
Using Aspect-Orientation to Add Persistency to
Applications

Uwe Hohenstein

CT SE 2
Siemens AG

Otto-Hahn-Ring 6
81730 München

Uwe.Hohenstein@siemens.com

Abstract: This paper presents a comfortable and customizable persistence
framework that supports the access of relational databases from Java applications.
In order to keep the effort for implementation low, we show how to benefit from
aspect-orientation. The framework has advantages over existing mapping tools:
Flexibility is higher as the functionality can be freely designed. We demonstrate
flexibility by putting emphasis on flexible mapping strategies.

1 Introduction

The classical way to make relational data accessible from a programming language is to
embed SQL statements. Java applications can use JDBC and SQLJ to this end. But
programmers are then faced with the problem of bridging the semantic gap between
object-oriented programming and relational concepts such as tables and SQL. Data
exchange between Java and SQL requires special concepts such as host variables and
cursors, making application programs difficult to write and hard to read.

From the point of programming, it is desirable to store and retrieve objects of the
application in an easy manner. To support this goal, several object/relational (O/R)
mapping tools came up, for which Java Data Objects (JDO) defines a common standard
interface. Those products start with an object model describing the data to be stored in
the database. The object model is then automatically mapped onto relational tables using
some predefined strategies. Moreover, an object-oriented persistence layer on top of the
relational database system (RDBS) is provided that breaks down objects into tuples
accordingly. This layer now provides an interface that allows storing, retrieving and
deleting objects of the object model, independently of how they are represented in tables.
The high-end of those tools more or less emulate object-oriented DBSs (ODBSs) on top
of relational ones. But they can certainly not compete with the performance of real
ODBSs, if typical traversals from object to object are performed.

Enterprise JavaBeans (EJB) application servers behave similarly. However, the object
model supports only few concepts such as classes (beans) and relationships. They even
go one step further allowing one to develop applications without taking notice of
persistence, transactions etc. In the mode of Container-Managed Persistence and

235

Transactions, a container manages persistence and transactions, the configuration of
which is purely done outside by means of an XML deployment descriptor.

All these approaches are useful as they make programming relational database
applications easier by hiding underlying relational DBS technology. Nevertheless, a
user’s exertion of influence is sometimes too low, as the layer is mostly a black box.
That is, the layer possesses certain functionality, or it does not. Either the performance is
sufficient, or is not. One has to live with the layer as it is, there are no possibilities to
improve performance, to include new features such as advanced querying or
transactions, or the other way round, to remove needless functionality. In these cases, it
is inevitable to implement a persistence layer by one’s own [KC98]. [He98,SHW98]
vote for hand-made persistence layers and discuss important aspects of defining
scaleable object-persistence layers in more detail. Such a layer provides better
adaptability and flexibility, but requires more effort for implementation. [SHW98]
estimates the effort for developing a persistence layer at 30% of the planned resources!

Another problem is accessing existing databases with these tools. The tools operate in a
top-down manner: An object model is mapped to tables according to some strategies.
Having existing tables means that the internal strategies must be understood and turned
up. The choice of the object model then depends on achieving certain tables, and the
object model cannot freely be defined to be adequate for the application logic. The same
problem occurs if table structures are changed due to performance reasons.
Unfortunately, changing the table structure and reorganising the accesses possess the
best potential for improving the performance.

In this paper, we describe how to reduce the effort for developing application-specific
persistence layers for relational databases by taking benefit from the new technology of
aspect-orientation (AO). AO is promising as it provides systematic means for effective
modularization of crosscutting concerns [EFB01]. Such concerns like synchronization
and tracing are often described as classical candidates for aspectization. Recent research
has shown usefulness: [KG02] uses AO to separate concurrency control and failure
handling code in a distributed system. The book of Rashid [Ra04] handles with Aspect-
Oriented Databases. It gives an overview about ongoing research and discusses all facets
of AO in the context of databases: AO to implement DBSs in a more modularized
manner, persistence for aspects, and some ideas on a persistence framework.

