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On Practical Implications of Trading ACID for CAP in the

Big Data Transformation of Enterprise Applications

Andreas Tönne1

Abstract: Transactional enterprise applications today depend on the ACID property of the

underlying database. ACID is a valuable model to reason about concurrency and consistency

constraints in the application requirements. The new class of NoSQL databases that is used at the

foundation of many big data architectures drops the ACID properties and especially gives up

strong consistency for eventual consistency. The common justification for this change is the CAP-

theorem, although general scalability concerns are also noted. In this paper we summarize the

arguments for dropping ACID in favour of a weaker consistency model for big data architectures.

We then show the implications of the weaker consistency for the business customer and his

requirements when a transactional Java EE application is transformed to a big data architecture.
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1 Introduction

The ACID property of relational databases has proven to be a valuable guarantee for

specifying enterprise application requirements. Business customers are enabled to

express their business needs as if they are sequentially executed. The complicated details

of concurrency control of transactions and maintaining consistency are delegated to the

database. ACID has become a synonym for a promise of effective and safe concurrency

of business services. And business customers have learned to assume this as given and as

a reasonable requirement.

The broad scale introduction of NoSQL[Ev09][Fo12] databases to enterprises for

solving big data business needs introduces a new class of promises to the business

customer. Strong consistency as promised by ACID is replaced by the rather weak

eventual consistency[Vo09]. The CAP-theorem[Br00] is the excuse of the NoSQL

developers and generally of the big data architects to weaken consistency in favour of

availability, although modern NoSQL database also offer higher levels of consistency.

In this paper, we discuss the consequences of the transformation of enterprise

applications to a big data architecture. Our focus lies on the practical implications of

loosening consistency for the business customers and their requirements. We consider

the severity of the implications, the difficulty to balance these with the customer

expectations and strategies for remedies.
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1.1 Transformation Scope

The class of enterprise applications, which we consider are the OLTP (online transaction

processing) applications. As the name implies, these applications critically depend on

transactional properties and for this upholding ACID is seen mandatory. Our general

interest lies in the question to what degree (and at what cost) can business needs that

today require OLTP applications can be transformed to the big data paradigm.

1.2 Big Data Challenges

OLTP applications are under a strong big data pressure. The three main characteristics

volume, variety and velocity of big data also apply to many today's enterprise

applications. The volume of data to handle increases through new relevant sources like

for example the Internet of Things or the German governments Industrie 4.0 initiative

[Bm15]. Also globalization in general increases the amount of data to handle. The

variety of data increases greatly because structured data source are increasingly

accompanied or replaced by unstructured sources like the Web or Enterprise 2.0

initiatives. Acceleration of business processes and the success of big data analytics (data

science) of competitors increase the demands for a higher velocity, especially combined

with the required higher data volumes.

We think it is fair to state that many OLTP applications already operate under big data

conditions. However they show a strong inertia to complete the transformation. Their

architecture hinders the integration of unstructured data source. Their choice of for

example Java EE with a relational database means a hard limitation of scalability. And

as will be shown in this paper, the practical consequences and compromises for big data

scale processing are threatening to the business customer.

1.3 Contribution

We experienced these transformation challenges in the migration of a customer's

middleware solution to a big data architecture. The first transformation milestone,

establishing demonstration capabilities of the solution, was an eleven man year effort.

The architecture changed from a layered monolith based on Java EE and a relational

database to a cloud ready microservices topology. We were using the Titan graph

database [Th15], Cassandra [Ap15][LM10] as the NoSQL storage backend and

Elasticsearch [El15] for indexing. The transformation was critical to our customer for the

simple reason that the existing implementation was falling short of the scaling

requirements by three orders of magnitudes.

The solutions main purpose is to provide ETL (extract, transform, load) services to

enterprise applications in a flexible way. Structured and unstructured data is extracted

from a large range of sources (using agents) and lossless converted to a common data

model. This data is persisted in the style of a data lake [Fo15] but structured and
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enriched with metadata. The metadata describes semantic and formal relations between

the data records similar to an ontology. The combined data structure is persisted in a

distributed graph database.

