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Abstract: Deleting data from a database system in a forensic secure environment
and in a high performant way is a complex challenge. Due to redundant copies and
additional information stored about data items, it is not appropriate to delete only
data items themselves. Additional challenges arise when using multidimensional index
structures. This is because information of data items are used to index the space. As
initial result, we present different deletion levels, to overcome this challenge. Based
on this classification, we analyze how data can be reconstructed from the index and
modify index structures to improve privacy of data items. Second, we benchmark our
index structure modifications and quantify our modifications. Our results indicate
that forensic secure deletion is possible with modification of multidimensional index
structures having only a small impact on computational performance, in some cases.

1 Introduction

With an increasing usage of computer-aided systems, more sensitive information is stored in
electronic formats. This may cause problems with respect to privacy. Laws and guidelines
are created, to improve privacy, such as the Health Insurance Portability and Accountability
Act (HIPAA) [Con96] in the USA, the Hard Drive Secure Information Removal and
Destruction Guidelines [Roy03] in Canada, or the Bundesdatenschutzgesetz [Bun09] in
Germany. According to these laws, private information has to be deleted or encrypted
in such a way, that it cannot be reconstructed after deletion (forensic secure deletion).
This is a complex challenge. Due to the fact that we need to remove every existing copy
and every effect caused by the data item that we want to delete.

In our research project1, we focus on private information, such as extracted features
from fingerprints or micro traces. These features are multi- (less than 20 dimensions) or
highdimensional data (more than 20 dimensions) containing, for instance, three-dimensional
coordinates and classification attributes2.

1https://omen.cs.uni-magdeburg.de/digi-dak-plus/
2Classification into multi- or highdimensional data according to [GG98].
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In contrast to cloud computing models, where data and queries are outsourced to the
cloud [HXRC11] and a privacy preserving storage (an encrypted storage) of data is
necessary, we focus on systems, storing data in an unencrypted way. Additionally, to have
a secure data life cycle, it is not only necessary to encrypt data, but also to delete data
in a forensic secure manner [DW10].

Due to the huge amount of data, it is necessary to store data in systems that handle it
in an appropriate way. As a result, we use multi- and highdimensional index structures
to speed-up query response times. Within this paper, we make two major contributions:

1. We analyze, how we can reconstruct sensitive data from well-known index structures
under certain assumptions (deletion strategies) and provide, to the best of our
knowledge, the first empirical study regarding this topic.

2. We recommend improvements for forensic secure deletion for some of these indexes
and evaluate their benefits and drawbacks exemplarily w.r.t. reduced reconstruction
ability of data and run-time overhead. Based on our results, we define different
levels of forensic secure deletion w.r.t. necessary reconstruction effort.

The remainder of the paper is organized as follows: In Section 2, we give an overview of
related work and motivate our index structure selection. We also present background on
functionality of analyzed index structures. In Section 3, we present four different strategies
for deleting data from a database and their respective implementations for our index selec-
tion. In Section 4, we analyze these index structures w.r.t. stored information and how data
can be reconstructed. Additionally, we present ideas how to modify index structures to min-
imize possibilities to reconstruct data. In Section 5, we evaluate index structures and index
structure modifications w.r.t. performance and precision for an approximative index struc-
ture. Additionally, we show, how much information about data can be reconstructed from
an index after deleting data. We draw a conclusion and present future work in Section 6.

2 Background

In this section, we briefly summarize the state of the art in database forensics, introduce
terms, and provide necessary background on our selected index structures.

2.1 Related Work on Forensics in Databases.

To delete a data item from a database system forensically secure, it is necessary to
consider more than the tuple stored in the table space [SML07]. This is because additional
information about data items are stored by a database system. Beside the database (here,
we mean the files containing the tuples), there are two other storage components commu-
nicating with the database system and an additional storage component for reconstructing
the database when a media or system error occurs [BHG87]. A storage component
communicating with the database system is the data dictionary. This component stores,
information is stored e.g. histograms on data distribution or table schemas information.
Third, the database log is stored by the database system. In this log, all information
needed to recreate a consistent state of the database is stored. Stahlberg et al. give an
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overview on challenges that have to be considered, in case of forensic secure deletion in
database systems [SML07]. In detail, they cover information stored in database, in indexes,
and in database logs exemplarily for InnoDB, a MySQL storage engine. As a representative
of indexes, they cover a forensic secure deletion of data items from a B-Tree [SML07].

