Dynamically Reconfigurable CORDIC Coprocessor
for Trigonometric Computing

Francisco Fons!, Mariano Fons', Enrique Canto', Mariano L(')pez2

! Departament d’Enginyeria Electronica, Eléctrica i Automatica
Universitat Rovira i Virgili (URV)
ETSE, 43007 Tarragona, Spain
% Departament d’Enginyeria Electronica
Universitat Politécnica de Catalunya (UPC)
EPSEVG, 08800 Vilanova i la Geltra, Spain

Abstract: Engineering applications often demand high-performance processors to
carry out specific compute-intensive tasks. This work describes the hardware-
software co-design of the CORDIC (Coordinate Rotation Digital Computer)
algorithm, all embedded in a system-on-chip device. This platform, based on an 8-
bit RISC microcontroller and a dynamically reconfigurable FPGA, makes feasible
the efficient implementation of the shift-add algorithm through a 32-bit fixed-point
trigonometric computer that evolves on-the-fly to process functions as sin(z),
cos(z), atan(y/x) and sqrt(x*+y?). Its balanced architecture — a low-cost processor
extended by a dedicated slave coprocessor to accelerate the calculus — reaches
significant improvements in throughput over conventional software-oriented
solutions usually inspired on powerful 32-bit stand-alone microprocessors.

1 Introduction

There exist a broad field of scientific applications where the extensive trigonometric
computing is present. As example, navigation systems responsible for calculating
trajectories in real-time (satellites, radars, etc) make use of Trigonometrics. A well-
known technique for trigonometric calculus is the CORDIC algorithm thanks to its
implementation simplicity, efficiency and elegance. Originally credited to Volder
[Vo59] and later generalized by Walther [Wa71], the CORDIC concept consists in
rotating a 2-D vector a desired angle & along a circular, linear or hyperbolic coordinate
system decomposing it into a sum of predefined elementary angles &, such that,
iteratively, in each step i, the rotated angle &; can be expressed as a value that depends on
the i-th power of 2, what finally is computed by simple binary shifts and additions, and
where the result is more and more accurate as the number of iterations increases since
the vector orientation is successively closer to its target or convergence point.

The use of FPGAs emerged as a viable means of offsetting microprocessor
performance limitations in applications that require high-speed processing of large data,
as CORDIC computing. Standard DSP processors can be ill-suited to perform at the

254

required rates due to the serial nature of their architecture or to the lack of certain
instructions set extension. FPGAs have been successfully used to mitigate these
problems by performing them in hardware, bypassing the sequential stored-program
techniques in favour of parallel and dedicated logic functions. Moreover, the multi-
purpose CORDIC algorithm exhibits additional characteristics useful to implement by
evolvable hardware because of the high similarity among its different operation modes.

After this introduction, section 2 describes the theoretical CORDIC aspects. Section 3
covers the technical criteria followed to implement the trigonometric coprocessor on the
Atmel AT94K40 device. In section 4, the experimental results are discussed. Finally, the
conclusions are presented in section 5.

2 CORDIC Algorithm

Given a vector in a 2-D coordinate system, the CORDIC method permits to compute
trigonometric functions such as sine-cosine of the angle 8 described by the vector in the
coordinate system as well as its magnitude-phase components. The rotation that moves
the vector from (x,,yy) to (x,,,) is defined by the equations matrix [VT99]: (1

{xﬂ} {cas& —sinﬁ}{xo} 1 { 1 —tanﬁ}{xo} cosd 1

Y, sin@ cos@ || y, JI+ tan’o | tand 1 Vo | JI+ tan’0

The CORDIC algorithm is inspired on performing this effective rotation & as an iterative
process based on successive rotations through which the initial vector (x,,y,) is rotated
by predetermined step angles 6. This mechanism can operate in two different modes:

- In rotation mode, the initial components (x,,),) of the vector and the effective rotation
angle zy)=0 are given in order to compute the new coordinate components of the resultant
rotated vector. For this, in each rotation step i, fixed angles are subtracted or added
from/to the angle accumulator z so that this remainder angle approaches to zero.

