by adding, modifying and removing parts to transform the system into a

variant conforming to the provided configuration. In delta modeling, transformation steps

are described in a domain-specific language-dependent delta language, which restricts

transformation operations and which is closely tied to its source language, e.g., Delta

Java [SBB+10] as delta modeling language for Java.

With multiple different languages specifying a family of software systems (e.g., design

models, source code etc.), a variability mechanism needs to be applicable to all languages

whose artifacts are affected by different configurations. For delta modeling, this means that

all languages and their meta models need to have a respective delta language to alter them

programmatically. This is complex as a) many languages, in particular domain-specific

languages, do not have a pre-defined delta language and b) new languages may be introduced

and existing ones may be altered as part of system evolution requiring adaptation of the

respective delta language as well. Creating delta languages manually requires extensive

efforts and delta languages created by different developers often lack interoperability due

to different implementation technologies.

In our approach, we address the problems arising from manually creating delta languages.

We introduce a model-based framework to define delta languages for source languages with

an EMOF1-based meta model. We further define six types of standard delta operations and

illustrate how to analyze a source language’s meta model to derive large parts of the delta

operations for a suitable delta language. We generate syntax, semantics and tooling for

these delta languages including editor support, parsers and interpreters. The generated delta

languages seamlessly integrate into a common variant derivation mechanism so that they

can be used to create variants of an SPL or SECO and are fully interoperable with other

delta languages created with this framework.

This paper is structured as follows: Section 2 introduces delta modeling with its benefits and

limitations as well as a running example used throughout the paper. Section 3 explains our

delta language generation framework and illustrates how to derive suitable delta operations

from analyzing a source language’s meta model. Section 4 demonstrates the implementation

of these concepts in our tool DeltaEcore. Section 5 shows the feasiblity of our approach by

selected case studies before Section 6 discusses related work and Section 7 closes with an

outlook to future work.

1EMOF (Essential MOF) is a subset of the Meta-Object Facility (MOF) 2.0 standard for model-driven

engineering by the Object Management Group (OMG), see http://omg.org/mof

82



2 Delta Modeling

Delta modeling is an approach for capturing variability in software families and for deriving

individual products [SBB+10]. The general idea is to transform one valid variant of

the family into another variant realizing a different valid set of features by means of

adding, modifying or removing elements of the first variant. Within the approach, a delta

module is used to bundle the transformation operations associated with (part of) a particular

configurable unit of functionality or combinations thereof. The individual transformations in

a delta module are performed by application of delta operations, which are custom-defined

transformation procedures specified individually for each language. Within this paper, we

use the term source language for the original language (e.g., Java) and delta language for

the language in which delta modules containing delta operations are specified (e.g., Delta

Java [SBB+10]). A source language in delta modeling may be textual, graphical or in

any other representation. Delta languages are usually specified textually [SBB+10, DS11],

but there also are attempts to specify them graphically [HKM+13]. To derive a particular

product in delta modeling, a set of delta modules is brought into a suitable order and applied

by executing the respective delta operations sequentially.

To illustrate the concepts in this paper, we use the example of Software Fault Trees (SFTs)

applied in safety-critical software to successively decompose a root fault into logical

combinations of its constituent faults in order to determine causes for the root fault’s

appearance [Lev95]. An SFT is a tree consisting of gates representing logical and/or

operations as well as intermediate faults, which are refined further, and basic faults, which

are considered atomic. Basic faults are assigned an individual probability of occurrence,

which can be used to derive metrics for the likelihood of more complex faults activating.

Figure 1a) shows an example SFT.
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Figure 1: a) Example SFT. b) Meta model for SFTs.

When safety-critical software systems are created from a software family in the sense of

an SPL or SECO, the respective safety artifacts describing the system for analysis and

certification need to be altered equivalently to the system itself for different configura-

tions [SSA13, DL04]. Thus, when using delta modeling, languages such as SFTs need a

delta language to express variability. We chose SFTs as a running example as they demon-

strate many of the principal challenges in creating custom delta languages yet are sufficiently
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comprehensible. Figure 1b) shows the meta model for SFTs we use throughout the paper.

