&

High Performance Parallel Computing with ParaStation3
Joachim M. Blum and Thomas M. Warschko

1 Introduction and Motivation

Since 1995 Workstation clusters coupled by high-speed interconnection networks offer a
promising direction for high performance computing because they are cost-effective and
they closely track technology progress.

In contrast to supercomputers and parallel machines, clustered workstations rely on stan-
dardized communication hardware and communication protocols developed for local-area
networks and not for parallel computing.

In the past few years researchers developed new mechanisms and protocols to interact
with high speed communication hardware. The technique of user-space communication
reduced the overhead caused by the Operating System protocol stacks. Although being
successful in terms of achieved performance (latency as well as throughput), the proposed
communication models often use nonstandard programming interfaces and sometimes also
nonstandard communication semantics. But application development relies on standard-
ized and well defined programming interfaces such as Unix sockets or programming en-
vironments such as PVM and MPI, to ensure portability and maintainability.

Thus providing these kind of interfaces is a key issue for a widespread use of high per-
formance cluster systems.

Providing a global cluster environment is a second key issue, especially to handle large
clusters. In order to provide clusters which are easy to use and easy to manage, it is neces-
sary to develop a multi-user time-sharing environment with means for global (cluster wide)
resource allocation that can respond to resource availability, distribute the workload and
utilize the available resources efficiently and transparently. Maintaining a multi-user en-
vironment on top of a user-space communication subsystem requires specific mechanisms
for process coordination such as co-scheduling of simultaneously communicating pro-
cesses which is not present in ordinary operating systems. Furthermore, handling clusters
in a convenient way needs mechanisms to provide partitioning, global process manage-
ment, load balancing, node management, fault tolerance and disaster recovery.

This article presents the ParaStation3 architecture and related approaches (section 2), start-
ing with an overview of the ParaStation3 system (section 3). The following sections discuss
ParaStation in detail, first it’s communication subsystem (section 4) and finally it’s cluster
environment (section 5) which forms ParaStation’s Single System View.

2 Communication Subsystems and Cluster Environments

There are several systems providing a high performance communication subsystem for
Myrinet. First of all GM from Myricom [Myr99], Active Messages-II [CMC97] used in

&

&

308 Joachim M. Blum and Thomas M. Warschko

the Berkeley NOW cluster [ACP95], Fast Messages [PLC95] from University of Illinois,
the link-level flow control protocol (LFC) [brB98] used within the distributed ASCI su-
percomputer, PM [TOH+98] as part of the SCore system from Real World Computing
Partnership in Japan, virtual memory mapped communication (VmmC-2) [DBC+98] from
Princeton University, the basic interface for parallelism (BIP)[PT97] from the University
of Lyon, Trapeze [YCGL97] from Duke University, and ParaStation from the University
of Karlsruhe and ParTec respectively.

Most systems are based on the user-space communication principle to achieve high perfor-
mance, although they support different communication paradigms, different programming
interfaces, and a different quality of service. For example, most systems assume Myrinet to
be reliable [brB98] and do not provide any mechanisms to ensure reliability, whereas GM,
AM-II, VmmC-2, and ParaStation implement TCP-like transmission protocols at firmware
level to guarantee reliable communication even in case of network failures (corrupted or
lost packets).

Besides proprietary programming interfaces which are closely related to the correspond-
ing communication paradigm, nearly all systems provide an optimized MPI package as
standardized programming interface. The standard Unix socket interface is supported by
the GM system at kernel level (non optimized), by Trapeze at kernel level (optimized), by
Berkeley NOW and VmmC-II (optimized, but limited functionality) and by ParaStation
(optimized with full functionality and compatibility at object code level, see section 4).

Providing a high speed communication subsystem is a key issue for parallel computing. In
addition to that, Glunix from the NOW project [GPR+98], SCore from RWCP in Japan
[HTI97], Mosix from the Hebrew University of Jerusalem [BL98] and ParaStation also
care about global resource management and administration of clusters by providing a
global cluster environment. While Glunix and SCore offer a set of commands to establish
the cluster environment, ParaStation uses a combination of kernel extensions and daemon
processes on each node of the cluster. Mosix focuses on global resource sharing, load
balancing and process migration using kernel extensions to the BSD and Linux kernel, but
neglects a high performance communication interface.

3 ParaStation3 Overview

The ParaStation system consists of several modules, located within or outside the unix
kernel (see figure 1).

