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Abstract: Biometrics provide the possibility of unique and convenient authentication.
As its application areas grow rapidly, the problems, such as identity fraud and cross
matching, threaten the security of biometric systems. Moreover, privacy concerns are
associated with biometrics. In this paper we focus on privacy enhancing techniques for
biometric systems, which can protect biometric information and enable using biomet-
rics without exposure of privacy. A novel privacy enhancing algorithm is proposed.
The algorithm is integrated in a 3D face recognition algorithm and tested using the
FRGC database. By using the proposed algorithm, high security can be achieved as
well as good verification performance.

1 Introduction

As application areas of biometrics widely broaden, security and privacy risks have at-
tracted the attention not only of the biometric community. When applying biometric sys-
tems, private information of data subjects that is not relevant for authentication or verifi-
cation purposes is available and retrievable. Among these private data can be gender, race,
gene and even information about diseases. From the privacy legislation point especially in
Europe, collection of such data is very critical. As people more and more appreciate the
increased convenience of biometric systems, new kinds of associated security problems
must not be ignored. In contrast to password or token- based authentication, biometrics
utilize the unique physiological or physiological characteristics to authenticate a user’s
identity. Although these characteristics can not be forgotten or handed over, they can be
faked. If a biometric sample or template of a data subject is obtained by an attacker, it
is possible to create a fake biometric modality. Then, the biometric identity of the user
can be compromised. And what is worse, biometric characteristics are unique and limited.
Revocation and renewal are impossible. Additionally, the usage of the same biometric
characteristic in different applications enables cross matching. These applications can be
linked together for a potential attack. This way, a data collector can retrieve information
about the user’s activities within another application. Furthermore, storages of biometrics
data becomes very critical. If a stored template is exposed, the biometric authentication in
all applications using the same biometric modality is endangered.

In order to prevent the above mentioned security and privacy risks, privacy enhancing
techniques are required. Their goal is to provide a generalized solution to protect stored
biometric data. Privacy enhancing techniques convert biometric template into a secure
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reference with help of random variables. It is possible to derive numerous uncorrelated
references from one single biometric characteristic. The resulting secure reference reveals
very few information of the original biometric template; meanwhile, it is robust to biomet-
ric variation. Secure references are compared directly and recovering the original template
is not necessary. Using such a technique, no information that would disclose any proper-
ties of the biometric characteristic is available within the system. Thus, the privacy of the
data subject is preserved. The creation of a fake biometric characteristic from the stored
reference is infeasible. Its diversity enables to generate distinct references for different
applications and cross matching between different applications is prevented. Similarly the
revocation or renewing of a template is possible.

Different approaches of privacy enhancing techniques exist. One of the ideas is to combine
cryptography with error correction coding so that cryptographic hashing can be applied to
noisy data such as biometric data [JW99, JM02, DRS04]. The realization of this idea
strongly depends on the properties of extracted biometric features. For ordered features,
where a number of components are stable, the fuzzy commitment scheme is proposed
as shown in [JW99, DRS04]. In [Tul04], [TAK+05, LT03], the helper data scheme is
introduced to construct the fuzzy commitment. The security of this schemes is proved
in [TG04]. The algorithm was integrated in a 2D face recognition system using texture
information [vdVKS+SA], a fingerprint recognition system [VTDL03] and an ear iden-
tification system [TVI+04]. For non-order features like minutiae of fingerprints, whose
components vary and can not be described as a vector, the fuzzy vault scheme can be
adopted [UJ04]. Another possible approach is cancelable biometrics, which utilizes “non-
invertible” function as scrambling, morphing [RCB02, BCR04]. The employed function
must satisfy the“non-invertibility” and authentication performance of the biometric system
should not be reduced.

This paper is organized as follows. In section 2, a privacy enhancing algorithm is intro-
duced. The important components such as binarization and error correction are elaborated.
A security analysis is given. Section 3 shows the experimental results of integrating the
algorithm in a 3D face recognition system. Finally, conclusions are given in section 4.

2 A Novel Privacy Enhancing Algorithm

In this section, a novel privacy enhancing algorithm based on an error correction cod-
ing, polynomial and cryptographic function is proposed. The proposed algorithm can be
adopted in any biometric recognition system, whose features can be described as vectors.