The heart of the solution are the analysis algorithms and their quality requirements.

Running such analysis concurrently while preserving consistency is a critical

requirement. If for example two data records are analyzed for their relationships

concurrently, duplicate relations like "my user matches your author" and "my author

matches your user" would lead to wrong overall relation weights between the two

records. Such concurrency conflict is actually a common case: if sets of related records

are modified in an application, these would be imported for analysis concurrently and the

consistency of relations is threatened across many concurrent nodes. Consistency rules

like requiring uniqueness of commutative relations ("we have something in common")

were enforced in the business requirements through uniqueness constraints on the

database. It should be needless to point out that this was a scalability killer by design.

1.4 Structure of this Paper

In the following section 2 we introduce the reader to the CAP theorem and eventual

consistency and discuss their relevance for scalability.

Section 3 is the main result of this paper, showing the implications of switching to

eventual consistency for scalability reasons to our business project.

Some remaining challenges are described in section 4.

2 The CAP Theorem, Eventual Consistency and Scalability

In this section, we provide an overview of the influences of the CAP theorem and

eventual consistency to scalability concerns of distributed transactional applications. We

motivate the decision to loosen consistency up to the point of eventual consistency. And

we briefly show possibilities to achieve higher levels of consistency and their price in

terms of scalability and effort.

2.1 Scalability is the New Top Priority

The transformation of application architectures from transactional monoliths to

distributed cloud service topologies, from traditional to web and big data, usually comes

with a shift of priorities. An influential statement for this shift was given by Werner

Vogels, Amazon CTO:

"Each node in a system should be able to make decisions purely based on local state. If

you need to do something under high load with failures occurring and you need to reach
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agreement, you’re lost. If you’re concerned about scalability, any algorithm that forces

you to run agreement will eventually become your bottleneck. Take that as a given."

[Vo07][In07]

The shift was from consistency as the main promise for application properties to

availability of services, which is treated second-class by ACID systems. And the ruling

regime, as pointed out by Vogels, is the (horizontal) scalability. These new architectures

are characterized by being extremely distributed, both in terms of number of computing

and data nodes and distance measured in communication latency and network partition

probability. Data replication is used to achieve better proximity of data and client and

better availability in the presence of network partitions. Also for big data, replication is

often the only sensible backup strategy.

2.2 BASE Semantics and Eventual Consistency

The conflict between ACIDs consistency focus and the availability demands of web

based scalable large distributed systems lead to the alternative BASE data

semantics[Fo97] (basically available, soft state, eventual consistency) which uses the

weak eventual consistency model. This basically means that after a write there is an

unspecified period of time of inconsistency while the change is replicated through the

distributed topology of data nodes. Which version of the data is presented at a node in

this time window is pure luck. Eventually after a period of no changes, the network of

data nodes stabilizes and agrees on the last written version.

We do not want to embark on a discussion of other stronger consistency models that are

also offered by some NoSQL databases like Cassandra using quorums or paxos

protocols. When discussing this consistency issue with business customers in the light of

their requirements, the interesting question is "how on earth did they get away with such

a lousy consistency model?".

2.3 CAP Theorem

The answer lies in the CAP theorem [Br00] and its proof [GL02], which was (ab-)used

by the developers of NoSQL databases to ignore the matter of stronger consistency to

achieve better scalability and availability, and justify eventual consistency as a law of

nature. Any distributed system may have the following three important properties and

Brewer's conjecture was that you can only have two of these at any time2:

1. Consistency, which means single-copy consistency (ACID consistency without

the data invariants): all nodes have the same version of a value.

2 Actually the proof by Gilbert and Lynch makes use of an asynchronous model and thus introduces the
assumption that there is no common notion of time in the distributed system. This seems to be consistent with

the intention of Brewer but limits the scope of CAP in practical systems.
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2. Availability, which can be characterized as the promise: as long as a node is up,

it always returns answers (after an unbounded duration of time).