Within other work, see for example [Lit07, Fow08, FHMW10, Gre12], database systems,
like Oracle, SQL Server, MySQL (using InnoDB as storage engine), PostgreSQL, and
HSQLDB, are examined according to recomputation of data items from information left
in the database files.

Besides deleting data items from a system in a forensic secure way, encrypting data is an-
other solution for privacy preserving data management in highdimensional spaces. This is a
commonly used technique for supporting privacy for outsourced data management as used
within the cloud [HXRC11]. Many solutions are presented within the last years, see for ex-
ample [KS07, HMCK12, WCKM09]. However, encryption is out of the scope of this paper.

2.1.1 Challenges in Definition of Forensic Secure Deletion.

To define, under which circumstances a data item is forensically secure deleted, we use
the following intuitive definition for total forensic secure deletion:

A data item is deleted total forensic secure, if absolutely no conclusions on exact or approx-
imate values of any of the attributes of the data item can be drawn by using information
stored in the system.

However, due to non-trivial interdependencies (e.g., materialized aggregates) and non-
obvious remains (e.g., in swap files or backups) using this definition is problematic as it
is hardly reachable in practice. We further argue that, depending on data sensitivity, total
forensic secure deletion is not always necessary. In the same sense, current laws state that
the hurdles to access deleted data have be in an adequate relation to the value of the
data (e.g., § 20(3) [Bun09]). Consequently, we define different levels of forensic secure
deletion in Section 3. Before, we present an analysis of different deletion strategies.

2.2 Index structure selection

We give a brief overview of selected index structures in the following. For further infor-
mation, see for example [GG98, Sam05]. In this paper, we: (1) show differences in data
reconstruction derived from information stored in the index, (2) address different classes
of index structures to generalize our results and address comprehensiveness, and (3) select
well-known index structures.

For classification of index structures, we refer to existing classifications (see for exam-
ple [GG98] and [WSB98]). They classify in data versus space organizing and exact versus
approximative indexes. Consequently, we consider at least one data and one space organiz-
ing index as well as one exact and one approximative index. In detail, we focus on the R-Tree
[Gut84] and respective extensions (e.g., [BKSS90, SRF87] ), the VA-File [WB97], and the
Prototype Based Approach (PBA) [CGFN08]. Note, due to the overlap of the classification
attributes, we only use three index structures. We summarize our index selection in Table 1.
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Table 1: Index structure selection.

Name Data/Space Org. Exact/Approx. Remarks

R-Tree Data Exact Tree-based
VA-File Space Exact Improved sequential scan
PBA Space Approximative Hash based.

2.2.1 R-Tree and its variants

One of the most popular multidimensional index structures is the R-tree. This index
structure is presented by Guttman [Gut84]. Many improvements like R+-Tree [SRF87],
R∗-tree [BKSS90], X-Tree [BKK96], and SS-Tree [WJ96] are based on the ideas of the
R-Tree. This basic idea is to partition the data space by the use of minimal bounding
rectangles (MBR).

MBRs are organized in a hierarchical way as shown in Figure 1. The root MBR, namely
R1 in Figure 1, includes the minimal space needed to include all child MBRs (R2 and R3).
These MBRs again include the space of their child MBRs. This organization holds up
to the leaf MBRs. Within these leafs (marked in gray in Figure 1), data items are stored.

R1
R2

R3

R4

R5

R6

R7
(b)

R2 R3

R4 R5 R6 R7

R1

(a)

Figure 1: (a) Partitioning of a two-dimensional space by an R-Tree. (b) Hierarchical structure
of the MBRs.

