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Predicted Templates: Learning-curve Based Template
Projection for Keystroke Dynamics
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Abstract: Keystroke Dynamics (KD) as a biometric modality can provide authentication tools in
many real-life applications, virtually at zero-cost on the client side, due to the reliance of these tech-
niques on existing hardware, and their low computational expense. One promising application is the
use of KD as a second factor in password-based authentication. A downside of the existing modeling
methods is the assumption of stationary behavior from the clients. However, it is expected that hu-
mans show improvements in performing a specific task following practice. In this study, we propose
methods for utilization of learning models in predicting the future behavior of the clients, even with
little enrollment data, and generate predicted behavioral models that can be used in different clas-
sifiers. In our experiments, the predicted templates show a reduction in the average equal-error-rate
(EER) consistently across different classifiers a benchmark dataset. A reduction of 20% is achieved
on the best classifier. Given fewer enrollment data, the performance gain was shown to reach above
30%. Furthermore, we show that blind detection of attacks is possible, solely relying on the global
learning curve, with an EER of 16%.
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1 Introduction

Keystroke Dynamics (KD) provides simple and effective tools for biometric authentication
of users. These methods are easily deployable in a wide range of access control applica-
tions, as they do not require additional hardware or any adaptation from the clients. KD
has a long history of application [Bi06] , and the effectiveness of these systems has been
the focus of many studies [TTY13]. A major use-case for KD is as a second factor for
password authentication. The need for more security in password authentication is evident
as for the existing common issues of the password-only authentication. Examples are pass-
word sharing, same password for multiple accounts, insecure passwords, attack techniques
such as phishing, and password leaks. Many datasets have been proposed for the task, and
good detection accuracies have been achieved [TTY13].

A major disadvantage of KD as a biometric is its relative low permanency compared to
other biometrics. To address this problem, template updating methods have been studied
recently [SB11, GDR11] . The goal of template updating mechanisms is to recover perfor-
mance drops due to changes in typing patterns by either periodically or constantly updating

1 NTNU, IIK, Norwegian Biometrics Lab, Gjovik, NO, ali.khodabakhsh@ntnu.no
2 University of Twente, EEMCS, Database Management & Biometrics, Drienerlolaan, NL,

e.haasnoot@utwente.nl
3 NTNU, IIK, Norwegian Biometrics Lab, Gjovik, NO, patrick.bours@ntnu.no



2 Ali Khodabakhsh and Erwin Haasnoot

the stored templates. These changes are caused by many factors ranging from environmen-
tal factors (e.g. new input devices and interaction position), to behavioral ones (e.g. mood,
adapting new typing behavior, and improvements in typing proficiency). As the matter of
fact, template updating introduces new attack vectors to biometric systems, and methods
used to report template update performance do not always map well to applications in
practice [SB11]. Among the factors that influence typing patterns, gradual improvement
by practice is well-studied in the field of psychology [DH15], and mathematical models
have been proposed for modeling these learning trends [NR93]. Since the effects of prac-
tice and learning on typing patterns are not well-studied in KD [Ha18], it is worth while
to investigate the use of learning curves to predict behavior changes pro-actively.

Template prediction differs from template updating as it updates templates in advance,
taking into account the predictable changes in the behavior of the subject, in contrast to
template updating, which does so re-actively. Template prediction can improve the per-
manency of KD templates by removing predictable variability factors, but cannot be a
replacement of template updating as it does not provide any mechanisms for unpredictable
sources of variability. In this study, we take initial steps for taking advantage of the learn-
ing curve trend and show significant gains in the performance of the resulting systems.
The proposed methods are flexible and can be adapted for many existing classifiers by
detrending the training data.

The rest of this document is organized as follows: the methods proposed in this study
are explained in section 2. Experiment setup is presented in section 3, followed by the
discussion on the results in section 4. Finally, the paper is concluded in section 5.