The meta class SFTSoftwareFaultTree represents the root element of the SFT. In ad-

dition, SFTFault is the abstract base class for its specializations SFTBasicFault and

SFTIntermediateFault representing the respective faults. Finally, SFTGate repre-

sents logical gates with the respective logical operator of the enumeration SFTGateType.

In the meta model, we distinguish structural features of meta classes into references relating

elements to instances of meta classes and attributes having values with basic types, custom

data types or enumerations. Furthermore, we distinguish single-valued references having

an upper bound of one and many-valued references having an upper bound greater than one

resulting in a (possibly ordered) set of values.

1 delta "RefineObstacleDetection"

2 dialect <http://vicci.eu/ecosystem/sft/1.0>

3 requires <../core/RobotCollision.sft>

4 {

5 removeFaultFromFaultsOfGate(<ODF>, <G1>);

6 SFTIntermediateFault odf = new SFTIntermediateFault(id: "ODF",

7 name: "Obstacle Detection Fails");

8 addFaultToFaultsOfGate(odf, <G1>);

9

10 SFTGate g3 = new SFTGate(id: "G3", gateType: SFTGateType.AND);

11 setGateOfIntermediateFault(g3, odf);

12

13 addFaultToFaultsOfGate(new SFTBasicFault(id: "BSF",

14 name: "Bump Sensor Fails", probability: 0.003), g3);

15 addFaultToFaultsOfGate(new SFTBasicFault(id: "DSF",

16 name: "Distance Sensor Fails", probability: 0.0007), g3);

17 }

Listing 1: Example usage of DeltaSFT to alter SFTs in the course of variability.

In general, a delta language should provide operations to create new instances of all concrete

meta classes and to reference existing elements. DeltaSFT as delta language for SFTs

conforming to the presented meta model should further allow to add and remove faults

to/from the many-valued faults reference of gates as well as to set and unset the value

of the single-valued gate reference of intermediate faults. Furthermore, DeltaSFT has

to support modification of the attribute name for both fault trees and faults as well as

probability of basic faults and gateType of gates by assigning a new value. The

id of both faults and gates is closely related to the identity of the respective elements and,

thus, should not be subject to changes due to variability. An example of a delta module in

DeltaSFT is provided in Listing 1. It modifies an SFT capturing the causes for the collision

of a domestic robot. The basic variant of the SFT is loaded in l. 3 and modified in ll. 5–16 to

include fault propagation paths for an add-on distance sensor by applying delta operations

specific to the source language of SFTs.

The general concepts of delta modeling can be seen as a specialized form of model transfor-

mation [MVG06]. In contrast to a general model transformation engine, a delta language

only provides selected modification operations required for expressing variability. Opera-

tions that should not be performed as part of variability, such as changing IDs, are explicitly

prohibited by not providing the respective delta operations. Furthermore, operations may

be specified to respect the syntactical and semantical constraints of the source language,

e.g., by avoiding dangling references. Finally, variability engineers are not required to learn
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or understand the full scope of a general model transformation engine but only that of the

reduced functionality of the delta language.

Delta modeling has multiple beneficial qualities when used as variability mechanism. For

one, it can handle configuration (variability in space) as well as evolution (variablity in

time) within a single notation [SBB+10, DS11] allowing both to derive products and to

modify the SPL or SECO in response to changed or new requirements. Furthermore, delta

modeling does not depend on a closed variant space as in SPLs but can deal with an open

variant space where not necessarily all configuration options are known in advance as found

in SECOs [Bos09, SA13], which is a discriminating difference to annotational variability

mechanisms [SRC+12] often used with SPLs.

These characteristics and the fact that the general concepts of delta modeling are language

independent make it a very suitable option for SPL and SECO development. However, for

a practical application of delta modeling to a particular language or meta model, an imple-

mentation of a custom delta language for its source language is required. Furthermore, a

variability modeling approach based on delta modeling is only applicable if all languages of

the SPL or SECO that are affected by variability support it. Even though implementations of

delta languages exist for source languages such as Java [SBB+10], Class Diagrams [Sch10],

Matlab/Simulink [HKM+13] or Component Fault Diagrams (CFDs) [SSA13], they are

currently incompatible with one another and less known languages need individual imple-

mentation of a delta language.

