PDD Applied: A Model Driven Approach

Helge Soren Klimek
Institute of Telematics
Hamburg University of Technology
Schwarzenbergstrasse 95
D-21073 Hamburg
Germany

helge.klimek @tu-harburg.de

Abstract: Property Driven Development is a methodology to check the validity of a
distributed application and its conformance to specified requirements. A first proto-
type supporting this methodology is being built at the moment. It allows modeling of
business processes and uses Model Driven Software Development (MDSD) technolo-
gies to transform the business process models to a mathematical specifications. While
MDSD usually is used to create software artifacts, in this approach it is used solely to
transform the models into their target form for further validation.

1 Introduction

Given a Service-Oriented Architecture (SOA) [MLM™06] for a large virtual enterprise, the
services in the architecture often represent business activities hidden behind well-defined
interfaces. Services interact with each other by exchanging sets of messages. This com-
position of services leads to a new layer of abstraction, allowing simple business process
composition, reorganization and also gives a clearer view on the business activities.

At the Institute of Telematics of the Hamburg University of Technology the Property
Driven Development (PDD) methodology has been developed. It aims at enriching busi-
ness process models with information needed to validate their fulfillment with respect to
modeled requirements. This is achieved by expressing the essence of the business in terms
of mathematical models. The model is enriched, for example, with safety properties, de-
scribing certain components legal states or temporal order of states. Since PDD allows
validation of the fulfillment of requirements, it allows a better understanding and reflec-
tion of continuously changing business processes, thereby increasing the quality of the
modeled systems and making development more convenient.

The focus in PDD is on the explicit modeling of systems under aspects of communication
and service identification. Thus, the message exchange between participating services is
important. After the services have been identified, other development methodologies can
be applied for constructing the services, for example the Rational Unified Process (RUP)
[JBR99]. The successful development of a system is only achieved in close dialog with

281



stakeholders. In order to foster the dialog between stakeholders, for example domain
experts, and developers, a common notation, understood by both, is used.

From the models drawn in that common notation, special formal models are derived, which
are validated against the formal requirements. Model transformation and validation are
automated by tools, making the transformation process transparent to the user. This way,
the user does not need a deep understanding of formal methods while still being able to
harness their power.

The methodology is a practical approach for developing and maintaining SOA based sys-
tems. It is especially designed to validate properties of systems and components and create
provable results.

For a more comprehensive definition of PDD, please refer to [GVZ, KRVZ], the above
information is taken from there.

In Model Driven Software Development (MDSD) models are part of the sources and de-
velopment is centered around the models. They are used to generate parts of the system for
other parts to rely on. Model transformation encapsules the process of translating a model
into source code or other models for further processing. In model to code transformation,
the user profits from the generation of invariant parts of the code. Variant parts ideally are
computed from the model or otherwise are added later. In model to model transformation,
aspects are taken from a model and are expressed in another one, allowing further refine-
ment, for example by the user. The development is supported by tools and thus becomes
more convenient, more efficient and less error prone. Generated source code and models
can be reproduced using the original models and transformations and therefore are not
considered to be source code. Model Driven Architecture (MDA) [MDA] is a special case
of MDSD, having special requirements, for example the type of metamodel, transforma-
tions and constraint languages. In MDA model transformations are organized as stack of
transformations, from platform independent to platform specific.

In the prototype created for this work, the more pragmatic MDSD approach is used. Model
to model transformations are preformed, to transform a model created by stakeholders and
developers into a mathematical specification of a system, in order to validate it against its
formal requirements.

2 Current Work

Temporal Logic of Actions (TLA) [Lam02] is a language for describing behaviors of con-
current systems. It combines logic of actions with temporal logic. While the use of TLA
was suggested in [GVZ, KRVZ], it first had to be shown, that this transformation can be
performed automatically. In [Kno0O6] a method has been developed, how the transforma-
tion can be formalized and thus automatized. Therefore, this thesis laid the groundwork
for the construction of a first prototype.

A first prototype application that utilizes the PDD approach is currently being developed.
The models created by the stakeholders and developers are transformed into a TLA+ spec-

282



ification, representing the mathematical model.

In [GVZ, KRVZ] standard UML was proposed as notation for the business process mod-
els. In [Kno06] custom UML 2.0 Profiles have been introduced. However, for the proto-
type application both approaches have been dropped. Current business process modeling
techniques provide a notation business experts are familiar with. Unfortunately, these no-
tations, such as Business Process Execution Language (BPEL) [BPE] or Business Process
Modeling Notation (BPMN) [BPM] are either too restrictive, not expressive enough or
lack a formal metamodel.

Therefore an own metamodel has been developed. Additionally, a graphical tooling, es-
pecially designed to be simple and for domain experts intuitive to use, has been created.
These two parts form the PDD Domain Specific Language (DSL). Both parts have been
implemented using technology coming from the Eclipse ecosystem. The metamodel was
implemented using the Eclipse Modeling Framework (EMF) [EMFa] and the graphical
tooling was built using the Graphical Modeling Framework (GMF) [GMF].

The model transformation is performed in the OpenArchitectureWare (OAW) [OAW] en-
viroment. It is being used to transform the model, an instance of the PDD metamodel, to
a textual representation of a TLA+ specification. The latter is used with the TLA Model
Checker (TLC), which is part of the TLA+ Tools [TLC], to prove the fulfillment of the
modeled requirements. For TLA and TLC Eclipse Plugins are available [GZ].