2 Methodology

Many features are recorded in different KD applications (e.g. pressure, mouse movements,
etc) but the most commonly used KD features are derived from timing information, in par-
ticular, the time when a key is pressed and released [BW12]. Later, machine learning based
or statistical models are trained on the enrollment data and given a probe, the similarity or
dissimilarity of the sample to the model is calculated. Modeling is usually done with the
assumption of stationary behavior from the client which is not always true. In this section,
we explain how the learning curve can be used for generating predicted templates (PT).

The features in the focus of this study are derived from the key-press and -release times as
listed below:

• Duration (aka hold or dwell time): The time between pressing a specific key and
releasing it.

• Press-Press latency (PP-latency): The time between pressing one key and pressing
the next one. This feature follows a learning curve, as shown in Fig. 1.

• Release-Press latency (RP-latency) (aka flight time): The time between releasing
one key and pressing of the next key. This RP-latency can be negative as the next
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key can be pressed before the previous is released. Furthermore, it is linearly related
to the previous two features, and can be calculated by subtracting the duration from
PP-latency.

2.1 Learning Curve

The 3-parameter learning curve can be described using the power-law (PL) formula [NR93],
g[r] = arb + c , where r is the repetition number, a is the slope, b is the power, and c is
the asymptote. Given the time series on training data g[ri],ri ∈ R sampled at repetition
number set R, the PL parameters a, b, and c can be estimated using non-linear least square
method. The resulting parameters can then be used to predict the value of g[rt ], where rt
is the probe repetition number. As a result, ideally, the model can be represented as the set
of PL parameters P = {a,b,c}.

2.2 Bayesian Inference

In many applications, it is not realistic to assume always having enough samples of g[r]
series to have an accurate estimate of the PL parameters P. To alleviate this problem, one
can generate an accurate estimate of the global model parameters P0 over the general du-
rations and latencies over a large number of repetitions in a subject independent manner,
to be used as a prior model. Having such an accurate estimate as a prior, given observa-
tions from subject model parameters Ps0 of a trained model on limited noisy samples from
his/her training data, one can arrive at the updated parameters using Bayesian inference.

The updating mechanism is explained as follows on each individual model parameter. For
the sake of simplicity, appealing to the central limit theorem, each fitted parameter in the
PL model follows a normal distribution, with a mean of µ and a standard deviation of σ

derived from the estimated standard error. For a specific parameter, the global fit provides
initial values µ0 and σ0, while the fit on a specific subject from a number of samples n,
leads to values µs0 and σs0 . Now, the posterior distribution N (µs,σ
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This process can be done for each parameter in the model separately to acquire the poste-
rior distribution means µs, which will be used as inferred model parameters Ps.

The global parameters can be learned per feature, however, such a feature specific model
would be of limited use. In this study, a more fruitful approach is taken by learning param-
eters over global features (i.e. duration, PP-, and RP-latencies), in a key-inspecific way.
An example of the process is explained and depicted in section 4.1. This allows a more
accurate average model and a wider applicability of the global parameters.
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2.3 Blind Detector

In real-life scenarios, the client is usually in the later stages of the learning curve, while
the unpracticed attacker is in the initial stages. Even though the assumption of having
an unpracticed attack may not always be true, this gap may be utilized for detection of
attacks in special cases, where the assumption can be made, in the following manner.
By bypassing the subject based inference step, the global parameters can on their own be
used as a subject-independent model. This model, instead of presenting how the individual
behaves, represents how well a well-practiced person will behave.

Such a model does not rely on enrollment data, hence the name blind, and as a result,
it does not have a differentiation power between different subjects, as it will generate the
same model for all subjects. Thus, it can only function as to contrast between existing bona
fide (BF) instances and presentation attacks (PA).

2.4 Classifiers

In this study, four statistical methods (distance measures) are used as classifiers. The mo-
tivation behind this selection was the similarity between the modeling across all these
classifiers, as well as the comparison possibility they provide in reference to the bench-
mark dataset [KM09]. These are Euclidean, Normed Euclidean, Manhattan, and Scaled
Manhattan distances, implemented in accordance with the reference study [KM09]. These
distance measures rely on a template consisting of a mean vector and an average absolute
deviation (AAD) vector.

