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Predictive Algorithms in Learning Analytics and their 
Fairness 

Shirin Riazy1 and Katharina Simbeck2 

Abstract: Predictions in learning analytics are made to improve tailored educational interventions. 
However, it has been pointed out that machine learning algorithms might discriminate, depending 
on different measures of fairness. In this paper, we will demonstrate that predictive models, even 
given a satisfactory level of accuracy, perform differently across student subgroups, especially for 
different genders or for students with disabilities. 
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1 Introduction 

While the issue of fairness has been discussed in policing, operational systems and 
recommender systems, many machine learning (ML) areas, including learning analytics, 
still lack such contributions. In what ways can biases in data – possibly unjustifiably – 
influence algorithms? Since predictions in learning analytics are made to improve tailored 
educational interventions, the fitness of interventions requires the appropriateness of 
preceding predictions. On one hand, any inappropriate (discriminatory) intervention may 
further intensify discrimination [O’17]. On the other, a student requiring more 
involvement but not receiving it, might be neglected. Therefore, the validity of learning 
analytics algorithm must be analysed with regards to their predictive accuracy for 
minorities.  

As of now, the definition of fairness in algorithms is highly ambiguous. Many definitions 
of fairness have been suggested and, as noted by [VR18], the choice of this definition 
should strongly depend on the context. 

In this position paper, we would like to review some of the emerging definitions of fairness 
and transfer and evaluate their fit in the context of learning analytics, specifically the 
fairness of score predictions. 

1.1 Definitions of Fairness 

As mentioned briefly, a vast amount of different definitions of fairness have surfaced, 
serving different purposes and being designed to different use-cases. [VR18] have 
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gathered and explained 20 definitions of fairness, which are partially exclusive [Ch17]. 
We would like to briefly introduce selected definitions of fairness, which had the largest 
impact on the farness debate and research, measured by the number of citations. Also, 
since the research in this area is rapidly evolving, we would like to include one more 
fairness measure, which was only recently published, but is relevant as it was applied to a 
learning analytics scenario [GBB19]. 

The fairness measures rely on accuracy measures for predictive models. First, we would 
like to introduce some widely used model accuracy measures: 

 We abbreviate the classical terms of binary classification in the usual way: true 
positive (TP), false positive (FP), true negative (TN), false negative (FN). 

 The positive predictive value (PPV) is defined as TP / (TP + FP). 

 The true positive rate (TPR) is defined as TP / (TP + FN). 

 The area under the curve (AUC) of the receiver operator characteristic (ROC) 
graph, which shows the difference between predicted and real values for different 
choices in the trade-off between TP and FP rates. 

Based on those measures, the model accuracy can be compared between different 
subgroups. Ideally, models should predict success equally well for subgroups, e.g. for 
female and male students: Predictive Parity (PP) demands equal PPV between groups 
[Ch17]. Equalised Odds (EO) demands equal TPR between groups [HPa16]. Slicing 
Analysis (SA) demands equal AUC between groups [GBB19]. In reality however, it 
cannot be expected that model accuracy is always consistent across all subsets of data. 
Therefore, a threshold needs to be defined, which delineates fair from unfair. For PP and 
EO, we set this threshold to be 0.05, as it was done in [VR18]. Since SA values mostly 
lie between 0.01 and 0.03 (see [GBB19]), we set the threshold to 0.02. 

2 Related Work: Performance Prediction of Students and Fairness 

[Si13] describes trend analysis and prediction as one of the primary applications of 
learning analytics. In order to build early warning systems and to identify risk, techniques 
of modelling users, relationship mining or knowledge domain modelling have been used 
[Si13]. Though ethical usage of user data was always called for (see for example [GD12, 
SP13]), this has a particular focus on privacy and data ownership [Si13]. 

The identification of at-risk students, their performance and attrition risk has been 
considered in literature in an attempt to find a basis for intervention to enhance student 
retention [AP12]. In order to build “early warning systems”, data from virtual learning 
environments has been analysed to make predictions on learner behaviour [MD10].  A 
wide variety of procedures have been used to predict students at risk of failing or dropping 
out. These range from statistical methods, such as logistic regression [HZZ17] over naïve 
Bayes classification [Ku15] to predictions via neural networks [FY15]. 
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3 Methodology 

The data set that was used in the context of this paper is known as OULAD (Open 
University Learning Analytics Dataset). The open university (UK) has published this 
anonymised data set from their virtual learning environment (VLE) in 2017 [KHZ17] and 
it roughly consists of 32,000 samples, meaning student data from one course and one term. 
For students taking more than one course, these are counted as multiple samples. 

Since we would like to reproduce realistic applications of ML algorithms in learning 
analytics, we tried to replicate publications, where this exact data set was used, such as in 
[HZZ17] and [Ku15]. Note, however, that we did not copy the exact method, since e.g. 
[Ku15] make a weekly prediction of at-risk students. In their paper, they split the features 
into demographic data (gender, age, prior education, disability) and virtual learning 
environment (VLE) data (number of assessments, days of access, number of clicks, 
number of logs). We used the following features to classify the outcome (fail, pass) of the 
course: 

 Demographic: gender, prior education, age range, disability (boolean flag) 

 VLE: number of assessments, number of different days on which material was 
accessed, average number of clicks, total number of logs 

 Other: number of other credits studied in selected term, number of previous attempts 

In order to avoid overfitting, we split the data set into a training, test and validation set 
(see e.g. [Mu12]). We chose to split the data according to the terms during which the 
modules took place. Out of these terms, two took place during the year 2013, which we 
chose as the training set (sample size: 13529). Two took place during the year 2014, which 
we chose as test set (sample size: 7804) and validation set (sample size: 11260). We split 
the terms in a way such that the resulting data sets would not vary much in sample size. 

