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Abstract: We consider several applications of implicit surfaces in visualization, and
methods for rendering them. In particular we focus on geometry processing techniques
for mesh extraction; and ray casting methods for direct rendering of implicits. Given
that both methods rely on sampling the implicit function in question, we design a soft-
ware framework that could accomodate both algorithms. We conclude by evaluating
the time complexity and performance of existing systems, and discuss the long-term
potential of both methods for rendering and computational goals.

1 Introduction

An implicit is a multivariate function over an R" domain. In 3-space, it is given by a
function

f:R}* =R
such that, for an isovalue v, the implicit surface, or isosurface, is defined where f(x,y, z) =
v, Or
f(xayvz) —v=0

This formulation defines a level set, specifically a level surface.

In scientific computing and graphics, implicits are frequently employed as reconstruction
kernels for filtering discrete data. As such, implicits are the lingua franca of data analysis,
at least for data that does not lend itself to an immediate explicit visualization modality.

To render implicits in 3D, one is principally given three choices:

e FExtract explicit polygonal (triangle mesh) geometry, and rasterize that trivially on
graphics hardware.

e Re-sample the implicit into some other proxy geometry, such as points or slices of a
volume, and render that proxy geometry.
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® Ray-trace the implicit directly.

This paper will survey methods for rendering implicits. Noting that these rendering sys-
tems share common algorithmic components, we propose a common framework architec-
ture for sampling implicits and comparing performance. Finally, we compare the implicit
sampling performance of several existing systems, and make predictions concerning the
long-term suitability of these various methods to various applications.

2 Applications of Implicits

Implicits are used across scientific disciplines such as mathematics, physics, biology and
engineering. As computer scientists, our goal is to determine which visualizations of
implicits are most meaningful and practical for their specific application. At the core
of this issue lies the question of what the implicit itself is modeling.

Figure 1: Marching cubes (a), compared to ray-traced 13th-order Legendre polynomials approxi-
mating the computed implicits from the FE reference domain (b). From Nelson & Kirby [NK05].

In some scenarios, the implicit function itself models natural or physical phenomena, and
data is computed to approximate it discretely. This is the case for much volume data
in simulation. Theoretically, it is desirable to visualize the same implicit employed in
actual computation, as opposed to some arbitrary interpolant of the resulting data. As
an example, for first-order finite elements, piecewise-linear planar interpolants of a tet
mesh accurately represent the computed implicit surface. For higher-order spectral finite
elements, however, this is not the case, and it is desirable to visualize higher-order implicit
surfaces over the computational domain, or approximations thereof [NKO05] (Figure 1).

For structured data, correct visualization is less clear. Finite differences computations ap-
proximate the differential operator and not the solution itself, thus no single implicit is
strictly “correct” in visualizing them. Instead, we choose a convolution filter, the simplest
being a first-order Lagrangian trilinear interpolant. This yields piecewise-smooth isosur-
faces; but as the choice of filter is arbitrary, rendering it correctly is a dubious proposition
(Figure 2). Scanned medical data, such as MRI and reconstructed CT scans, pose a similar
conundrum of which filter is “best”. This has partially been addressed [ML94, MMMY97]
for volume rendering.
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Figure 2: Left to right: a finite-differences CD simulation ray-traced using a piecewise C° trilinear
interpolant filter, and centrally differenced gradient normals [KHWO7]; Advancing front extraction
of structured data using piecewise-C' Catmull-Rom spline interpolants; and the same technique
using piecewise-C? B-spline filtering [SS06]. Aesthetics aside, it is questionable which filter, if any,
is “correct”.

In the case of raw point sets, an implicit is used to interpolate data points from a scanner,
allowing us to render a smooth surface. Here, the choice of implicit is secondary compared
to how well it reproduces features (particularly high-curvature regions, and singularities)
on the surface, and how efficient it is to render [CBC1T01, OBA103, AAO3].
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Figure 3: Piecewise-smooth partition-of-unity implicit reconstruction of raw point data, recon-
structed with high polygonization, coarse polygonization, and sphere traced (e.g. Hart [Har96]).
From Ohtake et al. [OBAT03].

Finally, the implicit function itself can be of interest, for example when rendering su-
perquadrics or blobby objects [Bli82], or graphing arbitrary algebraic [KB89] and even
non-algebraic [Mit90, PLLdF06] expressions.