- In vectoring mode, the coordinate components of the vector (x,,y,) are known and the
magnitude and phase of this original vector are computed by rotating the input vector to
the X axis at the same time as storing the accumulated angle of this trajectory.

Taking in mind that any angle € can be decomposed into a set of n step angles &, in a
certain accuracy (2), the successive rotations of the algorithm are quantified such that
tan®, represents a series of powers of 2, that is, angle steps 6 of value atan2” that
arithmetically amount to successive binary shifts and additions left in a good place to be
efficiently implemented by hardware:

n—1 .
0= Zslﬂi +e&, tand; :sl-27’, s;e{-11} i=0 1, 2, 3, .., n—-1I 2)
i=0

where s; represents the sign or direction of each rotation 7, and the error £ converges to
zero when n is big enough. Therefore, the rotation from i to i+/ results in: 3)

{xm}: 1 { 1 —tanﬁi}{xi}:ki]71. —s5,27 {x,} kizl/m,
Vies ’]+tan29i tand, 1 Vi s;2 1 ;

If the factors k; are removed from Eqn. (3) and an auxiliary variable z; is introduced to

255

compute the accumulated angle, finally the called CORDIC micro-rotations are
obtained:

Xy =X =S 27, Vg =y +sx, 27z, =2, - satan2” 4)
These three difference equations, restricted to angles comprised within the range —90° <
6 < +90° due to convergence reasons, define the CORDIC algorithm for trigonometric
computing. The fact of not considering the removed £; factors in the final equations
makes a CORDIC micro-rotation be not a pure rotation but a rotation with an intrinsic
increase of the magnitude of the resultant vector that is quantified by the term A4,. Thus,

in a CORDIC rotation, after n iterations: (5)

n-lI n—1
cos(Zsﬂ.) —sin(Zsﬂ.)
xn i L = [x0 n—1 3 n—1
|: :|=A" n-1 n—1 |: :|’ An=H]+tan 6,‘: KV!:Hkizl/An'
Y sin(Zsﬁi) COS(ZSIH;) Yo i=0 -0
i=0 i=0

Although the value of the distortion or scale factor 4, depends on the number of
iterations n (micro-rotations), this term approaches to the constant 1.6467 as the number
of iterations goes to infinity. On the other hand, in a real rotation its value would be 1.

In rotation mode, the angle accumulator z is initiated with the target angle 8 and the
decision concerning the direction of rotation taken at each iteration is made to reduce the
magnitude of the residual angle present in that angle accumulator. This criterion is
therefore based on the sign of the resultant angle after each step. The sign rules along
with the resultant outputs are as follows:

-1, z,<0
siz{ “, 220 i=0,1,.., n-1 (6)

x,=4, (x(,coszo - y(,sinz,,), v, =4, (yocosz(, + x,8inz,) z, >0 when n—> o©.

The elementary functions sine and cosine can be computed from Eqn. (6): if the initial
vector is of unit magnitude and is aligned with the abscissa, that is, xy=1, y,=0 and the
angle accumulator is initialized to zy=6, then the results obtained in x, and y, equals to
A,cos0and A4,sin6. An additional division is needed to compensate the scaling factor 4,
originated in the CORDIC rotations and thus get sin@ (y path) and cos @ (x path).

In vectoring mode, the input vector (x,,y,) is rotated until the resultant vector gets
aligned to the X axis. For this, the term y of the vector is step-by-step minimized until
converging to zero. If the angle accumulator is started with zero (z;=0), at the end of the
rotation loops it will contain the effective rotated angle G=atan(yy/xy). Apart from the
angle, another simultaneous result obtained is the magnitude of the original vector scaled
by the gain 4,, which is stored into the component x and can be corrected by multiplying
it by K. Thus, the vectoring mode simultaneously provides the magnitude and the phase
of the original vector involved in the cartesian to polar coordinates conversion. In this
iterative mechanism, the sign of the residual component y determines the direction of the
following rotation step in accordance with the rule:

+1, y,<0

si:{ S y20 i=01,..,n-1 (7N

X, =Am/x(f +y5 , Z,=2, +atan(y0/x0), v, >0 when n— .

