Path Searching with Transit Nodes in Fast Changing
Telecommunications Networks

Robert Mertens, Joerg Stachowiak, Timo Steffens
Fraunhofer IAIS, Schloss Birlinghoven, 53754 Sankt Augustin

Contact: robert.mertens @iais.fraunhofer.de

Abstract: Transit nodes are a concept that has proven to speed up pathfinding in
roadnetworks considerably. The main idea of transit nodes is to precompute paths for
selected routes and use these as shortcuts during the search. While this method can
be employed for road networks that remain static over a period of time, it can not be
directly applied to complex fast changing networks such as those used for telecommu-
nication since precomputed shortcuts can become invalid at any time. In this paper, an
approach is presented that is based on transit nodes but extends the concept to accom-
modate for the special requirements of fast changing networks.

1 Introduction

For telecommunications products such as VDSL or ADSL2+, a customer’s line needs to
be connected to the IP-infrastructure of a telecommunications provider. Such a connection
can be regarded as a path in the provider’s telecommunications network. When customers
inquire about the availability of a product for a line, a path search is conducted on the
provider’s network in to order check whether the product is available using the existing
infrastructure. The result of this search indicates where connections have to be rewired
and which components of the Second Mile (i.e. the Gigabit-Ethernet network) have to
be reconfigured. Customers can conduct such an inquiry online or it can be started by a
salesperson during a sales talk. In both scenarios, time is a critical factor. If customers
have to wait too long for an answer, a sales talk might become difficult or the customer
might be distracted when conducting an online inquiry. Especially in large telecommin-
cations networks that contain a huge number of components, classical search algorithms
[Dij59] do not face up to the challenge of finding a path within the required time limit.
Informed search algorithms can not be used due to the lack of appropriate heuristics in
the domain. This paper shows how the problem can be tackled by adopting the concept of
transit nodes [BFMO06] that was originally conceived for pathfinding in road networks and
by adapting it for the special qualities of telecommunications networks. The remainder of
the paper is organized as follows: The next section introduces the concept of transit nodes
and describes how it can be employed in the telecommunications domain in general. Sec-
tion 3 shows which properties of fast changing networks conflict with the use of transit
nodes and how the resulting problems can be solved by a heuristic repair mechanism. The

158

paper concludes with a comparison of the algorithm against a classical search algorithm
and brief discussion of experiences gathered with the approach presented in this paper.

2 Transit Nodes in Telecommunications Networks

The concept of transit nodes for accelerating pathfinding originates in the application do-
main of road networks. In the TRANSIT algorithm presented in [BFMO06], a number of
transit nodes are computed in a preprocessing step and stored in a database. These transit
nodes (e.g. higway entraces/exits) allow for travelling long distances to other regions. The
basic idea behind the algorithm is that once a network N, of few transit nodes that are
well distributed over a network N, C NV; exists, a pathfinding task can be diveded into
three subasks t1, £ and ¢3. t; computes a path to the transit node tn that is nearest to the
starting point, ¢5 computes a path from the target node to the transit node ¢ns that is nearest
to the target node and ¢3 computes a path from ¢n; to tns. In the approach presented in
[BFMO6] all required distances (start node to tny, tn; to tng, and tns to the final target
node) are precomputed and stored in a database.

While telecommunications networks have a number of properties in common with road
networks, they also differ at some points. The most important difference is that, once a
path has been taken (i. e. once a customer line is realized using the pins, twin wires,
ethernet ports and so on), its elements can not be used for a subsequent search since the
elements on that path are already in use. In analogy to the road network scenario this
would mean that once A had travelled the highway from Munich to Hamburg, B could no
longer use that highway. For the original concept of transit nodes, this means that once a
transit node (or any other node for that matter) has been used, it is no longer available. As a
consequence, a new transit node would have to be computed in order to replace the transit
nodes used in a successful run of the algorithm for each successful run. In order to avoid
this, the approach presented in this paper uses a two-level representation of the network
(cf. [SSO5] for hierarchical levels in road maps). The first level represents all parts of
the network the path is actually constructed of (wires, pins, ports etc.). The second level
represents the network’s topology. Second level nodes stand for entities that aggregate first
level entities (cable - wires, ethernet-linecard - ethernet-ports, distribution box F pins
etc.). Thus when a route is taken through a second level entity, only the corresponding
first level entities used for that route become unusable for later pathfinding. The second
level entities in the topological network representation and all unused first level entities
aggregated in them remain usable for later searches. Hence, the entities on the topological
level are used as transit nodes. In this model, the transit nodes are no longer part of the
network itself (as in the hierarchical model proposed in [SS05]), in other words Nj is
no longer a subnetwork of V;. Algorithms to determine the network’s topolgy like the
one described in [AS98]) are not needed as the network’s topology is already explicitly
modeled in the database for maintanance purposes.