Creating a delta language manually for a specific source language or meta model is tedious

as not only the language’s syntax and semantics have to be devised but also the tooling

to create delta modules and derive product variants needs to be created. This results in a

number of problems: First, most languages do not possess a delta language as it would

have to be defined manually. Second, implementations lack robustness as reuse of common

technologies is not possible. Third, delta languages created by different developers lack

interoperability so that multiple tools are required to handle variability of different source

languages. Automatically generating delta languages on basis of a common framework may

address these problems. However, existing approaches [HHK+13] are limited to deriving

the syntax of delta languages for textual languages from grammars and cannot generate

their semantics or tooling for product derivation.

3 Delta Language Generation Framework

In this paper, we present a framework to create custom delta languages for source languages

given as EMOF-based meta models. Within our framework, we use information from

analyzing a source languages’s meta model to derive syntax and large parts of the semantics

for the model representation of a delta language with a concrete textual syntax. For this

purpose, we use two languages represented by meta models with concrete textual syntax:

1) The common base delta language, which provides functionality common to all delta

languages such as creating and referencing elements and 2) a delta dialect, which provides

delta operations specific to the source language. A delta language is created by combining
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the common base delta language with a delta dialect specific to the respective source

language. This general architecture is illustrated in Figure 2.

Source Language

Framework

conforms

refers refersrefers

conforms

creates

Common Base Delta Language

Meta Meta Model

Delta Dialect

Meta Model

Delta Language

Model

Figure 2: Architecture of the delta language generation framework.

3.1 Common Base Delta Language

The common base delta language operates on the level of the meta meta model (EMOF)

using e.g., EReferences as elements, but not their instances in the meta model of the

source language, such as the reference faults of the meta class SFTGate in the meta

model for SFTs defined in Figure 1b). Hence, the common base delta language requires

no knowledge of the source language’s meta model so that it is provided entirely by the

framework. The common base delta language represents the skeleton of the custom delta

language that is to be created. Constructs defined by the common base delta language

include a) references to other delta modules or models (e.g., requires), b) dynamically

created constructors with named parameters to instantiate meta classes, c) references to

existing model elements (language dependent identifiers are possible), d) definition of

variables and constants and e) invokation of delta operations with arguments.

These constructs are available in all delta languages created using the framework, but can

be defined independently from the concrete source language. In order to avoid having to

define them for each delta language individually, we provide these constructs as part of the

framework and share them between different delta languages. As the common base delta

language is defined in a meta model, we are able to perform operations such as type checks

to ensure that the types of referenced objects, variables and parameters are compatible. We

further provide a concrete textual syntax with the meta model, which is used as basis for

the textual custom delta language when combining the common base delta language with a

delta dialect.

3.2 Delta Dialect

A delta dialect defines delta operations suitable to expressing variability for a particular

source language, e.g., to add faults as children of a gate for SFTs. Thus, a delta dialect is

the part of a custom delta language that ties to the meta model of a specific source language.

The delta language itself is created by combining the common base delta language with

the respective delta dialect for the source language. We specify the structure for delta

dialects using a meta model and further provide a concrete textual syntax (see Listing 2 in
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Section 4). The custom delta language is created by dynamically introducing references

between the meta models of the common base delta language and the respective delta

dialect. Along with the resulting meta model, we provide a concrete textual syntax for the

resulting custom delta language that is synthesized from the textual syntax of the common

base delta language and the meta classes in the source language (see Listing 1 in Section 2).

Hence, delta modules may be specified textually and principally also in other forms, e.g.,

graphically.