We here report on our experience using AspectJ [Ki01,La03], a general-purpose aspect-
oriented extension of Java, to implement persistence aspects. We present a simple
persistence layer with an object-oriented Java interface in Section 2. Section 3 shows
that AspectJ can make the dream come true, to add persistency after having developed
the real business logic – without changing existing code. The main advantage of our
approach over mapping tools is the higher degree of customization, full control over the
code, modularization, and flexibility with regard to mapping strategies and transactions.
Section 4 presents the details of handling mapping strategies.

In contrast to other work such as [RC03,SLB02], we provide a deeper elaboration on a
useful framework. We put emphasis on flexible mapping strategies to avoid deficiencies
of other mapping tools in our paper. As already explained, strong mapping features are
very important for accessing existing tables and for tuning databases.

236

2 Object Model and Sample Application

Our persistence framework follows the principle of JDO and other Java-based
object/relational mapping tools, taking Java as a persistent model. The framework then
deals with the storage and retrieval of Java objects, underlying table structures and SQL
become invisible. The following database schema will form the basis for our discussion:

B C

toD 0..1
DA

0..*

Class A possesses two subclasses B and C and an n:1 relationship toD to another class D.
For the ease of demonstration, the attributes of theses classes are single-valued. The
following is now a sample Java application program based on this model:
public class Applic {

public static void main(String[] args) {
// (1) DB should open here!
// (2) transaction should start here
A objA1 = new A(1,"objA1"); // creation of objects in DB
B objB2 = new B(2,"objB2"); // "

 C objC3 = new C(3,"objC3",30); // "
 D objD10 = new D(10,"objD10"); // "
objB2.settoD(objD10); // establish relationship
objA1.find(2); // (3) query: find by key 2; sets objA1
objB2.remove(); // (4) removal of object
// (5) transaction should commit here
// (6) DB should close here

}

This Java program does not contain persistence – almost: Obviously, queries (3) and
removals (4) are present. As already stated by [RC03], the points of retrieval from the
database are important for the application and thus cannot be invisible. Designers need to
consider the retrieval mechanisms supported by database systems. That is why a method
find here comes out of the blue without being implemented in the Java classes. Later
on, we will see that AO is introducing this method.

The same holds for the deletion of persistent data. Due to automatic garbage collection,
there is no notion of explicitly deleting an object in Java. Even if there were an explicit
delete operator as in C++, we could not be sure if the application actually intended to
remove the object from disk or merely from the memory. Hence, data has to be deleted
from the database upon specific request from the application. Again, a remove method
must be called although classes do not possess such a method.

Having shown a simple application, we describe how to add database functionality to the
application by using AO, i.e., to make objects persistent, to introduce transactions etc..

237

3 A Persistence Framework based on AspectJ

3.1 Handling Databases and Transactions

AspectJ is an extension of Java offering the new concepts of aspects and pointcuts.
Aspects are special units that crosscut objects. We here use an aspect to enhance
applications with statements to open or close a database and to control transactions. The
following aspect DBaccess defines a pointcut UseDb specifying points in the code
where we want to add the corresponding functionality:

public aspect DBaccess {
protected static Connection _dbConn;
pointcut UseDb() : execution (static void Applic.main(..));
... }

A pointcut essentially specifies a signature for what methods should be trapped. Thus,
the pointcut UseDb traps the execution of the main method in class Applic. Wild cards
can be used. ‘..’ here denotes any number of parameters.

We want to add some behaviour before and after the execution of main. The before()
and after() advices insert adequate JDBC statements to open and close the database:

 before() : UseDb() { // before join point is performed
Class.forName(getDriver()).newInstance();
_dbConn = DriverManager.getConnection
 (getDbUrl(), getUsr(), GetPw());
_dbConn.setAutoCommit(false); }

after() : UseDb() { // after join point is performed
if (_dbConn!=null) _dbConn.close(); }

Any other points could be defined the same way using the full power of specifying
pointcuts in AspectJ. A JDBC database connection must be kept somewhere to close the
connection and for handling transactions. This can be done as a data member of the
aspect DBaccess.