Other projects, for example AndroMDA [AND], use model transformations for generating
source code artifacts as basis for further development. In contrast, PDD uses model trans-
formations, to transform the model into a formal mathematical specification, with the only
purpose of validating the same. Model transformation is used, to convey the model from
one system to another, specialized and powerful system, in order to utilize its strength.

Current work on the prototype focusses on creating Eclipse plug-ins that allow the (visual)
creation of business process PDD diagrams, enriching them, transforming them to TLA+
specifications and validating them using the TLC. In the first step, this will be loosely
bound together.

The PDD metamodel comprises the most important elements of common business pro-
cess notations such as business processes, business objects, participants, start- and stop-
elements, elements to add safety properties and links to connect those elements — to name
a few. During the transformation process, the model elements and their connections are
analyzed and TLA actions, variables, invariants and so on, are generated. Safety proper-
ties are added to the actions or are added as invariants to the specifications. The generated
specifications are simulated using the TLC.

3 Problems

The transformation from the EMF based PDD model instance to a textual TLA+ specifi-
cation works as planned.

However, it is desireable to transform directly between two metamodels (M2) of the same

283



metametamodel (M3). Currently there is no EMF based metamodel for TLA+. Having
such a metamodel would allow performing a model to model transformation, where both
models are EMF based. As result, the transformed model could be fed directly into the
model checker, saving the indirection of writing a TLA+ specification and then loading
and parsing it. Such a transformation is expected to be much simpler and easier to adapt
to changes.

Safety properties and constraints can be added to the model, in terms of invariants, pre-
and post-conditions. Initially it was planned to use the Object Constraint Language (OCL)
[Obj06] to express constraints and safety properties. This is reasonable, because OCL is
well suited for this kind of task. It is well known in developer circles and there is an OCL
implementation from the EMF Technologies (EMFT) [EMFb] project, where EMF is used
as metamodel.

The problem using OCL is, another metamodel is involved and needs to be transformed to
the TLA metamodel. Additionally OCL does not provide temporal operators, which TLA
does. This mismatch would lead to a narrowing of the expressiveness and powers of the
PDD approach. This is of course undesired.

4 Future Work

From the current point of view, there are two main focusses for optimization and further
research, both have been mentioned in the section above. One is the optimization of the
model transformations, the other one concerns the way safety properties and constraints
are expressed.

As stated, a model to model transformation is desireable. Currently no EMF based meta-
model for TLA exists. For the future, it should be considered to take the effort and cre-
ate such a metamodel. This will improve the overall model transformation process and
its adaptability. However, having the metamodel alone will not solve the transformation
problem. The metamodel needs to be bound to the backend of the TLC compiler, this is
going to be difficult.

Further research is needed in order to determine how safety properties and constraints are
used in practice, in order to find an optimal language to express those. That language has
to be interpreted, translated to TLA and integrated into the existing TLA+ specifications,
too. An EMF based metamodel for that language would be supportive as well.

For convenience a tighter integration of the different parts is desireable. For the long
term, it is not necessary to expose the TLA+ specifications to the user. This requires that
error messages can be traced and transported from TLA to the PDD diagram. Complete
transparency of the transformation and validation process seems feasible and should be
targeted.

Also, it seems a promising idea to reuse the transformations from this work in existing
products or to have custom transformation plug-ins plugging into the prototype, allowing
the generation of further artifacts. One could think of an integration into an existing de-

284



velopment architecture, allowing the validation of a models formal requirements, as well
as the generation of code obeying those requirements.

References

[AND] AndroMDA. http://andromda.org (last checked: 2007-02-21).

[BPE] Web Services Business Process Execution Language. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.pdf (last checked: 2007-02-21).

[BPM] Business Process Modeling Notation. http://www.bpmn.org/Documents/OMG %20 Fi-
nal %20Adopted %20BPMN %201-0 %20Spec %2006-02-01.pdf (last checked: 2007-
02-21).

[EMFa] Eclipse Modeling Framework. http://www.eclipse.org/emf (last checked: 2007-02-21).

[EMFb] Eclipse Modeling Framework Technologies. http://www.eclipse.org/emft/projects (last
checked: 2007-02-21).

[GMF] Graphical Modeling Framework. http://www.eclipse.org/gmf (last checked: 2007-02-
21).

[GVZ] Boris Gruschko, Friedrich H. Vogt, and Simon Zambrovski. Business Activities in an
Industrial Context.

[GZ] Boris Gruschko and Simon Zambrowski. TLA+ Eclipse IDE Plugin.
http://www.techjava.de (last checked: 2007-02-21).

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Addison-Wesley, 1999.

[Kno06] Arne Knorr. Property-Driven Development - Modellierung als Methode. Master’s
thesis, Hamburg University of Technology, Telematics Institute, Germany, December
2006.

[KRVZ] Arne Knorr, Robert D. Russel, Friedrich H. Vogt, and Simon Zambrovski. Property-
Driven Development: A verification approach for distributed processes.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[MDA] Model Driven Architecture Specifications. http://www.omg.org/mda/specs.htm (last
checked: 2007-02-21).

[MLM™06] Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter Brown, Rebekah Metz, and
Booz Allen Hamilton. Reference Model for Service Oriented Architecture 1.0, Com-
mittee Specification 1. Organization for the Advancement of Structured Information
Standards, August 2006.

[OAW] Open Architecture Ware. http://www.openarchitectureware.org (last checked: 2007-
02-21).

[Obj06] Object Management Group. Object Constraint Language, OCL 2.0, October 2006.

[TLC] TLA+ Tools. http://research.microsoft.com/users/lamport/tla/tools.html (last checked:

2007-02-21).

285