A LanAlI program acting as firmware on the Myrinet adapter handles all communication
between the Myrinet connected nodes. The device driver is responsible for setting up the
Myrinet adapter at boot time and for mapping appropriate memory segments at application
start time. Together with a thin software layer called HAL'these modules form the base
of the communication subsystem (see section 4).

All programming interfaces (Unix sockets, PVM, MPI, Java sockets and RMI?) are imple-
mented at user level, but rely on services such as process coordination and co-scheduling

! hardware abstraction layer.
2 remote method invocation

&

High Performance Parallel Computing with ParaStation3 309

Applicatio ParaStation| Management
. _ - - Cluster &
Applicatio Applicatio Daemon | Applications

Java
| Sockets| | PVM | | MPI |
ParaStation One System Image
User Level
ParaStation High Performance
B Communication and
Management Subsystem
. A K | Level
Linux & Trué64 Unix emelteve
Myrinet Driver
Ethernet NIC Level
PS Firmware

Figure 1: Overview of the ParaStation3 system

provided as kernel extensions located within the device driver. We took this approach to
support a true multi-user environment on top of a user-space communication subsystem
(see section 4).

The ParaStation cluster daemon is responsible to collect and distribute all information
from all other nodes in the cluster to set up the global cluster environment. All services
to handle participating or faulty nodes, to spawn, signal, and kill processes in a unique
but cluster wide fashion, and to handle disaster recovery in case of application crashes are
located here. All this features build up what we call a Single System View (see section 5).

4 ParaStation3 Communication Subsystem

ParaStation’s communication subsystem is based upon the user-space communication
principle, which effectively removes all protocol processing, data buffering and operat-
ing system overhead from the critical communication path.

Most user level communication libraries are prepared to offer very good communication
performance for specific application areas. Today many applications are parallelized using
the MPI communication interface and therefore this is the only interface those subsystems
support. But there are several applications and libraries which still use other interfaces
such as PVM or any other library based on sockets. Therefore supporting only MPI results
in a reduced usability of these subsystems. ParaStation offers a wide range of program-
ming interfaces, such as MPI, PVM, sockets and Java RMI, which are all optimized for
the ParaStation communication subsystem. All interfaces are placed on top of a flexible
protocol switch, which directly transfers to protocol specific message handling routines.
Choosing this strategy (see [BWT98] for details) all communication interfaces perform

&

&

310 Joachim M. Blum and Thomas M. Warschko

nearly at hardware speed. MPI, PVM and sockets add approximately 2-5 us of latency to
the low level ParaStation HAL. This is possible due to the following reasons:

— Reliable Communication at hardware level
— Optimized Protocol handling

4.1 Reliable Communication inside the Firmware

The HAL already provides a reliable data transmission. When any application sends a mes-
sages to a destination it is guaranteed that this message arrives at destination in order. This
is in contrast to most high speed communication systems which reduce protocol process-
ing to a bare minimum. We’ve moved protocol processing to the Myrinet control program
(MCP) running on the Myrinet adapter. Our protocol implementation called RDP (reliable
data protocol) offers a reliable data transmission even in case of network failures such
as corrupted or lost packets. Although RDP is message oriented it uses implicit peer-to-
peer connections with unique connection identifiers, which are automatically established
upon the first transmission request to a destination host. During this process the source
and destination node also negotiate unique sequence numbers. The sequence numbers are
used to detect lost packets and the connection identifiers to detect when a connection is
being reestablished (after a single side breakdown). Thus RDP is able to handle tempo-
rary failure or absence of a node gracefully and it will reestablish connection to that node
automatically after it is online again.

The reliablity protocol inside the firmware allows the upper layers to discard any flow
control mechanisms from the critical path of communication and therefore provides all
necessary quality of service a full speed.

4.2 Optimized Protocol handling

A flexible message queuing system, which allows communication layers such as PVM or
MPI to inspect messages even out of order on request of the programmer. This feature
enables upper layers just to discard any queueing strategies, since all needed strategies
are shared with the ParaStation queuing system. Regular PVM and MPI implementations
get the arriving messages as soon as possible from the communication subsystem and
therefore have to store these incoming messages until the programmer requests them. The
ParaStation implementations use the ParaStation intermediate storage and leave the data
in place. Thus additional copying or message handling is avoided.