Please note JDBC statements can throw an SQLException. We can put a try-catch
block around the execution again and again. But it is easier to add a globally usable
exception handling for any class and method in package java.sql by:

after() throwing(SQLException x) : call(* java.sql..*(..))

 { throw new SoftException("ERROR in DB " + x.getMessage()); }

Another pointcut ToCommit can specify points where to commit transactions, while the
logic for committing is done by one advice: before () : ToCommit(). Furthermore,
a special advice after throwing(Exception x) can be used to trap thrown
exceptions. Then the advice can decide to initiate a database rollback.

It is also possible to run specific methods in a transaction of their own. [SLB02] shows
how to specify this. [RC03] run each operation in a transaction. This is similar to an
auto-commit mode, which however is not sensible in real-world applications.

238

3.2 Adding Persistency

The overall aim of our framework is not to touch every persistent class. Instead, we want
to define a generic handling. The basic idea is not new and known from JDO and the
ODMG standard [Ca00]: A new superclass PersistenceCapable is added that offers
common persistence functionality. The new root adds some “invisible” functionality
such as remove and find (as explained above).

public abstract class PersistenceCapable {
 protected boolean isDeleted = false;
 public void find(int key) { }
 public void remove() { isDeleted = true; }
 public boolean isDeleted() { return isDeleted; } }

The only place to specify persistent-capable classes is DBaccess where we put the
PersistenceCapable class on top of persistent classes A B, C, and D by means of

declare parents : (A || B || C || D) extends PersistenceCapable;

The original classes are in general implemented without any notice of persistence.

Please note find is only a stub. It is essentially used to mark join points. The semantics
is to retrieve one object by means of a key. Certainly, specific query methods could be
defined, too. Their real implementation will be done in the aspect DBaccess.

Now, we have to intercept all those methods that cause database operations by
corresponding pointcuts in order to perform JDBC operations:

public pointcut InsertObj() :
call (PersistenceCapable+.new(..)) && !within(_Class);

public pointcut UpdateObj(PersistenceCapable obj):
 this(obj) && !within(_Class)

 && execution(public void PersistenceCapable+.set*(..))
public pointcut RemoveObj(PersistenceCapable obj) : this(obj)

&& execution(public void PersistenceCapable+.remove());
public pointcut FindObj() :

call(public void PersistenceCapable+.find(..));

These pointcuts trap invocations of new, of methods that start with set, remove and
find to insert, update, remove or find objects in the database. These pointcuts work for
class PersistenceCapable and also for all subclasses due to the ‘+’; the latter are in
fact the classes we want to handle. To get information about the object obj on which a
method is invoked (e.g., the object to be removed), obj is passed on as a parameter. In
case of constructor calls (cf. advice for InsertObj), the newly created object can be
accessed via a returning clause. Advices can then access the object’s information.

The clause !within(_Class) is important to exclude all methods from the helper class
_Class (see 3.3 later) from being trapped: _Class also uses setters to set object pro-
perties after fetching objects from the database, but these must not get the new behavior.

Advices delegate database operations to specific static DB... methods, for example:

239

 after() returning(PersistenceCapable obj) : NewObject()
{ DBinsert(obj); }

 before(PersistenceCapable obj) : RemoveObj(obj)
 { DBdelete(obj); }

 void around() : FindObj() {
 Object obj = thisJoinPoint.getTarget();
 int key = ((Integer) thisJoinPoint.getArgs()[0]).intValue();
 PersistenceCapable res = null;
 res = DBfind(obj.getClass().getName(), key);
 obj = res; }

 before(PersistenceCapable obj) : AccessRemovedObj(obj) {
 if (obj.isDeleted()) throw new SoftException("ERROR"); } }

Special attention has to be paid to the removal. From a syntactical point of view, it is
possible to call obj.remove() and afterwards still access attributes of obj. The last
advice is used to forbid this: The remove method marks the object by setting
isDeleted=true. Any successive access, which is caught by a pointcut
AccessRemovedObject, will raise a SoftException if isDeleted is true.

The implementation of all these static DB methods should be done according to mapping
strategies that determine how to represent relationships or class hierarchies.