3. Partition Tolerance, which means it is ok to lose arbitrarily many messages

between nodes.

This theorem and its adoption as a justification for eventual consistency sparked lasting

discussions about its relevance and which choice of CA, CP or AP is the best. Brewer

himself summarizes his view of the state of affairs of CAP [Br12] highlighting the very

important interpretation of CAP that "First, because partitions are rare, there is little

reason to forfeit C or A when the system is not partitioned. Second, the choice between

C and A can occur many times within the same system at very fine granularity..." and

"Because partitions are rare, CAP should allow perfect C and A most of the time, but

when partitions are present or perceived, a strategy that detects partitions and explicitly

accounts for them is in order." CAP is all about managing the exceptional case of a

network partition, which is a split-brain situation. The decision to take is called the

partition decision by Brewer [Br12]:

" Cancel an operation after a timeout and decrease availability or

" Proceed with the operation and risk inconsistency

The matter of healing network partitions is handled by NoSQL implementations using

for example brute-force strategies like last-write-wins. A more graceful solution would

be to use vector clocks to identify and handle merge conflicts of partitioned data change.

2.4 NoSQL With Higher Levels Of Consistency

The NoSQL community initially has settled for AP with eventual consistency, inspired

by Amazon's Dynamo database [De07]. But we are seeing more and more additions to

NoSQL databases that allow stronger consistency models like for example Cassandra

[Da15] allowing a quorum consistency level. Thus the choice of AP or CP is no longer

fixed by our architecture and in Cassandra for instance it is possible at the level of

individual reads and writes.

There is however a price attached to higher levels of consistencies and that is the degree

of scalability we can achieve. As Vogels pointed out in the above quote, any need for

agreement opposes scalability. Achieving strong consistency with a quorum or even

naively requiring all data nodes in a system to acknowledge a write will likely reduce

scalability of a big data scale system drastically.



252 Andreas Tönne

In our example application, lowering the consistency level to single node writes resulted

in orders of magnitude speedups (throughput) while exposing architectural issues that we

will describe in the following section3.

The good news is that eventual consistency is not as bad as it sounds. Recent analysis

[BG13] shows that eventual consistent databases can achieve consistency on a frequent

basis within tens or hundreds of milliseconds. What this does not tell us is what damages

are done during this period and how to deal with them.

3 Business Implications

This section is the main result of the transformation of our OLTP application to a big

data stack with a NoSQL database. We discuss the tension in the project between the

business customer, requiring ACID properties that he was used to and the requirement to

achieve a substantial increase in scalability and throughput. The reduction in consistency

leads to some difficult questions about the business requirements. We also give some

technical details of how we dealt with the errors introduced by the reduced consistency

level.

3.1 ACID Requirements

Judging the business implications of turning towards a big data database with loosened

consistency requires us to respect the business customer needs and expectations. In an

ideal world, a business service is specified under the assumption of perfect singularity of

the executing system. No side effects, no concurrency, no temporal considerations, no

other users, no failures. Consistency is defined in terms of business rules about data

integrity.

In the last decades, transactional systems upholding the ACID properties were

understood and accepted by business customers as the nearest approximation of this

simplified ideal that could be delivered by their IT people.

The ACID properties of a transaction guarantees the following beneficial guarantees for

its execution:

Atomicity - The guarantee that the transaction is executed in one atomic step (from an

outside view) or aborted as a whole.

Consistency - The guarantee that the transaction transforms the database from a

consistent state to another consistent state. The notion of consistency can vary largely,

depending on the capabilities of the underlying database. Usually this includes structural

3 Performance figures are unfortunately not available and meaningful since the system went through a rapid
sequences of changes.
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consistency rules about uniqueness and referential integrity as well as data consistency

rules.

Isolation - The guarantee that concurrent transactions are isolated against their

respective database changed to a configurable degree.

Durability - The guarantee that once a transaction was committed (success), its changes

are permanent, even in the presence of system failures.