4.3 Standard Socket Interface

All parallel and client-server applications on workstation clusters are based on top of the
Unix socket interface. This lead us to provide a socket interface to fully support any ap-
plication to run at full speed on top of the ParaStation communication subsystem. The
first approach was to offer a semantically equivalent interface, which differed from the
original interface just by a prefix. The prefix allowed us to switch back to the operating
system sockets, when the destination was not reachable via the ParaStation system. As

&

&

High Performance Parallel Computing with ParaStation3 311

a consequence all setup calls had to be made by both ParaStation and the operating sys-
tem since the decission who is the communication partner is drawn later during connect()
or even during a sendto(). The small prefix layer between the application and the socket
system calls decided which way to go: high speed through the optimized ParaStation pro-
tocol or low speed though the operating system. This approach differs from others which
overwrite the socket calls and therefore disable the fall back mechanism. The fall back
mechanism is very important for two reasons: First many application use the read() and
write() system calls to transfer data through sockets. Overwriting read and write disables
any file operations. Not overwriting them does not enable these applications to use the
optimized interface. Second, most applications do not operate in a closed environment.
They communicate with the outside world. Disabling the outside communication would
limit the usability of the cluster.

The next step in optimizing the socket interface was to eliminate the prefix.

On one hand because source code had to be modified in order to use the highspeed net-
work and on the other hand because third party applications, where source code was not
available, couldn’t make use of the high speed network at all.

To enable an object code compatible socket interface, we use exactly the naming conflict
explained in the previous paragraph. By overwriting the real socket calls with the same
name, the linker automatically uses the ParaStation socket calls instead of the original
socket calls. But then the original sockets calls are no longer accessible, which is not
appopriate. To be still able to switch into operating system functionality we rewrote the
operating system socket interface. All socket calls consist usually only of three lines of
code in the libc.a, which pack the parameter and switch into to operating system. Exactly
this is done inside our new library, when we have to use the operating system functionality.
Now overwriting the socket calls while still having the possibility to fall back to the
operation system works perfectly.

4.4 Optimized PVM Implementation

The first implementation of PVM on top of ParaStation was based on this socket layer.
No modifications, except the prefix in the early version, was made to the original code
[BWT96]. The resulting PVM was much faster (latency dropped from 220 s to about 90
us). All the performance gains were due to the better socket performance (22 us versus 150
us). With the socket optimization, the latency caused by PVM was about 3.5 times higher
than the latency caused by the whole ParaStation socket communication. The second step
lead us to an optimization of PVM on top of the ParaStation ports, which fully used the
flexibility of the ParaStation communication subsystem. Inside the cluster we used ParaS-
tation’s Single System View (see section 5) to make PVM believe that it is running on a
single SMP system. The communication inside the cluster was changed to the ParaStation
ports interface, so that PVM could use the queuing system of ParaStation an leave the mes-
sages in place until the user requests them. For outside communication, PS-PVM still uses
the socket interface with its own message queuing implementation. The use of ParaStation
Single System View allowed us to reduce the number of PVM daemons inside the cluster to
a single daemon. This daemon is responsible for all tasks connected to him independent of

&

&

@ |

&

312 Joachim M. Blum and Thomas M. Warschko

the actual node they are running on. The ports interface reduced the work to be done inside
PVM to a minimum, so that the PVM overhead for a message transfer could be reduced
from about 70 us on top of sockets to about 2 us on top of ParaStation.

This internal PVM optimizations and the optimization inside the ParaStation protocols
reduced the overall message latency from 220 us to as low as 25 us, which is far less than
PVM implemenations on many dedicated parallel machines even with common shared
memory.

4.5 Multi-process Optimization by Coscheduling

Another limiting factor is that when moving the communication path outside of the kernel,
the kernel has no communication dependent information for its scheduling decisions. The
kernel is no more aware if a thread is doing real work or if it sits busy waiting on an empty
receive message queue. Wasting CPU cycles is critical and reduces overall performance,
because they could be used by other threads to do real work. Therefore we have developed
several methods to hand-off the CPU to another thread. Now with ParaStation coschedul-
ing running two independent pairwise exchange benchmarks on the same set of CPUs is
about 20 times faster than with the plain system without any coordination between the
different tasks. This effect is extremly visible when using Java RMI, where several threads
are waiting for a remote method to return and therefore actively consume CPU cycles
without doing real work. With ParaStation coscheduling multithreaded applications run
efficiently on a cluster of workstation with user-space communication protocols.