3.3 Delta Operations

A delta dialect is specified for a particular source language by the users of our framework

by defining suitable delta operations for the source language. In our running example, we

illustrated the need for five types of operations: setting und unsetting the value of single-

valued references, adding and removing values of many-valued references and modifying

the value of attributes. We further identified the need for a sixth operation that can insert a

value into a many-valued reference at a specified position provided that the set of values

is ordered. Using these six types of operations, we define semantics for standard delta

operations used for variability modeling with EMOF-based models and illustrate how to

derive them from a source notation’s meta model. Furthermore, we also support developers

in creating custom delta operations with user-defined semantics to realize domain-specific

operations.

Set/Unset Delta Operations are used to alter the value of a single-valued reference. A set

delta operation assigns a new value to a specified single-valued reference, whereas an unset

delta operation replaces the current value with the default value for that reference as defined

in the meta model.

We derive set and unset operations from a source language’s meta model by collecting all

references in a set that are changeable and single-valued. For each reference in the set, we

define both a set and unset delta operation. The delta dialect for our running example in

Listing 2 in Section 4 contains definitions for two set delta operations (ll. 7/8, 20/21) and

two unset delta operations (ll. 9/10, 22).

Add/Insert/Remove Delta Operations are provided to manipulate the set of values of

many-valued references. An add operation appends a given element to the set of values

and a remove operation detaches it from the set. Thus, the semantics of a remove operation

is different from that in other approaches to delta modeling [SBB+10, DS11] where it

completely erases an element from the model whereas, in our case, the element is only

detached from the specified list of references. An insert operation places the element at a

certain position within the set of values, which is only sensible if the set is ordered.

We derive add, insert and remove delta operations in a similar way to set and unset delta

operations: We first collect a set of all references that are changeable and, in this case,

many-valued. As insert delta operations are only sensible for ordered sets of values, we

further exclude references that are marked as being unordered for this type of operation.

For each reference in the set, we create the respective delta operations. The delta dialect for
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our running example in Listing 2 contains one add delta operation (l. 28) and one remove

delta operation (ll. 29/30). As none of the many-valued references of the meta model is

marked as being ordered, no insert delta operations are required.

Modify Delta Operations are used to alter the values of an attribute. In contrast to

manipulating referenced values, modification of attribute values is free of side effects

(e.g., automatically updated opposite references). Hence, we decided that users of a delta

language should be made aware of this difference so that we distinguish set and modify

delta operations. In consequence, modify delta operations have a different meaning from

that in other approaches to delta modeling [SBB+10, DS11] where they are used solely to

signal that the contents of a hierarchically decomposed element are being altered. We do

not require such a marker as we can use references to target elements directly even if they

are nested within a containment hierarchy.

We derive modify delta operations from the provided meta model by inspecting all of its

concrete (i.e., non-abstract) meta classes. For each of these meta classes, we iterate over

the attributes and collect those that are changeable and not marked as ID. We decided not

to allow modification of IDs by default as an identifier is tightly connected to the identity of

an element and, thus, should not be changed as part of variability modeling. Instead, the

element itself should be replaced. For each attribute in this set, we then generate a modify

delta operation. The delta dialect for our running example in Listing 2 defines seven modify

delta operations (ll. 11–18, 23–26, 31).

Custom Delta Operations are used to declare delta operations with user-defined domain-

specific semantics that could not be expressed using the generated delta operations. This

enables creators of a delta language to utilize knowledge of the semantics of the source

language to provide specifically tailored operations, e.g., to avoid dangling references

according to the constraints of the source language. As the semantics of these opera-

tions depends entirely on the behavior intended by the creator of the delta language, the

implementation to interpret the respective custom delta operations needs to be provided

manually.

We explicitly decided to not include two specific operations in the set of standard delta

operations that may have to be realized as custom delta operations: For one, we refrained

from defining a replace delta operation as it inherently depends on the semantics of the

source language whether elements of the exact same type, those compatible in the sense

of subtype polymorphism or semantically equivalent elements may be used as substitutes.

Furthermore, we did not define a standard delete delta operation that completely erases

an element from the model along with all its references as this operation would have too

many (potentially unintended) side effects to be sensible for variability modeling in general.