3.3 Mapping Strategies

We here focus on mapping subclass hierarchies. Several relational representations exist
to handle subclass hierarchies. Each one has pros and cons in regard to fast access,
redundancy, and easy update. An extensive discussion of mapping other concepts onto
tables can be found in [Ho96a,Ho96b].

In order to describe the mappings, we do not use a textual specification language or an
XML deployment descriptor as in EJB or JDO. Instead, mapping strategies are defined
in a Mapping aspect by using special (meta-)classes. This aspect Mapping is responsible
for specifying mapping strategies:

public aspect Mapping {
 before() : DBaccess.UseDb() {
 _Class a = new _Class("A", "tabA", "a1");
 _Class d = new _Class("D", "tabD", "d1");
 _FKRelship toD = new _FKRelship(a,"toD","toD");
 _VSubclass b = new _VSubclass("B","tabB",a);
 _HSubclass c = new _HSubclass("A","tabA",a); } }

This setup is executed before the database has been opened. The advice describes the
mapping in a quite simple way. There is a constructor _Class that maps a class (first
parameter) to a table (second parameter), thereby determining key attributes (third
parameter). Thus, classes A and D are mapped to tables tabA(a1,a2,toD) and
tabD(d1,d2), respectively. For the ease of demonstration, we assume that single-
valued attributes are implicitly mapped to columns without any further specification.

240

Similarly, a relationship between A and D is introduced, represented by a foreign key
“toD” in table tabA. Other mapping strategies, e.g., for handling set-valued attributes
and relationships by linking tables, can be expressed the same way.

B and C are subclasses of A, which are represented by tables tabB and tabC. We here
use mixed strategies, a vertical strategy for B (_VSubclass) and a horizontal one for C
(_HSubclass). The last parameter denotes the meta-superclass instance. Due to the
vertical strategy, table tabB(a1,b2) possesses the specific attribute b2 of the related
class to reflect its properties. The tables tabB and tabA share a common key a1. There
are inclusions between the keys of superclass and subclass tables. In order to access
attributes of superclasses, the tables must be joined over the key attributes.

Using a horizontal strategy for C, the structure of tabC(a1,a2,toD,c2) comprises the
specific information of its corresponding class and the attributes of its superclasses, too.
Hence, the attributes inherited from A are directly available without any join. But tabA
contains only the instances of the class itself. The key values of tabC and tabA are here
disjoint. The deep extent of A has to be computed by a union of tabA and tabC.

Certainly, other strategies such as representing a whole hierarchy in one single table with
all the attributes of all subclasses can be used. A flag can determine the specific subclass.

The advantage of our approach is obvious: The configuration of mapping strategies is
described in an easy form that let the specification stay in a homogeneous language
environment without any need for deployment files. We can exchange strategies by
simply changing the Mapping aspect, the application code is not affected. Moreover, the
mapping strategies are customizable to our needs. Strong mapping capabilities are
indispensable if existing tables that do not originate from the classical mappings have to
be accessed. The less strategies are supported, the less optimal the object model will be,
since the object model cannot be freely defined; there must be a mapping of the model
onto the existing tables. Most mapping tools usually support only a subset of strategies.

The meta-information is internally stored in the root class PersistenceCapable. The
class maintains a static HashMap(name, _Class) of all classes “registered” that way.
Entries are class names with a reference to the _Class instance. Moreover, each object
can access its meta-information because PersistenceCapable has a reference to its
_Class meta-information which can be obtained by get_Class().

_Class maintains the table name, the list of columns, the key column, strategy
information etc.. It also keeps a list of SQL statements for INSERT, DELETE, UPDATE,
SELECT, which certainly depend on mappings. For instance, deleting a B object implies a
DELETE on tabB and also tabA because the inherited attributes are stored in tabA.