 
Figure 1: Violin plots showing the distributions of scores of non-disabled/disabled and 

female/male participants of the courses. 
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The distributions of the course scores (see Figure 1) show that, when grouping by gender, 
the distributions of the total scores of the different courses do not vary much. In contrast 
to this, the distributions greatly vary, when comparing disabled (sample size: 3164) and 
non-disabled students. In total, 47,2% of students in the dataset passed the course. The rate 
was higher for female students (48.4%) in comparison to male students (46.2%) and higher 
for students without disability (48.1%) in comparison to students with disability (38.1%).  

3.1 Prediction of Course Outcome 

Naïve Bayes (NB), k-Nearest-Neighbours (kNN) and Support Vector Machines (SVM) 
were used in [Ku15] to build a course-outcome prediction model for students. We 
replicated these algorithms and applied them to the OULAD data set. For more detailed 
descriptions of these algorithms, we would like to refer the reader to [Mu12]. Our results 
for the prediction systems are summarized in the following table, where the accuracy is 
defined as the relative sum of all correct classifications. 

 NB kNN SVM 
Test Set 0.728 0.760 0.776 
Validation Set 0.756 0.751 0.793 

Tab. 1: Accuracy of the course outcome using the previously defined test and validation set and 
the NB, kNN and SVM methods. 

Note that the separation of the training, test and validation set was not replicated from 
[Ku15], since their weekly approach would have made an assessment of fairness overly 
complicated. The accuracy values are comparable to those of [Ku15]. All in all, the usage 
of the virtual learning environment had a high predictive value of the course outcome. 

4 Results 

All in all, we have implemented three machine learning algorithms for the prediction of 
the course outcome in real MOOC data and calculated their fairness measures: PP, EO and 
SA. In any of the three measures, a larger number means a higher predictive power and is 
thus advantageous. The bigger the difference between the subgroups for each of the 
measures, the more unfair could the model be considered. For example, in Table 2 we can 
see in the first row (predictive parity) that the difference between PPV values of students 
with and without disabilities is significant and that the PPV value of students with no 
disability (abbreviated as N) is higher.  

Fairness Definition NB kNN SVM 

Predictive Parity (PP) 0.032 
(F) 

0.086 
(N) 

0.084 
(F)  

0.079 
(N) 

0.085  
(F) 

0.082 
(N) 

Equalised Odds (EO) 0.372 0.210 0.074 0.022 0.064  0.006 
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(M) (N) (M) (D) (M) (N) 

Slicing Analysis (SA) 0.044  
(M) 

0.020 
(N) 

0.018 
(F) 

0.002 
(D) 

0.038  
(F) 

0.002 
(D) 

Tab. 2: Difference of PPV, TPV and AUC for the different prediction methods grouped by gender. 
In parenthesis, we denoted the group with the larger PPV, TPV, AUC values respectively by F/M 

for female/male and D/N for disability or no disability.  

Most models show significant differences in accuracy between the sub-groups. Depending 
on the measure, model accuracy was sometimes higher for female and sometimes for male 
students. With one exception (EO for SVM), it was always better for students without 
disability. Interestingly, all models predicted below average pass-rates for female course 
participants, where they were higher in reality. NB and kNN models over-estimated pass-
rate for disabled students, SVM strongly underestimated it. The reason for the differences 
in model fairness cannot be explained at this level of analysis, since the models work as 
black-box implementations.  

5 Discussion 

We have shown with the presented analysis on a real MOOC data set (OULAD) that, 
independently of the applied predictive model, predictive quality among learner sub-
groups varies. The level of variation in difference of predictive quality between sub-groups 
was assessed with different fairness measures, with different, even contradictory results. 

It should be noted that contradictory results mainly appear for the PP fairness measure, 
which might have to be calibrated differently (with a higher threshold for the ‘unfair’ 
category). Other than that, the EO measure quantified the NB method as highly 
discriminatory and the kNN and SVM methods only when grouping by gender. A reason 
for this could be the algorithms heavy reliance on relative frequencies in the original data. 

When taking our exploratory analysis into account, the results of the SA method come 
closest to what we would expect, since no clear tendencies with respect to gender were 
visible. It should be noted that, when grouping for disability, the significant fairness 
measures consistently have higher PPV, TPV and AUC values for non-disabled students. 
This confirms our first expectation of possibly discriminatory data, which might lead to a 
“garbage in – garbage out” mechanism in the ML algorithms, especially using NB. 
Therefore, we can not fully conclude the validity of the fairness measures, but confirm 
that tendencies in the data were (at least in part) reproduced by the algorithms.  

In order to get a more comprehensive view of the appropriateness of fairness measures in 
LA settings, further research and analyses on different datasets are required. 
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