For each MBR of an R-Tree, two points are stored. These two points are both ends of
one diagonal of the MBR. Additionally to these two points, each MBR contains pointers
to all child MBRs for inner nodes and pointers to all data items indexed by the MBR
for leaf nodes. According to the idea of Guttman, the storage size of a node should be
correlated with the page size of the underlying system. For modeling such a correlation,
the maximum and minimum number of data items per page can be defined by parameter
m. The maximum number of data items is implicitly given by M , with M = 2 · m. So,
for every node of an R-Tree two points are stored together with pointers to child nodes
for inner MBR or pointers to data items for leaf nodes.

2.2.2 VA-File

The VA-File is a space organizing index proposed by Weber and Blott [WB97]. The main
idea of this index structure is to store a small representation of original data that fits
more likely into the main memory. This representation addresses rectangular cells in form
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of bit vectors used to filter and thus, to reduce the amount of points that are retrieved
from hard disk.

As shown in Figure 2 (a), there are four distinct regions in each dimension when choosing a
vector length of two for each dimension. This leads to 2b regions, in the case of choosing a
vector length of b. In general, in a d-dimensional space, the space is divided into 2bd hyper
rectangles. The formal allocation of a point to a region, by Weber and Blott [WB97],
is stated in Equation 1, where ri,j defines the partition pi is located in dimension j.
Furthermore, mi states the lower bound of the ith-partition. According to this definition,
the bounds of partitions are defined by values of points.

mi[ri,j] ≤ pi,j < mi[ri,j+1] (1)

For being adaptive to different data distributions, the regions width depends on the data dis-
tribution. We present an example in Figure 2 (a). Here, the width of region 10 of dimension
x is larger than the width of region 00. As a result, of this unequal distinction of the space,
within the index structure a map has to be stored to describe the mapping between the orig-
inal space and the resulting approximation vector. So, the VA-File stores an approximation
vector for each data item and the mapping from the original space to the approximated one.
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Figure 2: (a) Structure of a VA-File. (b) PBA using three prototypes.

2.2.3 Prototype Based Approach

An example for an approximation-based index structure is the Prototype Based Approach
(PBA) presented by Chavez et al. as Ordering Permutations [CGFN08]. The basic idea
is to use some points from a dataset to index the whole dataset. According to Chavez
et al., we call these points prototypes. In general, this technique divides the whole space
in convex regions based on distances to the prototypes. In Figure 2 (b), we show a space
partition with three prototypes p1,p2, and p3. When inserting a point, distances to all
prototypes are computed. Next, the prototypes are ordered ascending according to their
distances. Finally, this ordering is used as hash value or key of the point. For example,
the value of point A in Figure 2 (b) is (p2, p3, p1). As a result, the hash value of each
data item and the coordinates of all prototypes are stored in the index.
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3 Deletion Strategies and Respective Deletion Levels

In this section, we present and discuss different strategies for deleting data items from
an index structure. Furthermore, based on the remaining possibilities to reconstruct data,
we use these strategies to describe different levels of forensic secure deletion. Additional,
to presented deletion levels, it is possible, to rebuild an index after every deletion.

3.1 Level 0: Delete Bits

The first strategy is using a delete bit for identifying, whether a data item is deleted or
not. In other words, when data have to be deleted, not the whole item is modified, but
a bit within the header of the data item for marking it as deleted. This strategy has
disadvantages w.r.t. privacy of deleted data items. With the help of simple tools and
knowledge of the structure of the database, it is possible to identify deleted data items
and to reconstruct them completely [Lit07, Fow08]. A prototype of such a forensic tool
for PostgreSQL is given in [Gre12].

In summary, using a delete bit or similar technique to mask deleted data items allows
to easily reconstruct data items in total (with all attributes) with basic knowledge of
the way how items (tuples) are stored. Note, this, is no deletion at all, and therefore we
call it Level 0 (cf. Table 2), indicating that a data item is not forensically secure deleted.
However, modifying the delete bit is very time efficient and requires no reorganization
of index structures. Hence, this deletion strategy is very time efficient.