A component that helps to produce a random template is necessary. In the presented
algorithm, a random number generator is integrated in the enrolment module so that a
random secret code can be created. The created random code is used to set the coefficients
of a polynomial in a Galois Field. The input biometric feature vector is also converted
into a discrete codeword in the Galois Field. Each component of the codeword is in terms
taken as input value for the polynomial and the corresponding output is calculated. In other
words, the biometric feature vector is transformed into a codeword in the Galois Field and
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Figure 1: The block diagram of the privacy enhancing algorithm

projected in a new feature space using the polynomial. The hash value of the secret code
and the output of the polynomial are stored as a template in the system. In order to realize
the required robustness of the algorithm, an error correction coding method is used to
correct errors, which may occur in measurement.

In figure 1, the block diagram of the algorithm is depicted. The enrolment process is shown
as follows:

1. Provide a biometric feature vector X as input. Convert X into a binary feature
vector B in the binarization process.

2. Randomly select a BCH-codeword C. Calculate the reference W = B ⊗ C, which
indicates the distance between B and the codeword C.

3. Divide the binary feature B into m blocks. Each block represents a k-bit long
symbol, where the first l bits are reserved to indicate the original location of each bit
blocks in B. And l = ceil {log2(m)}.

4. Randomly generate a secret code S containing k × m bits and divide S into m
blocks, S = [S1, S2, · · · , Sm].

5. Convert B and S into the codes in the Galois Field.

6. Generate a polynomial F (x) =
�m

i=1
Si · x

i−1, where S are the coefficients of the
polynomial.
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7. Transform B with the polynomial F (x) into Y = [Y1, Y2, · · · , Ym], where

Yi = F (Bi)

= S1 + S2 · Bi + · · · + Sm · Bm−1

i (1)

8. Store Y , W and the cryptographic hash h(S) of S with the identity of the user.

In converting binary features into bit blocks, the location bits are used, which guarantees
that the bit blocks differ from each other. The polynomial with the degree of m can only
be reconstructed with at least m different support points.

The verification process contains the following steps:

1. X � is a new biometric feature vector. Binarize X � into Be.

2. Calculate B� = B�

s ⊗ W , where B�

s is the corrected code of Be ⊕ W .

3. Divide binary feature B� into m k-bits-long blocks [B�

1, B
�

2, · · · , B
�

m] and convert
B� into the Galois Field.

4. Find Y in the data storage and reconstruct the polynomial F with the set

{(B�

1, Y1), (B
�

2, Y2), · · · , (B
�

m, Ym)}

where S� = G(B�, Y ).

5. Compare the hash h(S�) with the stored h(S). If they are exactly the same, a positive
response will be given, otherwise, a negative response.

The key components as well as the security of the algorithm are discussed in the following
sections.

2.1 Error Correction

In the proposed scheme, the BCH-coding method is adopted to correct bit errors occurring
in the verification. The BCH-code is the most popular and efficient linear block code. If
the error probability of individual bits in a codeword is uniformly distributed, the BCH-
code can achieve optimal coding rate. The error probability relies on the input biometric
features and the binarization method. Dependent on the statistical characteristics of the bit
errors, other coding methods might achieve a better biometric performance.

The stored reference W in the algorithm is an indicator showing the distance of the newly
enrolled binarized feature to a BCH-codeword. During verification, a corrupted binarized
feature Be is obtained. In order to correct an error in Be, the “corrupted” BCH-codeword
can be estimated by Be ⊕ W . After the error correction, the corrected BCH-codeword
B�

s is obtained. The corrected binarized feature can be calculated by translating B�

s with
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W . If E represents the errors in the binarized feature Be, equation 2 shows that the errors
between B�

s and C are equal to E:

C ⊗ B�

s = (B ⊗ W ) ⊗ (Be ⊗ W ) = B ⊗ Be = E (2)

If the hamming weight of E is small enough and within the error correction capability of
the BCH-code, the same binary feature vector as in the enrolment can be obtained and the
user can be successfully verified.

2.2 Binarization

The binarization process converts a biometric feature into a binary form and strongly im-
pacts the recognition performance of the algorithm. The details of the binarization process
are described in [Zho07]. The resulting binary feature for different users should be uni-
formly distributed in order to be resistant to brute force attacks. Since a linear code is
used in the algorithm, correcting one bit error requires at least two bits. Therefore, the
binarization should make the resulting features very robust to intra class variations of the
input biometric features. Using the algorithm, the interconnection of the secret code and
biometric features is relaxed. The statistical independency of bits in the binary feature
vector is not strictly required.