Hence, the element either has to be deleted step by step using standard delta operations

or a custom delta operation specific to the source language has to be defined, which may

be done for abstract meta classes to cover multiple concrete meta classes at once if no

fine-grained control is required.
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4 Implementation

We have realized the concepts presented in this paper using Ecore from the Eclipse Modeling

Framework2 (EMF) as meta modeling notation supporting EMOF. Our implementation

is called DeltaEcore and is available for download at http://deltaecore.org. A

variety of tools exists for Ecore to create model representations of both textual and graphical

languages allowing DeltaEcore to target a wide range of source languages.
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Figure 3: Implementation components of DeltaEcore.

Figure 3 illustrates the main implementation components of DeltaEcore, which we reference

in the following using an italic type. Along with the Common Base Delta Language,

DeltaEcore provides Editor Support for the derived delta languages including syntax

highlighting, auto completion etc. as well as a Delta Parser to create a model representation

from the textual syntax of a delta language. Each delta module explicitly specifies which

models it alters and which other delta modules it depends on (if any) through a requires

relation. When applying a set of delta modules, the Delta Completer collects all models

to be altered and all (transitively) required delta modules, the Delta Sorter performs

topological sorting to establish a suitable application order for the delta modules, the Delta

Interpreter applies delta modules and their delta operations with the help of the generated

delta dialect specific interpreters and the Variant Derivator assembles all affected models to

store them as variant of the SPL or SECO. All these components are provided by DeltaEcore

so that merely a Delta Dialect for a Source Language has to be defined by users of the

framework in order to create a delta language. We use the steps described in Section 3.3 to

automatically generate standard delta operations for a specified source language. In our

implementation, we generate a model representation of these delta operations enabling us to

enforce type safety when combining a delta dialect with the common base delta language.

Listing 2 shows the textual representation of a delta dialect for SFTs conforming to the

meta model introduced in Figure 1b) as generated by DeltaEcore. When combining this

delta dialect with the common base delta language, DeltaSFT is created, which can be used

to specify variability for SFTs in delta modules such as the one depicted in Listing 1 of Sec-

tion 2. In the configuration section of the delta dialect, the meta model of the source

language is identified by specifying its URI as parameter to the metaModel key (l. 3).

Furthermore, it is possible to optionally provide a custom identifierResolver—a

Java class used to resolve references to elements within the meta model (l. 4). The default

implementation uses attributes flagged as ID in Ecore to resolve references. However, it may

be necessary to use custom identifiers such as with hierarchically structured models without

2http://eclipse.org/modeling/emf
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1 deltaDialect {

2 configuration:

3 metaModel: <http://vicci.eu/ecosystem/sft/1.0>;

4 identifierResolver: eu.vicci.ecosystem.sft.delta.SFTIdentifierResolver;

5

6 deltaOperations:

7 setOperation setRootFaultOfSoftwareFaultTree(SFTFault value,

8 SFTSoftwareFaultTree[rootFault] element);

9 unsetOperation unsetRootFaultOfSoftwareFaultTree(

10 SFTSoftwareFaultTree[rootFault] element);

11 modifyOperation modifyNameOfSoftwareFaultTree(String value,

12 SFTSoftwareFaultTree[name] element);

13

14 modifyOperation modifyNameOfBasicFault(String value, SFTBasicFault[name] element);

15 modifyOperation modifyDescriptionOfBasicFault(String value,

16 SFTBasicFault[description] element);

17 modifyOperation modifyProbabilityOfBasicFault(Double value,

18 SFTBasicFault[probability] element);

19

20 setOperation setGateOfIntermediateFault(SFTGate value,

21 SFTIntermediateFault[gate] element);

22 unsetOperation unsetGateOfIntermediateFault(SFTIntermediateFault[gate] element);

23 modifyOperation modifyNameOfIntermediateFault(String value,

24 SFTIntermediateFault[name] element);

25 modifyOperation modifyDescriptionOfIntermediateFault(String value,

26 SFTIntermediateFault[description] element);

27

28 addOperation addFaultToFaultsOfGate(SFTFault value, SFTGate[faults] element);

29 removeOperation removeFaultFromFaultsOfGate(SFTFault value,

30 SFTGate[faults] element);

31 modifyOperation modifyGateTypeOfGate(SFTGateType value, SFTGate[gateType] element);

32 }

Listing 2: Textual representation of a delta dialect for SFTs.

unique identifiers. The characteristics of the identifiers depend on the source language so

that the implementation of the respective identifier resolver is delegated to the creator of

the delta language if the standard behavior does not suffice.