Integration in index structures. Integrating this strategy into known index structures is
rather simple. Here, no reorganization of parts of indexes (e.g., MBRs within an R-Tree)
is necessary, if an item is deleted. An additional challenge arises in frequently changing
tables through the constantly increasing size of the index.

3.2 Level 1: Overwriting without reorganization

A next level strategy is deleting (and overwriting) the whole data item without modifying
the index structure. Although the data item is removed and overwritten, it is possible
to reconstruct (parts of) the deleted data item. This is due to remaining information
(e.g., structure of the index) that can be used for an attempt to reconstruct the data. To
sum up, reconstruction of data (a) is more laborious and (b) is not possible in all cases,
and (c) requires more detailed knowledge on the way index structures store their data.
Consequently, this deletion strategy forms forensic secure deletion Level 1, and thus, the
first level that offers basic forensic deletion capabilities.

In contrast to Level 0 deletion strategy, we hypothesize that the amount of information that
can be reconstructed, depends on the definition of the index structure and therefore, it is pur-
pose of our analysis and experiments in the next sections. Using this deletion strategy, there
are index-specific cases that still allow either (1) total reconstruction of a data-item, (2) re-
construction of some attributes with exact values, or (3) we can state upper and lower bounds
of attribute values. First and more detailed considerations to determine probability of single
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index-specific cases and an analysis for respective causes are also part of the next sections.

Integration in index structures. By using this strategy it is not necessary to consider, for
example, underfull MBRs in an R-Tree. Furthermore, we do not have to recompute the
partitioning of the VA-File or the PBA. However, since we have to overwrite possibly
large datasets, the effort for this deletion strategy is higher than for Level 0.

3.3 Level 2: Overwriting with reorganization

To address remaining threat of reconstructable data, we introduce another level that
offers advanced forensic secure deletion capabilities (Level 2). The goal of this level: it is
practically impossible to reconstruct data items deleted from an index structure. The main
reasons why it is possible to reconstruct data using Level 1 are remaining, index-specific
traces due to missing reorganization of the index. Thus, the additional effort for reaching
this level is reorganization of indexes as we describe in the next section.

Integration in index structures. The integration of this deletion strategy, within a system
supporting multi-user, may cause some performance problems, because of concurrent
operations on the index. Furthermore, the index reorganization strategy depends on its
conceptual design.

3.4 Hypothetic Level ∞: Total forensic secure deletion in data-intensive systems

Although there are no (known) remaining traces in an index, there may be information
that can be used to reconstruct data items, such as dependencies in the data (e.g.,
materialization of aggregates), or hidden copies (e.g., swap files, backups) that need to
be considered too. To define the scope and limitation of database forensics, we therefore
define a hypothetic deletion level that allows no reconstruction at all. This level is not
defined for indexes only, but it is valid for data-intensive systems.

The basic idea is to have two systems. The first one is the original system (Sorg) and
the second one (Sshadow) a (bit-wise) copy3 of Sorg, which we denote by: Sorg

∼= Sshadow.
Until the (initial) insertion of data item (d) that we want to delete, both systems behave
the same way. That means, they store the same data, swap data from main memory to
disk etc. The difference between both systems is that Sshadow ignores the insertion of
d. After insertion of d, these systems perform again the same read and write operations.
Under these circumstances, we consider a function f as total forensic secure deletion w.r.t.
d iff f(Sorg) ∼= Sshadow holds.

Since we are aware that building these shadow systems is probably practical impossible,
we want to create systems that are approximations (S′

shadow) of Sshadow, where we know
simplifications and thus, limit possible effects, we do not consider (e.g., swap files). This
shall help to identify non trivial remains of datasets, which are part of future work.

In Table 2, we subsume our four levels of forensic secure deletion. Between this four levels,
other level can be defined.

3This includes bit-wise copy of all HDDs, main memory, caches, and even CPU registers.
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Table 2: Levels of forensic secure deletion.