In order to use the nodes of N5 as transit nodes, a mapping between nodes in N; and Ny
is established. This mapping connects all wires with the cable they are part of, all pins
with the distribution box they are part of and so on. The cost for travelling from one transit

159

node to another one ist precomputed using paths in the first level network N;. This cost
and the path used for the computation are both stored in the database for each precomputed
path. This way, a connection between transit nodes is stored with a number of paths that
can be used to realize that connection instead of just one path as in the approach described
in [BFMO06]. Whether an alternative path is stored in the database depends on a threshold
applied to its cost-function.

Due to changes in the network that are caused by construction work (e. g. to extend the net-
work or by reconfigurations) and the fact that an entity of /V; can be used for one customer
line only, N; changes at a very fast rate. Consequently not every change in the network
can be propagated to the representation of the respective transit nodes in realtime. There-
fore the precomputed paths stored as connections between transit nodes in the database
can not be guaranteed to be valid when retrieved. In order to cope with this problem, a
special heuristics has been devised. This heuristics and the technique used to map NV en-
titites to [V entities is described in detail in the next section. The fact that a transit node is
stored with a number of paths leads to a very high amount of transit paths. Given the size
of a country wide telecommunications network in countries the size of Germany, storing
this data would consume too much space in the database. In order to counter this effect,
transit paths are not stored for every connection between entities in Ny. Instead only neig-
boring Nso-nodes are used for this purposes. The final transit routes used for realizing a
connection are constructed on the fly as described in the next section.

3 Path Validation

As described in the last section, the mapping f : No — N; of connections between transit
nodes (nodes in the topological network N5) to actual paths in N7 is not a bijective function
since one transit node can be mapped to an arbitrary number of connections between nodes
in N;. Because nodes in N7 become unusable once they are part of a customer line, there
can even be constellations in which no connection between any two entities in N} can be
found that are part of two entities in Ny that can in principle be connected. While the
information about distances between nodes in V5 is updated regularly, it is not guaranteed
that these updates happen in time. In order to compensate for the resulting effects, paths
are validated on the fly for every search. Additionally, a fallback mechanism is executed in
case no precomputed path can be validated. Since paths in /N2 can potentially be realized
by a number of paths in N7, every search also constructs a concrete path in [V if possible.
The overall validation process is visualized in fig. 1. It consists of a number of subtasks
that are described in the following paragraphs.

Topological ressource search uses lookups in the transit nodes table in the database. Since
the table on which the lookup is executed can not be guaranteed to be totally up to date, it
stores a number of alternative paths from a node in /N, to another node in /N and can thus
deliver a whole set of possible paths in N; for a query. As mentioned before, these transit
paths do not cover all possible connections but only those between neigboring nodes in N.
Therefore, this search searches for transit routes in /No for which known paths exist in /Ny
using an uninformed search that terminates once a certain threshold for the cost function

160

topological
ressource search

[result set is not empty] [result set is empty]

ressource
(pick optimal path)

[result set is empty] N
>{ topological search

AN
get next path

[no valid realization found] N
search failed
technical ressource search
(validate concrete technical path) g\. __lresult set s empty]

[result set is empty] [result set is not empty]

[result set is not empty]

topological priorisation
(pick optimal path)

[result set is not empty]

technical search
(validate path and search N
for concrete technical path) get next path

[no valid realization found]

[path is valid]

AN
th is valid
® e

Figure 1: Control flow of the routing algorithm.

is exceeded. Note that not all of these paths are guaranteed to be still usable as the update
process of the lookup table can not react to all changes in the network instantaneously.
Hence they have to be validated in a subsequent step.

Topological search operates on the topological network N,. It collects a set of paths in
Ny from a € N5 to b € Ny. The difference between topological search and topological
ressource search is that topological search does not rely on values precomputed in Np.
Instead, the cost function used for searching uses default values that can be determined by
analysing data like cable length that is attached to the aggregate entities in /N5. Topological
search is implemented as an uninformed search that computes all paths with a cost function
value less than a predefined threshold.

Topological priorisation analyses a result set delivered by topological search. It decides
which path in V5 is preferred based on a number of rules that can differ from the cost
function used in topological search (this is why all possible paths are retrieved in topolog-

161

ical search). An example of such a rule is that certain cable materials are preferred or that
certain node types are not used.