3 Experiment Setup

3.1 Dataset

Killourhy dataset [KM09] is selected for this study due to being one of the largest freely
available datasets with a high number of repetition per subject. This dataset consists of
data collected from 51 subjects. A total of 400 repetitions per subject were recorded in
8 sessions with at least one-day of spacing between two subsequent sessions. The dataset
provides duration (called hold in [KM09]), PP-latency, and RP-latency values for each key
in the password “.tie5Roanl” plus the final Enter key-press, while joining the Shift+R key
combination as a single key-press. This results in 11 duration values, 10 PP-latency values,
and 10 RP-latency values, in a timing vector of 31 numbers per repetition. The setup used
in this article matches that of [KM09].

3.2 Parameters

Baseline: For the baseline system, models are generated by calculating the average and
AAD of the training observations per feature, resulting in a model vector of 31 means and
31 AAD values.
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Predicted Template: To generate the PTs, the training observations are used to train one
PL function per feature, resulting in 31 PL parameter sets. A conservative model is then
generated by averaging the predictions of each PL function over the repetition number
range 201-400, corresponding to the last four sessions. The AAD model is calculated by
the same method used for the baseline system.

Predicted Template with Prior: To estimate the global PL function parameters, the
leave-one-out approach is used. After excluding the data from the target subject, all the
key entries over all the features of the same type (duration, PP-latency, and RP-latency
values) are pooled, and the average is calculated for each repetition number (Fig. 1). Then,
a PL function is fitted on the resulting values. The outcome of this process is 3 sets of PL
parameters corresponding to each of the 3 types of features. These parameters are then
used as prior for the parameters generated by the PT method, based on their corresponding
feature category, and the posterior model is inferred using Eq. 1. The rest of the modeling
is done in the same manner as for PT.

Blind Detector: The blind detector relies solely on the global PL function parameters
for generating the static predicted model. To avoid the effect of using the training data of
target subjects in generating the global PL functions, again, the leave-one-out approach is
used. Then, similar to PT, for each feature, samples from the corresponding category in
the range of 201-400 are generated and averaged. To generate the AAD model, the AADs
of repetitions of each subject for each feature is calculated and averaged per feature type.

Accuracy Measures: To measure the performance of the proposed methods in a way
comparable to the original study, the average equal-error-rate (EER) measure [KM09] is
selected.

4 Results and Discussion

4.1 Learning Curve

Fig. 1 presents all instances of features for each category, along with their average, and a
PL function fitted to it. The duration values remain almost static as shown in Fig. 1a. There
is a slight upward trend which was not captured by the PL function due to the lack of a
linear term. However, the fitted PL function represents the mean of the data accurately. The
RP-latency values show a clear exponential trend as depicted in 1b. This trend was well
captured by the fitted PL function. The significance of the effects is especially evident in
comparison with the initial repetitions with the last 100, showing a ratio of approximately
2 to 1. The same pattern was observed for PP-latency values, as PP-latencies are essen-
tially the RP-latencies plus the duration values. It is interesting to observe the piece-wise
recurrence of the overall patterns inside each session, mostly visible in repetitions 50, 100,
150, and 200, as a result of spacing between sessions [DH15].
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(a) Duration values

(b) Release-Press latency values

Fig. 1: All instances of (a) duration and (b) release-press features, across all subjects, plotted over
the number of repetition. The average values are shown in yellow and the power-law function fitted
to average values in each case is reported in its legend.
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Euclidean Euclidean (normed) Manhattan Manhattan (Scaled)
Avg EER (STD) Avg EER (STD) Avg EER (STD) Avg EER (STD)

Baseline 0.171 (0.095) 0.215 (0.119) 0.153 (0.093) 0.096 (0.069)
Predicted 0.142 (0.073) 0.148 (0.079) 0.110 (0.072) 0.077 (0.060)
Predicted w/ Prior 0.205 (0.169) 0.188 (0.145) 0.120 (0.084) 0.079 (0.057)
Blind 0.164 (0.162) 0.173 (0.124) 0.160 (0.153) 0.182 (0.168)