Level Technique Application Reconstruction Runtime
recommendation effort overhead

0 Delete Bit No private data. Low Low
1 Overwrite Private data Medium Medium
2 Reorganization Sensitive data High High
∞ Shadow image - ∞ ∞

4 Problems with respect to privacy and improvements

In this section, we present privacy problems by information stored in index structures.
Additionally, we show modifications for improving privacy of stored information. Within
these modifications, we try to reach similar results w.r.t. privacy of advanced forensic secure
deletion (Level 2) of data items even without reorganization of indexes (as in Level 1).

4.1 R-Tree

With the help of the structure of an R-Tree, conclusions on data distribution as well as
single values of data items can be drawn. Firstly, the root node can be used to exclude
non covered data space. This is because an R-Tree is a data partitioning method. As a
result, it only indexes the space needed. Secondly, because of maximum number of points
per MBR, within dense covered regions, more MBRs exist as in sparse covered regions.
Thirdly, two points are stored within each MBR for defining size and location. Because an
MBR covers the minimal space needed, exact values of points are used to define borders
and edges of an MBR. Due to the fact that all data items are stored in leaf nodes, only
these nodes have to be analyzed to reconstruct data item specific values.

For improving privacy of single data items within an R-Tree, it is possible to bounce the
borders of the MBR away from the location of points dedicated to that node. This increases
the overlapping of MBRs within an R-Tree. However, no exact values of single data items
are used for defining the corners of the MBR. In bouncing the borders of the MBRs, one
has to be aware of R-Tree properties. For example, a parent MBR covers at minimum the
whole space covered by its child MBRs. As a result, when bouncing the border of a leaf
MBR, all borders of all parent MBRs, sharing a border with it, have to be updated as well.

4.2 VA-File

By considering the information stored in a VA-File, three types of conclusions about the
dataset or specific data items can be drawn. Firstly, because of adaptable division of the
space, conclusions on the data distribution can be drawn, because all buckets have approxi-
mately the same amount of data items dedicated to them. As a result, if a bucket is larger
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than a different one, it covers dense populated space. Secondly, the exact values of 2b−1 data
items are stored within the VA-File (see Equation 1). Having a d-dimensional space, this
leads to (2b−1)d exact values. Thirdly, by using the bit-vector, the approximate location of a
data item can be reconstructed. Although, the approximate location of a data item may not
lead to privacy problems, in some cases it is possible that the width of a bucket may not only
reveal the approximate location but the exact one. For example, if 1

2b data items have the
same value in one dimension, the width of the bucket, the points are dedicated to, equals one.

For improving privacy of data items, we modify the VA-File in two different ways. Firstly,
we adapt the VA-File in such a way that all buckets have the same width. This leads to some
performance penalties when performing queries over none uniformly distributed data. Never-
theless, this partitioning of the data space has advantages for privacy of data items. Because,
no information about the data distribution or single data items can be reconstructed from
the information stored in the VA-File modification. Additionally, no data item specific infor-
mation, like exact values of data items within some dimensions are stored. It may happen
that a data item is located at the border of a bucket, but the location of the border is not de-
fined by the data item and so not dependent from the data. Additionally, we extend the VA-
File in a way that the length of single bit strings per dimension depends on the value domain
of this dimension. In other words, we shorten the used bit string for each dimension until the
number of regions per dimension is smaller than the used value domain of this dimension.

4.3 Prototype Based Approach

There are some possibilities to improve precision, performance, and privacy of the PBA.
Choosing prototypes from the dataset is good for adapting the partitioning of the space
to the distribution of the dataset. However, choosing prototypes in a random way leads to
some negative effects because some data items may have a greater expressiveness for the
distribution of the dataset than others. Additionally, choosing points from the dataset as
prototypes leads to privacy problems if the prototype is used after deleting the data. Or it
leads to performance problems, because permutations of all points have to be recomputed
after a prototype is deleted.