ACID has proven to be a simple enough model to talk about requirements in the

presence of such nasty things as concurrency and failures. At times, the architect would

come back with "Would it be allowed that..." questions, asking for exceptions to the

simplified world and complicating things a bit. The I (Isolation) in ACID is the adjusting

screw for such optimizations of SQL systems possibly affecting their consistency.

Locking and database constraints on uniqueness are commonly used in requirements to

hedge against consistency errors and to control concurrency.

3.2 Dropping ACID to Achieve Higher Scalability

It is common wisdom that big data is a disruptive concept that requires the

transformation of the businesses core for adoption. Business requirements for achieving

business goals need to be redefined to reflect the paradigms of big data architectures.

That means: What promises for consistency, availability and scalability can your IT

people deliver on a big data scale? Taking a technology approach by replacing relational

databases by NoSQL and call it good is no option. Unfortunately as we experienced in

the mentioned project this is an all too alluring idea to waive it easily. The business

customer must be educated in the consequences of asking to "solve the problem with big

data". And this means to find the sweet spot in the triangle of loosening consistency,

achievable scalability and implementation effort.

In our example, we opted for loosening consistency as much as possible because that

was the quick route4 to deliver a system with the necessary performance. Going for

eventual consistency means to drop ACID in favour of a BASE semantics of

transactions. That in turn exposed all the unknown invariants of the analysis algorithms.

Dropping ACID also created an enormous technical dept to handle the consistency

errors.

3.3 Consequences of Lowering Consistency

We mentioned the uniqueness constraint on commutative relations between records. The

analysis requirements disallowed dual relations of the kind "My user is your author" and

"My author is your user" since they are considered commutative and duplicating them

4We had to deliver the demo ready version within six months.
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puts a too strong emphasis on the relationship of the two records. Trading ACID for an

unconstrained database created questions for this example:

" How often does this constraint violation take place in practice?

" How severe is the error introduced?

- Follow-up question: Has anyone a measure for meta annotation errors?

" Do other algorithms using the meta annotation break on the duplication itself or

on the annotation weight error?

- Follow-up question: Who depends on this annotation anyway?

External clients or also internal algorithms?

" Can we ignore the error for some time or is there a build-up effect over time?

" Do we need to filter the duplicate annotations at read time or can we repair the

consistency at intervals?

- Follow-up question: What would be a reasonable interval?

These questions led to rather uncomfortable and time-consuming meetings with the

business customer. The customer did not have a need to think about these issues before;

he was shielded from them by a single requirement of uniqueness of commutative

relations.

As Brewer [Br12] noted: "Another aspect of CAP confusion is the hidden cost of

forfeiting consistency, which is the need to know the system’s invariants. The subtle

beauty of a consistent system is that the invariants tend to hold even when the designer

does not know what they are. Consequently, a wide range of reasonable invariants will

work just fine."

We observed a few distinct types of issues with weakening consistency and dropping

constraints that have distinct reasons and justifications. The following sections show a

few common cases.

3.4 Internal Phantom Reads

In our example, this was the type of effect with the most quality damages. This is the

premier effect of eventual consistency. An internal phantom read happens when one

concurrent service execution runs in isolation (due to the eventual consistency time

window) to another execution and sees old versions of data modified by the second

execution. Example: two related records are analyzed in parallel and due to bad luck of

replication one analysis does not see the other's updated record. This is severe since it

means that the analysis results become random for records imported in a tight time

window. Also consider that there is a higher probability for a meaningful relation
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between two records received at the same time. We might lose valuable analysis results.

In a transactional system, this scenario calls for a serialization of execution with locking.

A solution was to keep a journal of analysis order and determine those imports that

might need a re-analysis to stabilize the annotation consistency.