256

3 Hardware/Software Co-design. Dynamic Partial Reconfiguration

Despite the habitual trend of implementing digital signal processing algorithms by
means of DSPs or general-purpose processors, the CORDIC algorithm gets optimized
through dedicated hardware owing to its potential customizable parallelism as well as
other reasons enumerated next [Ti91], [An98]:

- The algorithm presents an iterative mechanism easily synthesizable on a FPGA. Many
of the involved elementary functions such as trigonometric, exponential and logarithmic
operations, on the contrary, cannot be efficiently evaluated with multiply-accumulate
(MAC) units present on DSP processors (consequently, whenever algorithms incorporate
these functions, it is not unusual to observe significant performance degradation).

- The accuracy of the result depends basically on the number of iterations done by the
algorithm and the data size of the operands involved in the operations. This characteristic
demands to increase the word width to the necessary length in accordance with the
desirable precision, and this fact, unlike the microprocessor architecture, can be
customized into a FPGA: in an arithmetic process that handles products and divisions,
for instance, it is usual that intermediate results have larger size than the final result. In a
MCU, the length of the ALU buses delimits the maximum data range admissible in the
computation. In ASIC or FPGA-based designs, this area restriction can be optimized by
splitting the computing in phases and adapting each parallel bus size to the range of data
needed in each of them.

Additionally, after inspecting the previous section, an outstanding characteristic is
noticed that gives rise to a novel implementation strategy: the only difference between
calculating the sine/cosine or the arctangent/magnitude functions is found in the sign
criterion, given that the three CORDIC equations (4) remain invariable in both rotation
and vectoring modes. This fact let us inspire the implementation on flexible hardware;
our approach divides the computing unit in a static circuitry or hardware skeleton that
remains unchanged and a dynamic circuitry or reconfigurable block that can evolve at
run-time depending on the mathematic function to compute. In this way, our design
deals with the implementation of a CORDIC coprocessor under a system-on-chip (SoC)
device with dynamic partial reconfiguration performances. The chosen platform is the
Atmel AT94K40, also known as FPSLIC (Field Programmable System Level Integration
Circuit), especially thanks to its fine-grained architecture from a configuration point of
view: the system is all integrated on a single-chip device composed of on an 8-bit AVR
MCU and an AT40K40 FPGA where hardware coprocessors can be instantiated.
Moreover, FPSLIC supports full and partial dynamic reconfiguration: the entire device
or select portions can be reconfigured at run-time by the MCU or the FPGA itself
through the internal configuration controller, while the remaining logic keeps active and
operates normally without any disruption [At01]. In this way, MCU and FPGA work
seamlessly in computing elementary functions such as sin(zy), cos(zy), atan(yyx,) and

magn(yo,xo).

long sin(char) ;
long cos(char) ;
long atan(char, char);
long magn (char, char);

Code 1. Prototypes of the trigonometric functions

257

These functions are instantiated by the MCU and processed by hardware in the FPGA
to speed up the computing. The MCU reconfigures the FPGA to synthesize the required
IP core depending on the function called by the software code. The FPGA execution is
performed when demanded by a user program: when the applications programmer
invokes a function that is supported in hardware, this results in starting an automatic
mechanism that handles the MCU-FPGA data transfer and FPGA partial reconfiguration
to download the specific hardware computer into the FPGA and perform the
trigonometric operation. For this, the software is organized in a model of two layers:

- A low-level or hardware abstraction layer offers the library of drivers that the high-
level software developer can use without taking care about the hardware platform in use.
These platform-dependant routines make both data transfer and partial reconfiguration
tasks transparent to the high-level programmer, who does not bother of the functions
implementation but only needs to know the API (application program interface) to call
them, as shown in Code 1.

- A high-level or application layer. This part of the application code constitutes the high-
level design. It can be exported to other hardware platforms keeping a full compatibility
whereas the low-level layer takes charge of carrying out the platform customization.