5 ParaStation3 Single System View

Beside an efficient communication subsystem, a very important feature for the success of
clusters in general is their ease of use and ease of programing which can be achieved
by providing a unified view of the cluster as one single entity. As shown in section
SParaStation’s Single System View allowed us to make PVM believe that it runs on one
single SMP.

5.1 Interaction between the nodes

The ParaStation Single System View is provided by the interaction between the ParaSta-
tion system library bound to each process, a cluster daemon running on each node and
kernel extension inside the device driver.

The daemons of each node are connected to each other by exchanging messages. Each
daemon distributes local information such as the currently connected clients and the load
to all other daemons. Additionally all daemons can request status information from re-
mote nodes through the daemon-daemon protocol. In the beginning this daemon-daemon
protocol was based on TCP connections between each node and was therefore inefficient
for large cluster of several hundred nodes. With NxN TCP connections most operating
systems are overloaded (for large N), because they are not build to support so many open
connection efficiently. The new version of ParaStation’s daemon-daemon protocol uses

&

&

High Performance Parallel Computing with ParaStation3 313

our reliable datagramm protocol (RDP) on top of UDP. Therefore all connection states
are controlled inside the RDP protocol and the operating system doesn’t have to deal with
several hundred open connections. Additionally, the traffic on the network was reduced by
broadcasting the load of the nodes with UDP multicast messages. Using TCP each daemon
had to send N load/alife messages. With a multicast socket, each daemon only has to send
one message. These enhancements with the new daemon-daemon protocol reduced the
complexity for the kernel and the traffic on the network.

If a node fails, the other daemons detect this because the alife message of this daemon is
missing for a specific period. If this happens the declares all tasks running on this nodes as
dead and takes appropriate action (see notification mechanism below).

This communication infrastructure of the daemon-daemon protocol enables us to expand
the local view of a single node to a global, cluster-wide coordination of the connected client
processes. Part of the global coordination are global process management, partitioning,
load balancing and output redirection.

5.2 Global Process Management

For the global process management each process has a unique gobal task identifier. Any
operation inside the ParaStation Single System View on tasks uses this task identifier to
address the task. Sending signals in Unix is limited to the local node. ParaStation expands
the delivery of signals to any task in the cluster. Inside ParaStation signals are sent to the
global task identifier. This task identifier is used to address the node where the task resides
and a request is sent to the daemon on the node. When the request arrives the daemon
sends the signal locally to the final task. Any error codes, such as operation not permitted,
are sent back to the calling task and it can handle the return code in the same manner as
a local kill() command.

Furthermore ParaStation’s Single System View introduces a new very powerful mecha-
nism, which notifices a task if another task changes its status. Any task in the system
can register at the ParaStation system to be notified as soon as the status of another tasks
changes. This helps the registering process to know when any task, e.g. the parent task,
dies and may react in a proper manner. PS-PVM uses this feature to expand the respon-
sablity of the single PVM-Daemon to the whole cluster. The clients register to be notified
as soon as the daemon dies. This mechanism allows to clean up the virtual machine even
if the coordinating PVM daemon is not present any more. The same mechnism is used
inside MPI, where all processes register to be notified as soon as a cooperating task dies. It
helps to clean up all processes in an MPI base parallel application even if a process gets
a segmentation fault.

ParaStation’s Single System View allows a task to spawn new tasks dynamically on any
node transparently. As a result of spawning the calling task gets back the global task
identifier with which it can send signals to or retrieve information about the new task.

It is often usefull to partition larger cluster into smaller subsets. E.g. one part of the system
is used for programming and the other part is used for productive runs. ParaStation can be
instructed to limit total number of available nodes to any specific subset. New tasks are

&

P

&

314 Joachim M. Blum and Thomas M. Warschko

only spawned inside this specific subset of allowed nodes. This allows a close cooperation
with batch systems such as DQS or PBS. When launching new applications the batch
system sets the subset of possible nodes and executes the master process, which then
spawns its clients only inside this subset.

While spawning ParaStation allows the user to tell the system to use a specific node or to
choose an appropriate node to spawn a new task. When no specific node is given, ParaS-
tation sorts the available nodes in the active partition by load and spawns the requested
number of processes on the least loaded nodes. This balances the load among all nodes
in a partition.