Tab. 1: Performance of the proposed systems in contrast to the baseline system in terms of mean
equal error rates and their corresponding standard deviations, on the benchmark task. (The last col-
umn corresponds to 200 enrollment repetition in Fig. 2)

4.2 Predicted Templates

As displayed in Tab. 1 the PTs outperform the baseline consistently across all classifiers.
The percentile reduction in the mean EER is 17%, 31%, 28%, and 20% for Euclidean,
Normed Euclidean, Manhattan, and Scaled Manhattan classifiers respectively. The effect
of the number of enrollment samples on the performance of the PTs is depicted in Fig. 2
for the best classifier (Scaled Manhattan). The PTs systematically perform better than the
baseline for large numbers of enrollment repetitions consistently, however, they show no
improvement if the number of enrollment repetitions drops below 8.

4.3 Predicted Templates with Prior

Using the prior knowledge has a negative impact of the performance of the system, as
shown in Tab. 1, however, compared to the PT method this negative impact is not signif-
icant (except for the Euclidean classifier). Following the standard experiment setup, 200
enrollment repetitions are used, and it was possible to generate the PTs with high accu-
racy without a need for prior information. However, the benefits of using prior knowledge
are observable in Fig. 2. PT with prior outperform the PT method consistently and sig-
nificantly when the number of enrollment repetitions falls below 15. As in most real-life
applications, the number of enrollment repetitions falls in the lower range of 2, this method
can be positively incorporated.

4.4 Blind Detector

The blind detector shows a very high performance, close to the baseline system, for Eu-
clidean and Manhattan classifiers as shown in Tab. 1. The high performance of this system
can be explained by the major difference in the BF and PA trial selection in the dataset.
The BFs are selected from after the first 200 trials, while the PAs are selected from the first
5 of every other subject. This major difference causes the BFs to have a high similarity
with the blind detector model (which represents practiced behavior), while the PA trials
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Fig. 2: Average equal error rate (with 95% confidence intervals) vs the number of enrollment repeti-
tions for scaled Manhattan classifier on proposed methods and the baseline system. The graph starts
at 3 for predicted templates and 4 for predicted templates with prior, as at least 3 observations are re-
quired to fit a power-law function, and another observation for estimating its parameters’ confidence
intervals.

are dissimilar (representing unpracticed behavior). This also shows the significant impact
of the learning curve on the performance of the systems in this setup. It is important to
note that the standard deviation of this system is very high compared to all other systems.
To analyze this further, the histogram of the subject EERs are plotted in Fig. 3. The EERs
of the blind detector have a more flat distribution along the x-axis, showing its perfor-
mance to be variable for different subjects. Nevertheless, on average it performs well due
to the high accumulation of EERs in the lower range. This system is the only system where
Manhattan classifier outperforms scaled Manhattan, showing the ineffectiveness of AAD
estimation.

5 Conclusion and Future Work

In this paper, multiple methods have been proposed for utilization of the learning curve
in template prediction. Consequently, the average EER of multiple classifiers has been
reduced by 17% to 31% on a standard dataset. The proposed systems can be used as the
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Fig. 3: Normalized equal error rate histogram (using kernel density estimation) of proposed systems
in comparison to the baseline system and the blind method for the scaled Manhattan classifier.

modeling step of different classifiers and can provide outstanding performance even with a
small number of enrollment data. A blind detector has also been proposed with an average
EER of 16%, which can be incorporated without a need to individual subject modeling.
This system, due to its simplicity, can have a wide range of applications, however, its
variable performance across different subjects must be taken into account.

The future work includes: incorporating template prediction into more complex classi-
fiers, evaluating the methods on more recent benchmark datasets, incorporating spacing
information and the piecewise power laws [DH15] in the modeling, and replacing the 3-
parameter PL function with a 4-parameter model that includes a delay factor. It is also
recommended to study the transferability of the trained global model to other datasets.
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