3.1 Coprocessor Architecture

Many research efforts have been directed to develop CORDIC-based architectures for
computing applications [Hu92], [VMO02]. Two types of architectures are considered
depending on the speed-area tradeoff intended by the application:

- Iterative CORDIC implementation. An iterative architecture is simply obtained by
synthesizing in hardware each of the three difference equations (4). The processing is
composed of binary shifts and arithmetic additions/subtractions where the partial results
of each loop are stored in accumulator registers.

- Unrolled or on-line CORDIC topology. The previous iterative architecture can be
unrolled #» times, giving rise to an on-line implementation. Unrolling the processor
results in several significant simplifications: the need for registers is eliminated making
the processor strictly combinatorial and the n-shifters and look-up values for the angle
accumulator can be wired and implemented distributed as hardwired constants.

Both types of architectures can be synthesized by bit-serial or bit-parallel data paths.

AVR MCU AT40K40 FPGA External
EEPROM

_J\ _ Input H\ (bitstream)
. interface _/

T

RECONF H\ CORDIC

block _/ core

==
/1-— Output /L
\‘_I_ interface \r

=<

J\ CONFIGURATION /L
_/ controller \r

Fig. 1. Block diagram of the AT94K40-based trigonometric CORDIC coprocessor

258

Our trigonometric coprocessor is based on an iterative bit-parallel CORDIC architecture.
It is divided into several blocks:

- Microprocessor. The 8-bit AVR is responsible for executing the C program that
contains the different calls to the trigonometric functions directly computed on the
FPGA. With regard to the hardware/software partitioning, the hardware coprocessor
monopolizes the arithmetic functions whereas the low-cost MCU assumes the data
management under a master-slave topology. This solution is an alternative to the use of a
stand-alone 32-bit processor (e.g. ARM) to implement all the computing by software.
The fact of having an FPGA makes possible, in turn, to require a CPU of lower power.

- Input interface. The coprocessor exchanges data between MCU-FPGA. An input
interface allows the MCU to transfer the function arguments to the FPGA registers.

- Output interface. The FPGA performs the computing and the result is send back to the
MCU through the output interface. Afterwards, the FPGA remains inactive until a new
hardware-supported function is called from the C code of the user application.

- CORDIC core. The trigonometric calculus is implemented by iterative and parallel
hardware architecture. Together with the hardware skeleton there is a finite state
machine that handles the # iterations required until obtaining the final result.

- RECONF block. Our coprocessor concept divides the design into a static part and a
dynamic part. Initially, after a system reset, the bitstream is automatically downloaded
from an external memory to configure the whole device; the basic CORDIC skeleton is
loaded in the FPGA and, from now on, only partial reconfigurations are required to
customize the coprocessor to the concrete trigonometric function on demand or in
progress. The RECONF block is directly managed by the MCU and makes possible to
modify some parts of the algorithm that affect to the input, CORDIC and output blocks.

D[7:0] e
Processor [« : Coprocessor
(MCU) : | (FPGA)
CS[5:0] > | Y
| In
~_CLKavr !
1
I
I e e R
T T B |
C_1 ||fae2| | MUX }
T i 32-bit ;
: Zreg }
i z |
I |
I| ¢4 Fsm rom | |1
1 Core !
| Kz* |
! SHIFT| [SHIFT atan2’| |1
: >>j >>j }
| I I !
1 V V |
! ADD/SUB/j ADD/SUB/j ADD/SUB !
! [| |
1 | |
| |
' |
FPGAX i
|
FPGAY Ll g, |!
FPGAZ Control |}
FPGAD |
|
I