3 Rendering Implicits

In general, four options exist for rendering implicits in 3-space: direct volume rendering;
extraction and rasterization; ray casting or ray tracing; and point-based rendering. Volume
rendering and point-based methods are proxy methods. In practice these work quite well,
due to efficient mapping on graphics hardware. However, they can vary widely in actual
implementation, depending on desired fidelity and type of data. Partly for this reason we
shall focus primarily on extraction and ray casting, as they represent algorithmic extremes
that are either designed to accurately construct a mesh, or render a view-dependent scene.
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3.1 Volume Rendering

Direct volume rendering, samples the scalar field (usually regularly) and convolves these
samples via a transfer function. When a transfer function is sufficiently sharp, or singular,
at a desired value, volume rendering can approximate a surface. However, volume render-
ing is computationally demanding, and only interactive when implemented efficiently on
graphics hardware. For rendering discrete isosurfaces, a near-singular transfer function is
imperfect, particularly for large, entropic, data. In practice however, volume rendering of
isosurfaces is useful, and worth mentioning as a feasible alternative to methods that ren-
der surfaces directly. An efficient implementation combining GPU volume rendering with
isosurface rendering is given in [HSST05].

3.2 Mesh Extraction

For rendering implicit surfaces, the most common method is to extract a mesh from the
given data, and rasterize that mesh trivially on Z-buffer graphics hardware. The best-
known method for surface extraction is Marching Cubes (MC), developed independently
by Cleary & Wyvill [WMW86] and Lorensen & Cline [LCS87]. The general idea in ex-
traction is to subdivide the scalar field into convex “cell” primitives, and solve where the
isosurface intersects cell boundaries. In conventional marching cubes, cells are voxels
of the volume, and the isosurface is approximated by solving where linear interpolation
yields the desired isovalue along a voxel edge. By considering the values at vertices of the
cell, the algorithm knows which edges will contain a surface; moreover for a trilinear in-
terpolant implicit only 15 different configurations exist for piecewise-linear iso-polygons
within a given voxel. As voxels are C at their edges, the resulting mesh is guaranteed to
be continuous. More generally, this method allows a mesh to approximate any implicit, as
solving for arbitrary f(x,y, z) reduces to a 1D problem when any two coordinate axes are
constant.

Mesh Extraction Variants Marching cubes is popular due to its simplicity and ease of
implementation. However, it possesses several limitations. Some MC configurations cause
ambiguities in orientation that must be resolved to preserve continuity, but this has been
addressed [NH91]. Fundamentally, marching cubes is limited in that it samples regularly
over a uniform grid. While this is adequate for small structured volumes, it is ill-suited
for irregular point sets and unstructured data. Fortunately, a similar algorithm, Marching
Tetrahedra (MT), was developed by Doi & Koide [DK91] to operate natively on un-
structured tet meshes, though it can equally be applied to structured data due to the dual
relationship between tetrahedra and voxels. Though MT addresses some sampling issues
of marching cubes with unstructured data, both algorithms generate poor-quality, irregu-
lar meshes, and fail to capture topological features such as singularities. Dual contour-
ing [JLSW02] and dual marching cubes [Nie04, SW04] alleviate these problems, reducing
overall triangle counts, and effectively capturing singularities. However, “thin” features
below a geometric subdivision criteria can still be lost using these techniques, as evident
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from Paiva et al. [PLLdF06], and meshes generating using dual marching cubes still suffer
from irregularity (Figure 4). For generating high-quality triangle meshes, Scheidegger et
al. [SFSO05] proposed an advancing front meshing algorithm using a curvature-based guid-
ance field. Schreiner et al. [SS06] extended this method to structured and unstructured
scalar volume fields, and modified the guidance field to minimize both geometric error
and number of required samples.

v\‘

Figure 4: Left: a robust meshing algorithm employing interval arithmetic and dual marching cubes
fails to determine the correct connectivity of a surface, likely due to insufficiently fine geometric
sampling [PLLAF06]. Right: ray tracing using a similar interval arithmetic technique can also
experience difficulty sampling thin features, but samples in a view-dependent fashion and thus better
recovers features for closer views [KHH T 06].