In the deltaOperations section (ll. 6–31), signatures for the delta operations provided

within the custom delta language are given. All six types of standard delta operations are sup-

ported using distinct keywords for the different types of operations (e.g., setOperation

or addOperation). In addition, it is possible to specify custom delta operations using

the keyword customOperation, which may have arbitrary parameters and require a

manual implementation of their semantics. In Listing 1, DeltaSFT is created by combining

the common base delta language with the delta dialect of Listing 2 using the dialect

keyword in l. 2.

When deriving standard delta operations, we synthesize names for the derived delta oper-

ations from the meta model of the source language to provide a naming convention, e.g.,

setRootFaultOfSoftwareFaultTree in Listing 2. However, these names may

be changed at will by creators of delta dialects. To guide the process of deriving delta

operations, we provide a graphical user interface allowing the deselection of undesired stan-

dard delta operations before generation. For all delta operations defined in a delta dialect,

implementation classes for an interpreter of the custom delta language are generated. With

the defined semantics of standard delta operations, it is possible to completely generate
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the implementation for set/unset, add/insert/remove and modify delta operations. The

semantics of custom delta operations is not formally defined and, thus, their interpretation

needs to be implemented manually.

5 Case Study

In our case study, we evaluate the suitability of the concepts presented in this paper on

four different languages using our tool DeltaEcore: Software Fault Trees [Lev95] (SFTs),

Component Fault Diagrams [SSA13, KLM03] (CFDs), Checklists [Lev95] (CLs) and the

Goal Structuring Notation [KW04] (GSN). An example of SFTs was already presented in

Figure 1 and examples of CFDs, CLs and the GSN can be found in Figure 4. All these

languages stem from the area of certifying safety-critical systems, but they contain many

different features representing a wide range of languages. The abstract syntax of SFTs

is represented by a tree, that of CFD and CLs by a reducible graph and that of GSN by

a general graph. SFTs, CFDs and GSN have a graphical syntax, whereas CLs have a

textual syntax. Finally, the GSN may reference model elements from SFTs, CFDs and CLs

interconnecting the languages.

c)b)a)

checklist "Test BS"

group "Surface"

F1 "Wooden Floor"

x F2 "Carpet"

x F3 "Concrete"

F4 "Wet Floor"

group "Speed"

x S1 "Low Speed"

S2 "Regular Speed"

S3 "High Speed"

Collision

Braking System (BS)

BrakingFails

Moving LowFrictionSurface

Obstacle Detector (OD)

Collision AvoidableCollision

Obstacle Moving

AND

OIW RIM LFS

Goal1
Collisions have to be avoided

Strategy2
Show that obstacle
detection is working

Solution2
CFD of obstacle
detector

CFD for OD

Strategy1
Show that braking
system is working

Solution1
SFT and test of
braking system

SFT for BS CL for BS test

Figure 4: Example of languages used in the case study: a) CFDs, b) CLs, c) GSN.

In particular, we consider three research questions: RQ1: Is it possible to generate custom

delta languages that are expressive enough to handle the required variability of the source

language? RQ2: Is our approach capable of dealing with scenarios where other than the

derived delta operations are required? RQ3: Are the generated methods sound (i.e., useful,

fit for purpose and non-redundant)?

For CFDs, a delta language was already presented as part of our previous work [SSA13].

For SFTs, CLs and GSN, we manually created the respective delta languages to have

a reference for comparison with delta languages generated by DeltaEcore. To answer

our research questions, we inspected the delta operations derived from the languages’

meta models and analyzed how complex the creation of custom delta operations and their

implementations is in terms of lines of code (LOCs).