Fig. 2. Internal structure of the CORDIC coprocessor

259

4 Experimental Results

The design, described in C and VHDL languages, has been divided in two stages:
- A first stage consisting in developing the entire algorithm exclusively by software in a
PC platform. This stage studies the accuracy required by our coprocessor according to
the precision of the data and the number of iterations considered.
- The second stage goes deeply into the Hw/Sw co-design of the algorithm and its
implementation on the FPSLIC. The results obtained in the first stage are useful here: a
profiling of all the tasks involved in the software algorithm lets us recognize the
bottlenecks of the application to achieve a reasonable hardware/software partitioning.
The coprocessor operates with 8-bit integer data as inputs and gives 32-bit data in
fixed-point representation as result. Concerning the input data range analysis, the input
values for sine and cosine functions goes from —90° to 90°, and for magnitude and
arctangent any 8-bit integers that give rise to an resultant angle fitted within the first or
fourth quadrant. The precision of the results is determined by both angular and
truncation errors [Li99]. The angular error depends on the number of iterations
performed whereas the truncation error is function of the data width established for the
operands involved in the calculus, due to limited storage capability or area restrictions.
Hence, our CORDIC implementation operates with 32-bit data and 32 iterations are
carried out. The hardware design comprises 1423 logic cells, what means the 61.8% of
the FPGA resources.

4.1 FPGA-Based Implementation. Reconfigurable Components

Concerning the dynamic partial reconfiguration aspects of the design, our interest is
focused on the synthesizable 4-in/1-out or 3-in/2-out look-up table (LUT) present in each
logic cell of the FPGA. In general, our design consists of a static circuitry that
constitutes the CORDIC skeleton and three flexible blocks that their behavioral
descriptions are conditioned to the particular function to implement since they differ
from one to other:

- Input RECONF block. As discussed in section 2, the results of the CORDIC equations
are affected by the gain factor 4, defined in Eqn. (5). Its inverse, K, in our design is a
pre-calculated constant applied to the initial values x, and y, to compensate this amplifier
effect. A multiplier synthesized at the input block does this operation, as shown in Fig 2.
Our application takes n=32, what gives rise to K3,=0.607252935. The coprocessor works
with data in fixed-point numbering format, to be exact, in 6 decimal digits. Thus, the
scaling factor applied to the terms x and y would be 607252.935. In the same way, the
angle is expressed in degrees but to 6 decimal places, what means a factor of 10° for the
term z. After doing a data range analysis, finally these constants are shifted 3 bits to the
left. The resultant multiplication factors are shown next.

Table 1. Numerical representation of the CORDIC corrective constants K3,

Variable Kcorpic (dec) Kcorpic (hex) Kcorpic (bin)
X 4858023 4A20A7 0100 1010 0010 0000 1010 0111
Y 4858023 4A20A7 0100 1010 0010 0000 1010 0111
Z 8000000 7A1200 01111010 0001 0010 0000 0000

260

These constants are assigned depending on the variable to transfer: instead of
multiplexing them by a mux2x24, this can be performed by reconfiguring an only logic
cell of the FPGA. In fact, taking advantage of the fine-grain FPGA characteristics and
the easy access to the configurable resources by the configuration controller, it is not
necessary to synthesize a generic mux with its select lines controlled by a dedicated finite
state machine (FSM); this can be handled by the MCU through reconfiguring the LUT of
a logic cell in order to negate or not its input and in this way generate two outputs that
are applied to the bits that differ from a constant to another, as depicted in Fig. 3. The
input is permanently tied to ‘0’ and the output switching takes place by reconfiguring the
logic function. Following this strategy, the routing of the design is fixed and only some
logic resources change. Hence, each time a value has to be loaded from the MCU to the
computing registers, the MCU previously reconfigures on-the-fly the corrective factor K
accordingly: two partial reconfigurations are performed in each trigonometric calculus,
one for both variables X and Y, and another for Z.

M2 TR | E e 0 1[0]0]1 0 1 0 0 of7]o]o ofo]o[T]o[T]o 0

cba fofy fofy f=nota

000 01 10 o~ 0 1|1 1010 00|0|1/0 0|1]|0{0(0O|0O]|0 O
_ga 001 10 01 fia

o
-
o
N
N
N

N
N
o
o
o

010 01 10
011 10 01
b T00 01 10 ;G
101 10 01 TH
110 01 10
C 111 10 o1
Reconf Reconf
XY Z

Fig. 3. Multiplexing of Kcorpic by dynamic partial reconfiguration

- Sign RECONF block. Rotation and vectoring modes only differ in the sign criterion
applied. In rotation mode, z; is considered for taking the addition/subtraction decision as
shown in Eqn. (6) whereas in vectoring mode the variable y; becomes the selection key
in accordance with Eqn. (7). Like this, the sign criterion can be implemented through an
only logic cell combining a LUT of 2 inputs, the signs of y; and z;. As above, by solely
reconfiguring the 8-bit truth table of this logic cell, one of both sign criteria is applied to
the three adder/subtract modules present in the coprocessor shown in Fig. 2.