All spawned client processes send their output to the terminal of the master process. This
allows even to use the printf() debugger in the parallel application. Due to the fact that the
real parent process of the client is the daemon on the remote side, it inherits the IO channels
of the daemon. To prevent this, the daemons redirect the IO channels to a logger process
which is running on the node of the master process after forking and before changing to
the new executable. The logger process is forked by the master process before the master
sends its spawn request to the daemon and transmits the peer addresses of this logger with
its spawn message. This techique then allows redirecting all client output to the master
process.

6 Conclusion

In this paper we presented the importance of a communication and management subsys-
tem for clusters. We presented available systems for Myrinet and focused on details of
the ParaStation3 system, which provides alle necessary features and offers a promising
direction for high speed cluster computing.

ParaStation3 features a high performance communication system with a wide range of
programming interfaces operating closely at hardware speed. E.g. latency of all interfaces
is as low as 11 us and thoughput rises up to about 350 MB/s in case of bidirectional
exchange. Especially the socket interface enables general wide spread applications to run
more efficient on high speed networks such as Myrinet.

The ParaStation Single System View enhance the ease of programming of a cluster. The
whole system is viewed as one single entity. Programming environments such as MPI and
PVM use this functionality to operate in an optimized fashion. Additionally the user does
not have to be aware of temporarily inactive nodes, since node failures are automatically
detected by the ParaStation system and new processes won’t get spawned on them.

References
[1] Thomas E. Anderson, David E. Culler, and David A. Patterson: A Case for NOW (Network of
Workstations. IEEE Micro. Vol 15. February 1995p. 54-64,

[2] Raoul A. F. Bhoedjang, Tim Riihl, and Henri E. Bal.: LFC: A Communication Substrate for
Myrinet. In Fourth Annual Conference of the Advanced School for Computing and Imaging.
June 1998

&

P

(3]

(4]

(3]

(6]

(7]

(8]

(9]

&

High Performance Parallel Computing with ParaStation3 315

Amnon Barak and Oren La’adan.: The MOSIX Multicomputer Operating System for High
Performance Cluster Computing. Future Generation Computer Systems. March 1998p. 361-
372,

Joachim M. Blum, Thomas M. Warschko, and Walter F. Tichy.: PSPVM:Implementing PVM
on a high-speed Interconnect for Workstation Clusters. In Proc. of 3rd Euro PVM Users’ Group
Meeting. Oct.7-9, 1996

Joachim M. Blum, Thomas M. Warschko, and Walter F. Tichy.: PULC: ParaStation User-Level
Communication. Design and Overview. Ed. : Jose Rolim: Parallel and Distributed Processing.
March 1998p. 498-509,

B. Chung, A. Mainwaring, and D. Culler.: Virtual Network Transport Protocols for Myrinet.
Hot Interconnects’97. April 1997

Cezary Dubnicki, Angelos Bilas, Yuqun Chen, Stefanos N. Damianakis, and Kai Li.: VmmC-2:
Efficient support for reliable, connection-oriented communication.. Technical Report TR-573-
98. February 1998

Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, and Thomas E.
Anderson.: GLUnix: A Global Layer Unix for a network of workstations.. Software Practice
and Experience. July 1998p. 929-961,

Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa.: User-level Parallel Operating System for
Clustered Commodity Computers. In Proceedings of Cluster Computing Conference. March
1997

[10] Myricom Inc., Arcadia, California.: The GM Message Passing System.

[11] Scott Pakin, Mario Lauria, and Andrew Chien.: High Performance Messaging on Workstations:

[llinois Fast Messages (FM) for Myrinet. In Proceedings of the 1995 ACM/IEEE Supercomput-
ing Conference. December 3-8 1995

[12] L. Prylli and B. Tourancheau.: Protocol Design for High Performance Networking: A Myrinet

Experience. Technical Report 97-22. July 1997

[13] H. Tezuka, F. O’Carrol, A. Hori, , and Y. Ishikawa.: Pin-down Cache: A Virtual Memory Man-

agement Technique for Zero-copy Communication. In 12th International Parallel Processing
Symposium. Mar 30 - Apr 3, 1998p. 308-314,

[14] K.Yocum, J.Chase, A.Gallatin, and A.Lebeck.: Cut-Through Delivery in Trapeze: An Exercize

in Low-Latency Messaging. In The 6th Int. Symp. On High Performance Distributed Comput-
ing. August 1997