We created delta languages for these source languages using DeltaEcore. In Table 1,

we provide metrics for the generated languages. The column “Generated” contains the
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number of all generated delta operations, “Excess” counts those delta operations that are

redundant (e.g., providing access to an opposite reference), “Not Ideal” lists the number of

operations that were perceived as not being elegant for the intended purpose (e.g., setting

the bounding box for the graphical representation of an element instead of moving and

resizing it) and “Restrict” states the number of generated methods that had to be removed

in order to disallow access to model elements that should not be affected by variability

modeling. Finally, “Custom” lists the number of custom delta operations used in the delta

language and “LOC” states the number of lines of code required to implement their intended

semantics.

Source Language Generated Excess Not Ideal Restrict Custom LOC

SFT 15 2 0 0 0 0

CFD 39 12 2 17 6 31

CL 10 0 0 0 0 0

GSN 26 16 3 1 4 33

Table 1: Results of deriving delta dialects for the source languages of the case study.

The generated standard delta operations of all delta dialects were sufficient to handle

variability in the respective source languages with regard to our original expectations.

However, CFDs and GSN have a relatively large number of excess methods. This is mostly

due to the presence of multiple opposite references where delta operations were generated

for both the original and opposite reference creating redundancy. Furthermore, a large

number of delta operations of the delta dialect for CFDs had to be removed in order to

restrict access similarly to the original delta language for CFDs. However, we consider

13 of these 17 delta operations as being useful and merely had not included them in the

original delta language due to the implementation effort at the time. To realize additional

delta operations, CFDs required six and GSN four custom delta operations with 31 and 33

LOC respectively.

With regard to our research questions, we come to the following conclusions: Using

DeltaEcore, it was possible to completely generate delta languages for the respective

source languages that are expressive enough to handle variability resulting in a positive

answer to RQ1. Even though it was possible to alter all elements with the derived delta

operations, in some cases, providing more elegant delta operations was desirable. For

example, the generated delta operations to alter the visual appearance of CFD elements

suggested setting the bounding box of the element whereas the source language used

delta operations to move and resize the element, which seemed more intuitive to use.

Delta operations missing from the generated delta dialect could be realized by custom

delta operations and manual implementation of the semantics in the dialect interpreter.

Furthermore, access to elements considered immutable in the course of variability could

be restricted by omitting the respective delta operations resulting in a positive answer to

RQ2. The relatively large number of excess methods creates redundancy so that not all of

the generated delta operations are considered sound with respect to our research questions

resulting in a negative answer to RQ3. We will inspect how to reduce the number of

redundant methods especially with regard to opposite references.
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Threats to validity of our case study mainly come from selection of the source languages.

Even though we used languages representing different characteristics, all four inspected

source languages stem from the same domain of safety-critical systems so that they may

not necessarily be representative for languages of other domains. Furthermore, the meta

models for all source languages were created by the authors of this paper and, thus, may

reflect a certain style of modeling. Finally, the inspected meta models are relatively small

in comparison to those for languages such as Java.

6 Related Work

Multiple publications exist that present individual delta languages for particular source

languages, such as for Java [SBB+10], Class Diagrams [Sch10], State Charts [LSKL12],

Component Fault Diagrams [SSA13], the architectural language MontiArc [HKR+11]

or Matlab/Simulink [HKM+13]. However, these delta languages are tightly integrated

with their source languages and, thus, serve as archtypes of syntax and semantics of delta

languages, but not as basis for generating custom delta languages for arbitrary meta models.

The work related closest to ours is that of Haber et al. [HHK+13] as it has the similar goal

to generate a delta language for a given source language. They derive the concrete syntax

for a custom delta language from a provided textual source language given as grammar by

means of grammar extension. In contrast, we analyze the source language’s abstract syntax

to generate a delta language external to the source language. We use a similar concept of a

common delta language. However, our common base delta language is represented as a

meta model, which allows operations such as type checking whereas their common delta

language merely consists of a grammar. In addition, their approach is limited to textual

source languages whereas ours targets meta models and, thus, can create delta languages for

models in textual, graphical or any other representation. Furthermore, their approach only

generates the syntax of a delta language whereas ours generates large parts of an interpreter

and an integration into a common variant derivation mechanism as well.