SIGN CONTROLLER LUT 3x1 — TRUTH TABLE LUT 3x1 — TRUTH TABLE
yi(31) y(31)—a Inputs Output 31 —a Inputs Output
0 cbha f cba fsg=o fser=1
000 0 000 0o 1
z(31) — 001 1 | s z(31)—]p 001 1 1 s
mox |] oo =GN b g0 o f BU—boio o of
0= sub 011 1 011 1 0
1o o 100 1 100 0 1
1 101 1 1. 101 1 1
2(31) > € 110 o Ci10 0 o0
sel 111 0 111 1 0
0 = vectoring [
1= rotation sel FeM (a) (b)

Fig. 4. Sign controller. Static version (a) versus dynamic version (b)

- Output RECONF block. The result of the CORDIC algorithm is located in one of the
three registers x;, ; and z; depending on the function selected. The three 32-bit wide
registers are sequentially transferred to the MCU through a bidirectional 8-bit data bus.

261

According to this restriction, a smaller static mux4x8 is implemented to select each of the
four bytes that compound the 32-bit data, and the selection among the three 32-bit
registers is done by other 32 dynamic mux3x/, each of them implemented in a logic cell
using a reconfigurable LUT. In FPSLIC, taking into account the internal logic cell
structure based on a 4x1 or 3x2 LUT, a static mux3x/ is implemented with two logic
cells since five inputs are required. On the other hand, this same mux3x/ can be
synthesized dynamically in only one logic cell, what represents a 50% of area saving
(even more if the FSM necessary to control the select lines of the multiplexer are also
considered, whereas in a dynamic multiplexer it is not needed since the MCU program
does it) and also a considerable time reduction (inertial time and mainly transport time
thanks to the inherent routing simplification) of the data path. Hence, reconfiguring this
dynamic multiplexer of 32 mux3x1 involves rewriting the 32 affected LUTs.

x(i) \ | Lut ax1 — TRUTHTABLE
—0 x| a LUT 3x1 — TRUTH TABLE
Inputs Output X4
MUX cba f |
3x1 000 0 LUT 3xt - TRUTH TABLE fputs Oulout
) c b afsg=ofsm=t fsm=
¥(i) out(i) Yl oot ¢ a 0000 0 0 O
—1 | 010 0 Inputs Output yﬂ b 001 1.0 0 &rt(i)
011 1 cba f 010 o0 1 of
100 0 ' 000 0 011 1 1 0
sel(0) 101 0 (i) 001 1 out(i)
[—b f—) 100 0 0 1
. 110 1 010 0 (i)
101 1 0 1
i) 111 1 011 1 —¢c
gl) RSO 110 0 1 1
1M1 1 1 1
FsM selct) c 101 0
110 1
111 1
sel(1) sel(0) @) (b)

Fig. 5. Static 3x1-multiplexer (a) versus dynamic 3x1-multiplexer (b)

4.2 Performance Evaluation

In order to realize the benefits of the Hw/Sw co-design of the CORDIC algorithm, the
efficiency of this coprocessor has been compared against a shift-add software-based
implementation running on several PC platforms. Table 2 shows the performances
obtained in computing an identical trigonometric calculus under different systems.
Taking in mind the lower working frequency of our prototype, our system is able to
process the trigonometric calculus in fewer clock cycles than whichever software-
oriented approach. Our multiprocessor platform reduces the execution time through the
scheduling of concurrent MCU-FPGA tasks. The FPGA only needs 32 cycles to perform
the calculus. On the other hand, the number of clock cycles is deeply extended in a
software-oriented implementation, getting the critical part of the CORDIC execution.