Dynamic Extraction and Visualization For larger data, it becomes necessary to man-
age overall scene complexity, measured in the number of cells or tetrahedra visited by the
extraction algorithm. As long as this is controlled, it is generally trivial to render the result-
ing mesh interactively on graphics hardware. To reduce the visited set of cells, Wilhelms
& Van Gelder [WV92] proposed a min/max hierarchy embedded in a branch-on-need oc-
tree for trivially ignoring empty regions of a volume. Livnat et al. refined the interval
tree concept in creating a span space tree [LSJ96]. Livnat & Hansen [LH98] extended the
min-max octree technique with view-dependent frustum culling using a shearing trans-
formation visibility test. Westermann et al. [WKE99] implemented adaptive marching
cubes on multiresolution octree data. Pesco et al. [PLPS04] proposed an occlusion test
for the implicit itself, further reducing the cost of isosurface extraction at render-time.
With few exceptions these techniques enable interactive rendering of data up 5123. For
larger data, interactive visualization is difficult, and extraction techniques often rely on
topologically-guided simplification [LMMO06] into Morse-Smale complexes. Though this
does not render the entire original data set, topological simplification and segmentation is
arguably more useful for data analysis.

3.3 Ray Casting

While extraction methods focus on sampling the full scalar field, ray casting samples the
implicit directly at the intersection point of a viewing ray and the implicit surface. For
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rendering large data, this potentially entails far fewer samples than an adequate extrac-
tion method, and “better” samples in the sense that we sample exactly (and only) the
regions required to fill a 2D uniform grid in screen space. Thus, ray tracing performs
both view frustum and object-occlusion culling automatically. With an efficient accelera-
tion structure, it performs spatial subdivision as well and renders objects in O(logN) time
as opposed to O(N). For large volume data, this is extremely important. In structured
volumes, the number of voxels multiplies eight-fold every time dimensions double; large
data can easily overwhelm an extraction/rasterization method, even one with comprehen-
sive subdivision and occlusion culling algorithms. The main drawback of ray tracing is
that, particularly when not optimized, it can be slow. However, the inherent scalability of
ray tracing, combined with increasing power of multicore CPU’s and flexibility of GPU’s,
suggests the algorithm will increase in feasibility and popularity.

General implicit ray tracing In ray tracing, all primitives are at some level formulated
implicitly, including the plane equation of a triangle. In general, ray tracing solves the
implicit function for a parameter ¢ along each ray. This is accomplished by substitut-
ing P, = O; +tD; fori = {X,Y,Z}. Then, f(z,y,z) becomes a one-dimensional
function f;(¢), and finally f;(¢) = v may be solved for ¢. Thus, ray tracing implicits
is a root-finding problem; it solves for the first root along a given interval. Simple im-
plicits of second degree and lower can be solved analytically. Blinn’s blobbies [Bli82]
were the first application of ray tracing higher order or rational implicit surfaces. Kalra
& Barr [KB89] devised a general method for ray tracing algebraic surfaces with known
Lipschitz-condition bounds for the gradient and curvature. The key issue with ray trac-
ing arbitrary implicits is that globally convergent numerical methods fail to handle dis-
continuous or non-monotonic functions. One solution is to evaluate intersection by find-
ing and minimizing a signed distance function for the implicit surface, as proposed by
Hart [Har96]. Yet more general is the use of an inclusion algebra such as interval arith-
metic [Mit90] or affine arithmetic [dCJdFG99]. General methods for implicit ray tracing
have historically proven slow, but recent work [KHHT06] using coherent optimizations
suggests that pure interval bisection is surprisingly practical and interactive. However, this
method has not been thoroughly tested on fitting and filtering point and scalar data, and
it should be assumed to be slower than optimized special-case intersection for most third-
degree and lower implicits. Higher-order and rational implicits, however, can be rendered
efficiently using interval ray tracing methods.

Structured data isosurface ray tracing Parker et al. [PSL198] were the first to ray
trace isosurfaces from structured volumes, employing these piecewise implicit interpolat-
ing patches. Though a small supercomputer was necessary to render them at the time,
the method proved powerful in the size of volume data it could render at full resolu-
tion. The scalability of this method to large data was further demonstrated by DeMarle et
al. [DPH'03] on clusters, rendering the 2048220481920 Richtmyer Meshkov CFD data
set in its entirety using a software distributed shared memory layer. More recently, Knoll
et al. [KWPHO06] implemented a lossless octree compression scheme for structured vol-
umes, allowing both volume data and acceleration structure to be compactly represented
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Center: 2048204821920 Richtmyer-Meshkov instability field, losslessly compressed from 7.5 GB
to 1.8 GB and rendered at multiple fps on a multicore laptop [KWPHO6]. Right: hybrid extrac-
tion and point-based rendering system, rendering the 512x512x1024 visible female dataset interac-
tively [LT04].

in less than 25% the original volume footprint. In conjunction with an efficient ray-octree
traversal algorithm, this enables rendering the Richtmyer Meshkov data on a laptop with
2 GB RAM at multiple frames per second, and interactively on a 16-core workstation.