3.5 Where is my Data?

Eventual consistency does not only affect concurrent execution but sometimes also serial

execution. This depends on the implementation of the replication strategy of the database

but also on the architecture of the system itself. Some databases do not give a guarantee

that data written can be immediately read back, even at the same node, because the

replication preparation takes some time. We experienced such problems when chaining

analysis algorithms. A similar error (but not consistency caused) can take place with the

Elasticsearch refresh interval. Here we did not find our own analysis results in the index

for a short time until Elasticsearch had prepared and executed the index refresh.

We only found a brute-force solution to assure that chains of algorithms can work on

their own results, apart from passing the results between the algorithm steps. We needed

to use delays, either explicitly between each step or as retries with an exponential

backoff.

3.6 Zombie Data

Combining updates and deletes in a concurrent system gives you the usual zombie

problem if updates and deletes of the same record overrun each other. We employed

measures like timestamps to ensure a monotonic order of analysis executions for a

record. And we wrote tombstones for deleted records to distinguish true data from

zombies.

Tombstoning became an issue because we could not use locking for record updates.

Acquiring locks in a distributed database like Cassandra is a very expensive operation

that requires a consensus between all accessible nodes. Since updates were a very

frequent operation, this was not acceptable. So there is a very small chance that a

tombstone is overwritten, creating a zombie record. As usual with big data, small

chances become significant given enough data updates. This problem awaits a solution

still.

3.7 Who is Unique?

Assuring uniqueness has the same costs as a distributed lock for record updates. The key

strategy to avoid this cost was to detach the creation of unique data from the remaining

analysis algorithms. Some of the unique records were pre-created in a startup phase from
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sample data to reduce frequent locks. This was particularly successful for sets of unique

data with an upper bound. For example words of a particular language.

3.8 Probabilistic Truth

This is an issue that originates from the distributed nature of the database itself and from

the big data scale. Keeping a correct tally of data can be too expensive at real-time and

one has to use approximation techniques. Consider for example the number of distinct

words in the whole database. Keeping such tally does require some sort of

synchronization between the concurrent updates. We experimented with Cassandra

counter columns[Da14] and with elastic caching approaches using Hazelcast[Ha15] but

finally decided to use a probabilistic approach with a defined error rate, based on a

Google implementation[HNH13] of HyperLogLog[Fl07].

4 Outlook

Our experience with the transformation of our OLTP Java EE / Relational application to

a native big data stack shows the importance of a hybrid persistency approach. As

advocates of ACID for NoSQL[Pi15] highlight, there is a need for the option to choose

stronger consistency at high performance. In a hybrid approach, we could separate data

needing linearizability consistency and weaker consistency. For example, dumping the

mass of data in HBase and keeping the strongly consistent references to that data

elsewhere. Google Spanner [Cr13] shows that by having an accurate and coherent

distributed clock, one can achieve strong consistency at a reasonable cost.

Another idea we want to pursue is to avoid certain types of consistency errors using

CRDT (commutative replicated data types)[Sh11] to propagate conflict free distributed

changes in the case of network partitions. The case of internal phantom reads can be

considered to be effected by a short time network partition. We would be happy to

resolve this partition conflict-free. The distributed database riak [Ba15] shows how to

combine NoSQL concepts with CRDT [Ba15a] to achieve conflict-free data types.

5 Conclusions

Transforming existing business requirements that are implemented by OLTP

applications to a big data solution using today's best practice big data technology means

to give up many benefits of ACID transactions and especially strong consistency in

general.

We showed our practical experiences with a sizable (and from the customers perspective

very successful) transformation of an existing OLTP application to a big data stack. This

example shows that although the weakening of consistency to the level of eventual
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consistency does not prohibit this transformation, it still creates a significant dept. We

gave some examples of the errors introduced by the lower consistency and how we dealt

with them technically.

The cost of compensating for consistency defects and the achievable scalability had to be

compared and judged together with the business customer. The effort for the

transformation of the business requirements and thus the effort put on the business

customer and architect turned out to be significant and it needed to be carefully

accompanied by consulting and mentoring.

Invariants of business requirements that are usually hidden by the ACID properties and

database locks and constraints become important when high scalability needs to be

achieved with a NoSQL database.
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