Table 2. Comparison of different Hw/Sw implementations of the CORDIC algorithm

Platform (Operating System) Time (ns) Development Tools

Pentium 4 @ 2.66GHz (Windows XP) 5050 MS Visual C++ 6.0 (Win32)
AMD K6-2 @ 450MHz (MS-DOS) 13200 Borland C++ 3.1 (MS-DOS)
AMD K6-2 @ 450MHz (Windows 98) 4000 MS Visual C++ 6.0 (Win32)
FPSLIC coprocessor @ 12.5MHz (*) 5840/17040 Atmel System Designer / IAR

(*) best/worst case depending on the number of hardware modules that have to be reconfigured to
compute the trigonometric function.

262

Concerning the area saving, this reconfigurable strategy offers advantages due to the
high similarity between the rotation and vectoring modes of the algorithm. Although the
design is feasible without flexible hardware, in a DR-FPGA the interface for accessing
all the routing and logic reconfigurable resources is already available and it is not
necessary to design neither some control lines (wr/rd, en...) nor the FSM for controlling
them. This simplifies the design, the routing and, in turn, minimizes the critical path.

Table 3. Experimental results of the reconfigurable coprocessor

Hw Resources Data Execution Time (ns) Data Compute Error Data
Flip-Flops 125 Data-Control I/O 3920 Sine <10°
Gates 1177 Reconf. Kmul 960 Cosine <10°
10 cells 33 Reconf. Sign 640 Arctangent <10°
Total logic cells 1423 Reconf. Dmux 10560 Magnitude <2-10°®

5 Conclusions

This work describes the design of a dynamically reconfigurable trigonometric
coprocessor based on the CORDIC algorithm and mapped on an FPSLIC device. While
a low-cost MCU runs the program flow, a hardware coprocessor takes charge of the
computing. The MCU transfers the operands to the FPGA and reconfigures specific
flexible blocks of the coprocessor at run-time. In parallel, the FPGA computes the
trigonometric function requested by the software application and finishes by transferring
the result to the MCU. The concept reached is a single-chip cost-effective embedded
system that only just running at a low frequency processes sine, cosine, arctangent or 2-
D magnitude (square root) operations at rates comparable to powerful PC platforms.

Bibliography

[Vo59] Volder, J. E.: “The CORDIC Trigonometric Computing Technique”, IRE Trans. on
Electronic Computers, 1959; vol.EC-8, no.3, pp.330-334.

[Wa71] Walther, J. S.: “A Unified Algorithm for Elementary Functions”, Proc. 38th Spring Joint
Computer Conference, 1971; pp.379-385.

[VT99] Vladimirova, T.; Tiggeler, H.: “FPGA Implementation of Sine and Cosine Generators
Using the CORDIC Algorithm”, MAPLD’99, 1999.

[Ti91] Timmermann, D. et al.: “A Programmable CORDIC Chip for Digital Signal Processing
Applications”, IEEE Journal of Solid-State Circuits, 1991; vol.26, no.9, pp.1317-1321.

[An98] Andraka, R.: “A Survey of CORDIC Algorithms for FPGA Based Computers”, Proc. 6th
International Symposium on FPGAs, Monterey, USA, 1998; pp.191-200.

[At01] Atmel Corp.: “AT94K Series Cache Logic® (Mode 4) Configuration”, 2001.

[Hu92] Hu, Y. H.: “CORDIC-Based VLSI Architectures for Digital Signal Processing”, IEEE
Signal Processing Magazine, 1992; pp.16-35.

[VMO02] Vadlamani, S.; Mahmoud, W.: “Comparison of CORDIC Algorithm Implementations on
FPGA families”, Proc. 34th Southeastern Symposium on System Theory, 2002.

[Li99] Ligon, W. B. et al.: “Implementation and Analysis of Numerical Components for
Reconfigurable Computing”. Proc. IEEE Aerospace Conference, 1999; vol.2.

263