Some modifications at prototype selection and respective position of the prototypes can
be implemented, w.r.t. privacy. On the one hand, it is not necessary to choose points
from the dataset, but points representing the distribution of the dataset in an optimal
way. On the other hand, location of prototypes can be optimized w.r.t. different criteria.
For example, it is possible, to choose prototypes, that all regions have the same size. This
leads to some performance penalties in performing queries on non-uniform distributed
datasets. However, this optimization criterion is good w.r.t. privacy, because the division
of the space does not depend on data distribution.
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5 Evaluation

In this section, we present a first empirical study on possibilities of reconstructing data
items from information stored in multidimensional index structures. Later, we measure the
performance penalties introduced by our modifications to improve privacy. In our evaluation,
we use the framework QuEval4. With this framework, it is possible to measure performance
of multidimensional index structures for specific use cases. The idea of this framework and
the general structure is proposed in [GBS+12]. Due to the extensibility of the framework,
it is possible to extend index structures and the framework with evaluation experiments.

5.1 Datasets

We perform all tests with three different real datasets. In Table 3, we give an overview
of dataset properties. The first dataset has only a small number of dimensions (16). As
a result, it is multidimensional according to [GG98]. In contrast, the remaining datasets
are highdimensional, having 43 and 50 dimensions. With these two datasets, we evaluate
the performance impact of the data space population, both having approximate same
number of dimensions but different number of points and different value domains.

In detail, the first dataset is a freely available dataset based on extracted hand-writing
features [AA96]. In the second dataset (fingerprint features), the spectral texture features
of latent fingerprints are stored [KFV11]. The last dataset (particle identification) is again
freely available. Within this dataset, 50 particle identification numbers are stored for
130,064 events [RYZ+05].

Table 3: Properties of datasets used for the evaluation.

domain #dimension #points value domain

Hand-writing features 16 10,992 [0..100]
Fingerprint features 43 411,961 [0..255]
Particle identification 50 130,064 [0..1023]

5.2 Index structure evaluation

In Table 4, we give an overview of our evaluated index structures, modifications we imple-
mented for improving privacy, and evaluations we performed. Due to space limitations, we
are not able to present all possible evaluations. For a first insights into the problematic of
privacy in multi and highdimensional index structures, we performed an evaluation of the
reconstruction rate, modified index structures and evaluate performance and precision of
the modifications. In detail, in Section 5.2.1, we evaluate the reconstruction rate (RR) of

4http://wwwiti.cs.uni-magdeburg.de/iti_db/research/iJudge/index_en.php
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deleted data items stored in an R-Tree when performing deletion Level 1. In Section 5.2.2,
we present performance of two different VA-File modifications for improving privacy.
Finally, in Section 5.2.3, we present precision differences when we do not choose points
from the dataset as prototypes, but points in their neighborhood.

Table 4: Evaluated index structures with performed evaluations.

index structure modifications target

R-Tree Original RR
VA-File Original according to [WB97], commensurate Performance

regions, Adaptive bit vector length
PBA Original, blur location of the prototypes Precision

5.2.1 Reconstruction rate of deleted data items in an R-Tree

We define the reconstruction rate (RR) of a deleted data item as given in Equation 2.
rDim is defined as the number of those dimensions where the exact value of data items
can be reconstructed and allDim is the number of all dimensions. In this evaluation, we
use some ideas presented in [Lin12].

RR =
rDim ∗ 100%

allDim
(2)

Within our evaluation, we use the Level 1 deletion strategy. In detail, we delete the whole
data item, but we do not modify the borders of MBRs. In Figure 3, we show the average
RR as well as the maximum RR (dotted) of 10,000 deleted data items for all three datasets
used in our evaluation. Additionally, we evaluate RR with different numbers of minimal
and maximal points per MBR. Here, we vary m (minimal number of points per MBR)
from 2 to 12. Note, maximum number is always two times the minimal number.