2.3 Security

As shown in section 2.1, W is supplementary data for the error correction step but little
information about B can be retrieved from W . This can be proved as follows: Assuming
that H(B|W ) is the conditional entropy of B for a given W . And B is statistically inde-
pendent from the randomly selected codeword C, then H(B, C) = H(B)+H(C). Since
W = B ⊕ C, the following equations are valid:

H(B, C, W ) = H(B, W ) = H(B, C) = H(B) + H(C) (3)

H(B, W ) = H(B) + H(W |B)

H(W |B) = H(C) (4)

And the entropy of a variable is always greater or equal to its conditional entropy, namely
H(W ) ≥ H(W |B). Additionally W is a binary vector with the length of N = (k−l)×m.

N ≥ H(W ) ≥ H(C) (5)

H(B, W ) = H(W ) + H(B|W ) = H(B) + H(C)

H(B|W ) = H(B) + H(W |B)

H(B) ≥ H(B|W ) ≥ H(B) + H(C) − N (6)
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If W is known, the uncertainty of B is equal to H(B) + H(C)−N . H(B) is the entropy
of the binary features, which is not greater than the entropy of the used biometric modal-
ity. H(C) indicates the codeword space of C, which is dependent on the required error
correction capability.

The stored reference Y is the polynomial projection of B with the secret code S. Retriev-
ing B over Y needs the exact information of S, and vice versa. The security of the hash
function is dependent on the length of the secret code. The complexity of a successful
brute force attack on the secret is 2k×m.

3 Experimental Results

The proposed algorithm has been implemented within a 3D face recognition system. Face
recognition has very high user acceptance. Additionally 3D face recognition adopts the
rich geometric information of face surfaces and is robust to light and pose variation. In
comparison to 2D face recognition, 3D facial information is more difficult to obtain. Mea-
suring 3D information requires the cooperation of the capture subject and is therefore
resistant to spoofing attacks. In the experiment, a histogram-based algorithm is used (for
more details about the feature extraction algorithm see [ZSBF08]). The system has been
tested using the face recognition grand challenge (FRGC) database version 2 [FPea05].
The database consists of 4007 range images acquired from 477 users.

The biometric features extracted with the histogram-based algorithm contains 476 compo-
nents. 300 users were chosen randomly to find the binarization threshold. In figure 2, the
false match rate (FMR) and the false non-match rate (FNMR) curves are depicted. After
the binarization, the curve of FMR shifts to the right and the robustness reduces slightly.
In figure 3 the receiver operating characteristics (ROC) curves shows an overview of the
recognition performance change. The dashed ROC curve of the binarized features is below
the solid one representing the real valued features. It indicates also a slight performance
degradation.

In the experiment of the privacy enhancing algorithm, Nenrol samples of a data subject,
who has more than Nenrol samples, are chosen randomly for the enrolement. The remain-
ing samples serve as verification samples for the performance evaluation. The experiment
is repeated 5 times for each Nenrol in order to get reliable results. The 255 most reliable
bits are selected from the features of each data subject, since the length of the BCH-code
is 2N − 1, where N is a positive integer. The polynomial in Galois Field of (24) is used.
The length of the secrete code is 368. For operational points corresponding to different
error correction code configurations are tested. The simulations are displayed in table 1.

Increasing error correction capability improves the FNMR and thus the robustness of the
algorithm, however it reduces the FMR, the discriminative power. The performance of
Nenrol = 5 is better than Nenrol = 3, which indicates that enlarging the number of
enroled samples can improve the recognition results.
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Figure 2: The FMR and FNMR curves of the
real valued features and binarized features
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Figure 3: The ROC curves of the real valued
features and binarized features

BCH (c/s/e) BER Nenrol = 3 Nenrol = 5

255/107/22 8.6% FNMR=1.36%; FMR=20% FNMR=1.78%; FMR=15%

255/91/25 9.8% FNMR=1.71%; FMR=16.5% FNMR=2.2%; FMR=12.5%

255/79/27 10.5% FNMR=1.98%; FMR=15.0% FNMR=2.57%; FMR=11.3%

255/63/30 11.7% FNMR=2.42%; FMR=12.3% FNMR=3.09%; FMR=9.6%

Table 1: Examples of possible BCH codes and the corresponding FNMR and FMR, where c is the
length of codeword, s is the length of message and e is the number of correctable bit errors.

4 Conclusion

In this paper, the security and especially privacy leakage of biometric systems are dis-
cussed. To efficiently preserve privacy and to improve the security of biometric systems a
novel privacy enhancing algorithm is proposed. Its scheme and the individual components
are discussed. The properties and requirements of the key components of the algorithm,
binarization and error correction coding, are introduced. The security of the proposed al-
gorithm is analyzed. The algorithm was implemented in a 3D face recognition system.
The results of the conducted experiment show that a high security level is achieved with
reasonable false match and false non-match rates.
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