After the Mapping setup, we use an aspect Preparation to derive adequate SQL
statements according to mapping strategies. This aspect can also execute corresponding
CREATE TABLE statements in JDBC provided the tables do not already exist in the
database.

public aspect Preparation {
declare precedence : Mapping, DBaccess, Preparation;

241

before() : DBaccess.UseDb() { // build SQL statement:
 Iterator itr = _Class.getListIterator();
 while (itr.hasNext()) { // for each persistent class:
 _Class theClass = (_Class)itr.next();
 // use mapping info in _Class to build SQL statements:
 PreparedStatement stmt = _dbConn.prepareStatement

(“DELETE FROM ” + theClass.tabName + “ WHERE ” + ...);
theClass.delStmts.add(stmt); ...

} } }

The purpose of this advice is to compute SQL statements only once for each class in a
single step. delStmts will contain a list of statements because several tables can be
affected. The composed SQL strings are then executed in the static DB... methods. The
following code describes the implementation of DBdelete (which is called by the
advice before() : RemoveObj()):

public static void DBdelete(PersistenceCapable obj) {
 Iterator itr = obj.get_Class().delStmts.iterator();
 while (itr.hasNext()) { // for each stmt produced by Mapping
 PreparedStatement stmt = (PreparedStatement) itr.next();
 obj.get_Class().setKey(obj, stmt);
 stmt.executeUpdate(); } }

This code is now quite generic and does not depend on mapping information. The
mapping is purely contained in delStmts, which are executed here. Unfortunately,
some parts cannot be prepared that way and require interpretative work. The following
JDBC code must be built at runtime to set key values after prepareStatement:
stmt.setInt(0, obj.geta1()); // a1 should be key attribute here

The key value of an object is obtained by get<Attr>; but the names of key attributes
differ from class to class. Furthermore, the right stmt.set<Type> must be called
according to the data type of the key. Hence, DBdelete invokes a method setKey
declared for the meta class _Class. This method knows the key information about a
class, and invokes the right get/set<Attr> to get the key values.

public void setKey
(PersistenceCapable pobj, PreparedStatement stmt) {

 _Class c = pobj.get_Class();
 String keyCol = c._key; // get key column (not composite here)
 Method methods[] = pobj.getClass().getMethods();
 for (int j=0; j<methods.length; j++) { // find get for keyCol
 Method method = methods[j]; Object res = null;
 if (method.getName().equals("get" + keyCol)) {
 res = method.invoke(pobj,null); // call pobj.get<Key>
 if (method.getReturnType().getName() == "int")
 { Integer i = (Integer)res; stmt.setInt(1, i.intValue());}
 else if (method.getReturnType().getName() == " String")

{ stmt.setString(1, (String)res); }
 ... } } }

242

4. Additional Features

4.1 Check for Homogeneous Subclass Hierarchies

In principle, the various strategies for mapping subclass hierarchies onto tables can be
used in a mixed manner. The SQL queries described by [Ho96a] to fetch objects from
the tables are then quite complex; a restriction to homogeneous hierarchies may be
desired, i.e., applying one overall strategy for the whole hierarchy.

Such a check can simply be achieved, in addition, by a new aspect CheckHierarchy.
This aspect adds to class _Class a new member by means of public char

_Class.strategy. Any time a new subclass is specified, i.e., a _H/_VSubclass
constructor is invoked, it is checked whether the strategy of the superclass is followed.
Otherwise, a SoftException is raised. It is important to note that such an aspect can be
activated and deactivated any time.

4.2 Forbidding the Change of Key Attributes

Since our persistence framework – at least as presented here – relies on key attributes for
uniquely identifying objects, it could be dangerous to change the values of key attributes.
We either have to check the uniqueness of the new value in this case, or we can disallow
those changes. The latter can be easily introduced by catching set<Attr> calls and
checking whether it is a set<Key> (which should be forbidden).

4.3 Caching Object Modifications

One problem of some EJB containers is that every invocation of a set-method on a
persistent object performs an UPDATE statement in the database. This causes overhead,
as an object might be updated several times in a transaction: a database operation is
performed for each new setting again and again, although only the object needs to be
stored once before the transaction commits. The pointcut UpdateObj can be
implemented in such a way that it only collects all the modified objects, e.g., by
gathering their unique keys. Another pointcut traps the commit and performs UPDATEs
on all these objects, writing back all properties in one step. This can perfectly be
combined with a cache.