In all parts of Figure 3, our results indicate that the average RR of data items decreases
with increasing minimum and maximum number of points per MBR. This is, because
more points within an MBR decreases the possibility that one point defines a large number
of borders. In addition, by comparing the average RR lines of Figure 3 (a), (b) and (c), we
draw the conclusion, that the average RR decreases for a given minimum and maximum
number of points per MBR with increasing number of dimensions. Additionally, the
differences of average RR from (a) to (b) is larger than from (b) to (c). This is, due to the
fact the differences of dimensionality between (a) and (b) is greater than between (b) and
(c). As a result, we state the hypothesis, that dimensionality has an impact on the RR
of data items. Beside this, for every test case, at least one data item can be reconstructed
to probability of at least 60%. In detail, within the 50 dimensional space, for every case
tested, at minimum one data item can be completely reconstructed.
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Figure 3: Reconstruction rate (RR) of deleted data items from the information stored in an
R-Tree for a 16 (a), 43 (b) and 50 (c) dimensional dataset. The average RR is marked with
a solid line and the maximum RR with a dotted line.
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Figure 4: Performance differences of the three VA-File variants for 16 (a), 43 (b) and 50 (c)
dimensional dataset. The performance of the original VA-File is marked with a solid line, the
performance of the VA-File variant which is not adaptable to the distribution with a dashed
line and performance of the variant with an adaptive bit-vector length with a dotted line.

5.2.2 VA-File

In Figure 4, we show the performance of the three different VA-File variants; namely the
original VA-File as presented by Weber and Blott [WB97] (solid), the VA-File variant
which is not adaptable to the distribution of the dataset (dashed line), and the variant with
an adaptive bit-vector length within different dimensions (dotted line). In our experiments,
we vary the length of the bit-vector in a range of 2 to 12.

Our results clearly show (cf. Figure 4) that the performance of the VA-File variant which
is not adaptable to the distribution of the space is worse than both other VA-File variants.
In our experiments, data items are stored on disk and without being adaptive to the data
distribution, more points have to be accessed from it.
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Figure 5: Precision differences between the original Prototypes Based Approach as presented
in [CGFN08] to the index structure with blurred prototypes. Differences for the 16 (a), 43 (b)
and 50 (c) dimensional dataset with a blur of 5% and 10%.

5.2.3 Prototype Based Approach

Choosing prototypes in a random way leads to poor results regarding to performance and
precision. Additionally, in the case of deleting points from the dataset chosen as prototypes,
it is necessary to choose new prototypes and to recompute the permutation of all indexed
data items. Because of the permutation and the concrete values of all items from the dataset,
the location of the prototypes can be recomputed. To overcome this, we modify locations
of prototypes with a vector having normal distributed components between zero and given
strength (in our examples 5% and 10% of the value domain). For not being affected from
one parameter configuration, we performed about 1700 tests with two different blur factors
and different parameter configurations for number of prototypes and considered points.

In Figure 5, we show the average difference of precision of the PBA for all three datasets.
Within Figure 5, the precision differences for a blurring of 5% and 10% is given, for all
three dataset. Blurring the location of prototypes has either a positive or a negative impact
on the precision of the index structure depending on the dataset and index parameters.
In detail, for our experiments with the 16 dimensional dataset, blurring has mainly a
negative impact on precision. However, the average difference of precision is smaller than
0.02% and so, almost negligible. For our other two experiments, blurring the precision
has a positive impact, but again the average difference is smaller than 0.1%. All in all,
the impact on precision, when choosing random points near to dataset points instead of
dataset points as prototypes is almost negligible. As a result, it is not necessary to choose
points from the dataset as prototypes.

6 Conclusion & Future Work

To summarize, within this paper, we present four different deletion strategies that can
be used within a database system. Additionally, we define forensic secure deletion of
information from a database system and present a classification of different secure deletion
levels. Furthermore, we examine three different multidimensional index structures (namely
R-Tree, VA-File and PBA) in regard how information is stored and how this information
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can be used for reconstruction of data items, where we performed an exemplarily eval-
uation for the R-Tree. Later, we exemplarily extend index structures to be privacy aware.
Furthermore, we evaluate our index structure modifications with respect to performance
and precision. Within this evaluation, we identify, that improving privacy may also have
a positive but small effect on query performance such as improving precision of the PBA.

In future work, we want to show and evaluate a method for improving privacy of data
items stored in R-Tree variants. Additionally, we want to evaluate different kinds of
prototype selection methods for PBA with respect to privacy. Furthermore, we will extend
index structures implementations of our QuEval framework with the presented deletion
strategies and evaluate performance of index structures.
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