Unstructured and point-set ray tracing Ray tracing is equally suited to visualizing im-
plicit point-set surfaces using radial basis functions, as demonstrated by Wald et al. [WS05].
Large unstructured data has also recently been investigated [WFKHO07]. With coherent
BVH traversal and an optimized ray-isopolygon intersection similar to marching tetrahe-
dra, CPU ray tracing is surprisingly competitive with GPU shader-based extraction tech-
niques [WKMEOQ03, BCCS07], even on modest multicore desktop hardware.

3.4 Point-Based Rendering

Though CPU ray tracing tackles large data easily, its overall performance on moderate-size
data is still underwhelming compared to GPU rendering methods. It is worth mentioning
the contributions of point-based rendering methods on the GPU, conceived by Levoy &
Whitted [LWOS5] and proven for large point-set data by Rusinkiewicz et al.[RLO0] with
QSplat. Point-based rendering is spiritually similar to ray tracing in that acceleration
structure traversal and primitive intersection are computed out-of-core on the CPU, but
shading and actual rasterization occur on the GPU. Co et al. [CHJ03] extended the isosur-
face ray tracing technique of Parker et al. to point-based rendering on the GPU. Livnat
& Tricoche [LT04] took this system one step further, implementing a hybrid isosurface
render that combined extraction and point-based methods, and handled reasonably large
data interactively. Zhou et al. [ZG06] develop a system for rendering higher-order finite
element volumes very efficiently, though it requires pre-segmenting data into point sets.
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4 A Unified Framework for Extraction and Ray Tracing

Rasterization and ray tracing ultimately both sample the input data in world space, though
their means of sample generation and processing differ. It would not be difficult to share
a common spatial subdivision and data sampling framework between an extraction and
ray tracing application. At the lower algorithmic level, ray tracing and extraction methods
can vary (between themselves, as well as each other) in actual implementation, largely in
whether they iteratively evaluate or analytically solve roots on the implicit to generate the
sample.

4.1 Framework Overview

The general idea of our framework is to abstract data acquisition, subdivision structure
generation, and implicit expression generation, which are used by multiple common ex-
traction and ray tracing implementations. In short, our pipeline is designed to handle two
common-case ray tracing and extraction systems with varying degrees of generality; and
an unlimited number of fixed-function techniques for ray tracing or rasterization that can
use other components as necessary. We require three inputs from the user: data; an im-
plicit to filter that data; and a sampler (either a ray tracing or extraction method). After
processing these inputs, the system outputs either a mesh or a ray-traced image, as shown
in Figure 6.

4.2 Pairing Ray Tracing and Extraction

In the previous sections 3.2 and 3.3, we have discussed common techniques for extract-
ing and ray tracing implicits. We note that the bounded spectral radius for the minimal
guidance field in advancing front extraction [SS06] is similar to the geometric bounds of
the L-G surfaces in Kalra & Barr [KB89]. Both techniques assume the filter implicit to be
twice differentiable (or at least have constant gradient or curvature) with known bounds on
gradient and curvature (Jacobian and Hessian, respectively). Hence, they could logically
be paired together as techniques for C? algebraic implicits.

For rendering of arbitrary non-algebraic implicit functions, the interval arithmetic method
proposed by Paiva et al. [PLLdFO06] is roughly analagous to ray casting using interval
bisection [Mit90, KHH™06]. Extraction methods using this technique would require a
spatial subdivision structure such as an octree or BVH over which to evaluate intervals,
followed by application of dual marching cubes or a similar algorithm over these regions.

The term ““subdivision structure” in Figure 6 is somewhat vague; particularly in the con-
text of rendering functions as in [KHH*06] and [PLLdF06]. Both techniques involve
sampling within the implicit function domain, not merely the data domain. However, in
Paiva et al. [PLLdF06] samples are constructed explicitly from dual marching cubes over
this domain, whereas Knoll et al. [KHHT06] recommend no explicit spatial subdivision,
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Figure 6: Proposed framework for extraction and ray-tracing.

and instead sample the implicit on-the-fly during intersection.