Technical search validates a path on the technical level. L.e. it searches for unused wires
(N7 entity) in a cable (/N entity) or unused pins (N7 entity) in a distribution box (N
entity) to realize a path consisiting of IV, entities (as generated by topological priorisation).
A path is valid if and only if unused NV, entities can be found to realize the N,-path passed
by topological resssource search.

Technical ressource search is analogous to technical search in that it validates a path in
Nj. It differs from technical ressource search in that it analyses precomputed paths in Ny
that are stored in the database.

Ressource priorisation works in a way similar to topological priorisation in that it analy-
ses a result set delivered by a preceding search run. It decides which path in Ns is preferred
based on the same cost function as used in topological priorisation.

The optimal execution path of the algorithm depicted in fig. 1 is topological ressource
search followed by ressource priorisation followed by a successful technical ressource
search (roughly on the left hand side of fig. 1). The right hand path in fig. 1 is executed as
a fallback strategy. Both, ressource priorisation and technical priorisation are used to cope
with problems constituded by the fast paced changes of the network.

4 Evaluation

In order to measure the performance of the algorithm presented in this paper, the algorithm
has been compared to two versions of a standard uniformed search algorithm on a test set
of ca. 1300 search queries. The results of this comparison are depicted in fig. 2. The
lowest curve in the figure ("'Ressource Router’) plots the computing time required by the
algorithm. The other two curves ("Raw Router’ and *Version 2.210’) plot the computing
times of two different versions of a standard uninformed search algorithm for the same
queries. In *Version 2.210° database queries have been modified to speed up the algorithm.
These modified database queries are not used in ’Ressource Router’. *Ressource Router’
is still significantly faster than the other two algorithms. The curve showing the computing
times of "Ressource Router’ can be regarded as consisting of three different segments (0-
23%, 23-97% and 97-100%). The computing times in these segments can be interpreted
as follows: In the first segment, transit paths can be validated for the complete customer
line. In the second segment, parts of the customer line can be instantiated using transit
paths and other parts require topological search. In the third segment, no paths can be
instantiated. Therefore the algorithm has to conduct an exhaustive search which makes it
as slow as the two comparison algorithms. These results show that the algorithm works
considerably faster than a standard uninformed algorithm in case a route can be found.
Given the requirements imposed by marketing considerations, the fact that a positive result
is found significantly faster than with a standard algorithm, makes the approach a full
success. Search times in negative cases are less relevant, because in these cases it does not
matter whether the customer loses interest.

162

20 T T T T T T T T T T T T

" Raw Router
i ' Ressource Router
18 Yersion 2.210 (21.11.2007) —— 4

17 =

16 £
|

15 }

14 : : 1
13 | ;v‘ s
12+ : : : /1]

: : /.|

z ut e '
) 10 | e Sk 14
£ e 2
g 9r et g F
EE e A
S
7k : 2 g e
bl B Fn B
| o B s
5k S
e et i
3 A7 v F g
2 F i
=
x . ;
e e a2 2 »e E e ne e £ e EX3 e £ e e e 2 a2 e e
< w0 < 0 < 't < w0 =3 w < w < 'vd < I'd < 'z} b=3 ['e] E=3
S8 8 883 8% 92 38 8 8 R L3 ¥Y I8 8

search queries

Figure 2: Comparison of the algorithm with two reference algorithms.

5 Conclusion and Further Work

This paper presented an approach that adapts the concept of transit nodes originally de-
signed for computing paths in road networks successfully to telecommunications net-
works. In order to accommodate for the special properties of the application domains,
both the concept of transit routes and a heuristics for on the fly path validation have been
devised. The algortihm has shown to successfully meet the requirements imposed by the
application domain. Future work will be conducted in the direction of evaluating whether
direct updates for changes in N; can be propagated instantaneously to the transit paths
stored in the database and for which kind of updates this is feasible.

References

[AS98] B. Awerbuch and Y. Shavitt. Topology Aggregation for Directed Graphs. In Third IEEE
Symposium on Computers and Communications (ISCC), pages 47-52. IEEE, 1998.

[BFMO06] H. Bast, S. Funke, and D. Matijevic. TRANSIT: Ultrafast Shortest-Path Queries with
Linear-Time Preprocessing. In C. Demetrescu, A. Goldberg, and D. Johnson, editors, 9t/
DIMACS Implementation Challenge — Shortest Path. DIMACS, 2006.

[Dij59] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269-271, 1959.

[SSO5] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In
13th European Symposium on Algorithms (ESA’05), pages 568-579, 2005.

163