Another approach closely related to ours is that of Sánchez et al. [SLFG09] where a

framework may be used to define domain-specific languages for variability management in

a particular target meta model. In the extension of the work by Zschaler et al. [ZSS+10],

SPL technologies are bootstrapped to create a family of these languages. Similar to our

approach, the authors define modification operations external to the target meta model.

However, they do not provide defined semantics for standard operations, but have language

creators implement each operation using a general purpose model transformation language.

FeatureHouse [AKL13] is an approach for generalizing software composition by superim-

position for artifacts written in different languages. FeatureHouse can be seen as a language

workbench for feature-oriented variability modeling languages, which is similar to our

approach for delta-oriented variability modeling. However, FeatureHouse does not operate

on meta models of the source languages, but relies on the parse tree for the considered

language and the concept of feature structure trees (FSTs), which resemble abstract syntax

trees. The FSTs can be composed using a set of predefined operations with associated
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semantics similar to the standard delta operations we provide. So far, FeatureHouse was

only used for textual languages while our approach is more generally applicable for textual

as well as for graphical languages.

The Common Variability Language (CVL) as a standardization effort for variability lan-

guages is closely related to our approach in that it has the goal to extend arbitrary MOF-

based models with a variability mechanism. CVL defines semantics of certain standard

operations that may be performed as part of variability modeling similar to our approach.

However, CVL utilizes an annotational variability mechanism that depends on a closed

variant space and, thus, may not be used with SECOs.

Besides approaches providing or generating languages to specifically handle variability,

there are also more general approaches to model transformation that can be utilized for

similar purposes. Rumpe and Weisemöller [RW11] generate a domain specific model

transformation language from the concrete syntax of a source language. However, their

focus is not on variability so that they do not provide standard variational operations with

defined semantics or a variant derivation mechanism.

In addition, there are multiple general purpose model transformation approaches of which

graph-based approaches are most suitable for variability modeling [CH06] with specifica-

tions such as QVT3 and languages targeting Ecore such as ATL4 or ETL5. However, the

use of general purpose model transformation engines to express variability is problematic.

Such languages are not tailored to the field of variability management with the result that

they may be too powerful and their syntax may be both unfamiliar to and overwhelming for

variability engineers. In contrast, a dedicated language for variability management, such as

a delta language, may offer operations specifically tailored to expressing variability in the

source language, e.g., to preserve consistency by avoiding dangling references.

7 Conclusion

In this paper, we presented a framework to create delta languages for source languages given

as EMOF-based meta models to express variability in SPLs and SECOs. We illustrated how

to derive syntax and semantics for custom delta languages from a source language’s meta

model. For this purpose, we defined semantics for six types of standard delta operations

and illustrated how to analyze an EMOF-based meta model of a source language to find

suitable instances of these operations. We used this information to define a delta dialect to

a common base delta language in order to create a custom delta language. The generated

delta languages are interoperable and integrate seamlessly into a common variant derivation

mechanism to create products of an SPL or SECO for multiple source languages.

The case study showed that DeltaEcore can be applied to languages with different char-

acteristics and that the automatically generated standard delta operations cover a wide

range of suitable delta operations. However, it also suggested that a large number of excess

3http://omg.org/spec/QVT/1.0
4http://eclipse.org/atl
5http://eclipse.org/epsilon/doc/etl
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delta operations is derived especially with opposite references. In our future work, we will

consider how to reduce this number and how to identify delta operations particularly useful

to variability engineers. We will further inspect how to integrate support for family-based

analyses into DeltaEcore to allow efficient processing and comparison of analyses on

multiple variants of an SPL or SECO. Finally, we plan to perform an industrial-scale case

study with partners from the automotive sector using our tool DeltaEcore.
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