4.3 Fixed-Function Components

We recommend a fixed workflow for certain types of implicits, mostly for comparison
purposes. For example, one could implement standard marching cubes using trilinear
interpolation over voxels, or optimized ray-trilinear patch intersection using the Marmitt et
al. [MFK ™ 04] technique. Fixed functionality need not be absolute throughout the system;
the Marmitt intersector could be used in conjunction with either a BVH or an octree,
for example. Another practical option, used inherently by point-based implicits such as
MPU [OBA 03] and sphere tracing [Har96] would be allowing the user to specify a signed
distance equation as opposed to the implicit formulation itself.

4.4 Expected Quality and Performance

Using this framework, it would be fairly simple to benchmark the number of samples
collected by ray tracing and mesh extraction techniques for similar views. These numbers
would be somewhat unfair unless the rasterization system performed all the appropriate
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culling optimizations [WV92, LSJ96, LH98, WKE99, PLPS04]. However, we can make
some general assumptions about anticipated behavior. Assuming the implicit is an accurate
representation of our data (and more specifically, what we seek to visualize), we expect
the quality of the image or mesh to be dependent on the number of samples, and where
these samples are spent.

With ray casting, samples are created from a camera by ray generation. For visualization
purposes, it is hard to go wrong with this technique, as samples are spent exactly where
the user wishes to see. Even when a sample misses the surface, it is still meaningful (and
usually cheaper to compute). One could argue that this purely view-dependent sampling
strategy is flawed when the projected object feature frequency exceeds the viewing ray
frequency, causing aliasing. However, this could be solved either by supersampling rays or
downsampling the object (via level-of-detail methods) over high object-frequency regions
— both well-known techniques in computer graphics.

In extraction, mesh construction works best when sampling adapts to the curvature of the
surface — specifically when regions of high curvature are allocated more samples. When
the user only requires one mesh as output, it makes sense to generate the best mesh possi-
ble, and employ an adaptive and topologically sensitive method such as advancing front.
For dynamic visualization purposes, however, the quality of the mesh is generally sec-
ondary to the extraction time; naive marching cubes (perhaps with some view-dependent
adaptivity) is likely preferable in this case.

Empirically, existing literature suggests it is more difficult to extract a good mesh than
to ray trace a good image. For example, Schreiner et al. [SS06] report the small 2563
Aneurism data requiring 7 seconds to extract 134K triangles using conventional marching
cubes, and over 5 minutes to extract 462K triangles using advancing front. On a single-
core 2.4 GHz Opteron CPU, using the Marmitt trilinear patch intersection method, Wald
et al. [WFM™05] ray traced an isosurface of this data in over 6 fps at 6402480. Assum-
ing conservatively that only 1/20 of the samples hit the surface, and linear scalability on
on dual-core of an Opteron 2.2 GHz, ray casting processes 112K samples per second,
whereas marching cubes generates 10K samples per second, and advancing front around
720 samples per second. The number of samples per second processed in point-based
GPU methods are easily two orders of magnitude even than ray casting, though point
set data must be precomputed in advance [ZG06]. For higher-resolution data, ray cast-
ing should perform similarly well due to its logarithmic acceleration structure traversal
complexity. Advancing front should fare better compared to marching cubes, due to its
adaptivity. While these comparisons are extremely rough and not completely fair, they are
consistent with the findings of Livnat & Tricoche [LT04], in comparing their point-based
isosurface rendering technique to full extraction. In their hybrid method, they find that
view-dependent extraction works well for moderately near views, but for closeup or far
away views point-based methods are more effective. Overall the suggestion is not that ray
casting or point-based methods are superior to extraction, but that efficient, adequate and
view-dependent sampling is necessary for visualization.

173



5 Conclusion

Comparing ray tracing and extraction is an apples-and-oranges affair. The decision on
which to perform should depend purely on the application. When the isosurface is ul-
timately used for modeling, for example with rigid-body mechanical simulations, mesh
extraction is the most appropriate solution. For rendering animated blobby shapes in a
computer game that can be deformed dynamically by in-game physics, extracting a mesh
is all but necessary; for general-purpose rendering, rasterization is unlikely to be replaced
anytime soon, if ever. When mesh generation is acceptable as an offline process, it is de-
sirable to generate the cleanest mesh possible. For this reason, and their topological and
geometric adaptivity, methods such as dual marching cubes and advancing front are more
useful than marching cubes, particularly for larger data. For the same reason of effective
sample use, ray casting and point-based methods are better suited to dynamic visualization
than on-the-fly rasterization and extraction.
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