The cache avoids loading those objects from the database, which have already been
accessed previously. Hence, performance can be dramatically improved if object
traversals are done with a cache. To this end, any object is put into a cache with a fixed
size. If objects are retrieved again, they are found in the cache without any new database
access. A new Caching aspect can take care about this.

Again, the behavior of the existing framework can be easily modified without touching
the application code.

243

5. Conclusions

In this paper, we accommodated ourselves to the significance of accessing relational
DBSs from Java. We proposed a flexible and homogeneous coupling of both worlds.
Programs are given the ability to store and retrieve Java objects without taking notice of
tables and SQL. We demonstrated how to provide an object-oriented persistence
framework with modest effort, taking benefit from the paradigm of aspect-orientation.
While other approaches such as [Ho96a,Ho03] use generator techniques, we do not.

In contrast to O/R mapping tools, we are highly customisable: the persistence layer‘s
functionality can be tailored to the real needs of an application. Particularly, we can
implement our set of mapping strategies. Flexible strategies play an important role for
accessing existing tables with sometimes strange structures. Otherwise, an application
would be forced to adjust its object model. The approach achieves its full flexibility by
offering a high degree of configuration: Transactions and concrete mappings can be
configured and applied to the code after having implemented the real business logic.

Future work is dedicated to enhance the framework, e.g., adding persistence by
reachability as in JDO. It should generally be no problem to implement a JDO interface.

References

[Ca00] Cattell, R.; Barry, D.; Berler, M.; Eastman, J.; Jordan, D; et al.: The Object Data
Standard: ODMG3.0. Morgan-Kaufmann Publishers, San Mateo (CA) 2000

[EFB01] Elrad, T.; Filman, R.; Bader, A. (eds.): Theme Section on Aspect-Oriented
Programming. CACM 44(10), 2001

[He98] Heinckiens, P.: Building Scaleable Database Applications. Addison-Wesley 1998
[Ho96a] Hohenstein, U.: Using Semantic Enrichment to Provide Interoperability between

Relational and ODMG Databases. In J. Fong, B. Siu (eds.): Int. Conf. on Multimedia,
Knowledge-Bases and Object-Oriented Databases, Hong Kong 1996

[Ho96b] Hohenstein, U.: Bridging the Gap between C++ and Relational Databases. 10th
European Conference on Object-Oriented Programming (ECOOP'96), Linz 1996

[Ho03] Hohenstein, U.: A UML-based Approach for Generating Object-Oriented Database
Access Layers. Practitioner’s report on ECOOP 2003, Darmstadt 2003

[KC98] Keller, W.; Coldewey, J.: Accessing Relational Databases. In: R. Martin, D. Riehle, F.
Buschmann (eds.): Pattern Languages of Program Design 3. Addison-Wesley 1998

[Ki01] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W.: An
Overview of AspectJ. ECOOP 2001, Springer LNCS 2072

[KG02] Kienzle, J.; Guerraoui, R.: AOP: Does it Make Sense? The Case of Concurrency and
Failures. ECOOP 2002, Springer LNCS 2374

[La03] Laddad, R.: AspectJ in Action. Manning Publications Greenwich 2003
[Pa99] Pawlak, R.; Seinturier, L.; Duchien, L.; Florin, G.: JAC: A Flexible Solution for

Aspect-Oriented Programming in Java. Reflection Conf. 2001, Springer LNCS 2192
[RC03] Rashid, A.; Chitchyan, R.: Persistence as an Aspect. In M. Aksit (ed.): 2nd Int. Conf.

Aspect-Oriented Software Development, Boston, ACM 2003
[Ra04] Rashid, A.: Aspect-Oriented Database Systems. Springer Berlin Heidelberg 2004
[SLB02] Soares, S.; Laureano, E.; Borba, P.: Implementing Distribution and Persistence

Aspects with AspectJ. OOPSLA 2002, ACM Press
[SHW98] Salo, T.; Hill, J.; Williams, K.: Scalable Object-Persistence Frameworks. Journal of

Object-Oriented Programming, Nov/Dec. 1998

244

