
Combining the Concepts of Semantic Data Integration and
Edge Computing

Matthias Farnbauer-Schmidt12, Julian Lindner3, Christopher Kaffenberger4, Jens Albrecht5

Abstract: The Internet of Things (IoT) is growing rapidly. Therefore, there are more and more
vendors, which led to IoT being a heterogeneous collection of different IoT platforms, isolated solutions
and several protocols. It has been proposed to use Data Integration to overcome this heterogeneity.
In addition, costs are on the raise due to increasing volume of data which increases demands on
bandwidth and cloud computing capabilities. Again a solution has already been proposed by reducing
the amount of data to forward by processing data at the edge of an IoT-System, e. g. Ąltering or
aggregation. This concept is called Edge Computing.

In this article the Semantic Edge Computing Runtime (SECR) is introduced, combining both concepts.
The application of Data Integration enables Edge Computing to be performed on a higher level of
abstraction. In addition, the developed Driver-approach allows SECRŠs Data Integration algorithm
to be applied to a wide range of data sources without imposing requirements on them. The Data
Integration itself is based on technologies of Semantic Web, applying metadata to raw data giving it
context for interpretation. Furthermore, SECRŠs REST-API enables applications to alternate Data
Integration and Edge Computing at runtime.

The tests of SECRŠs prototype implementation have shown its suitability for deployment on an edge
device and its scalability, being able to handle 128 data sources and Edge Computing Tasks.

Keywords: Internet of Things; Data Integration; Edge Computing; Semantic Web; SECR

1 Introduction

The Internet of Things (IoT) is the approach of linking the real world to the Internet.
Consequently, digitalization of real-world properties is done by measurements conducted
by sensors.

The dominant architecture of IoT applications relies on a central cloud, i. e. a powerful
computational center. All data produced by sensors is forwarded to the cloud for processing,

1 Technische Hochschule Nürnberg Georg-Simon-Ohm, Keßlerplatz 12, 90489 Nürnberg, Germany
2 Fraunhofer IIS Arbeitsgruppe SCS, Nordostpark 93, 90411 Nürnberg, Germany farnbams@scs.fraunhofer.de
3 Fraunhofer IIS Arbeitsgruppe SCS, Nordostpark 93, 90411 Nürnberg, Germany julian.lindner@scs.fraunhofer.de
4 Fraunhofer IIS Arbeitsgruppe SCS, Nordostpark 93, 90411 Nürnberg, Germany christopher.kaffenberger@scs.

fraunhofer.de
5 Technische Hochschule Nürnberg Georg-Simon-Ohm, Informatik, Keßlerplatz 12, 90489 Nürnberg, Germany

jens.albrecht@th-nuernberg.de

cba doi:10.18420/inf2019_19

David, Geihs, Lange, Stumme (Hrsg.): INFORMATIK 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 139

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_19

storing and decision making. Furthermore, there are Gateways that translate protocols on
the way from data source to cloud.

Scalability problems of the cloud-centric IoT-architecture are pointed out by the growing
number of devices [Ga17]. As a result, the more devices are deployed the more data
is produced. With an increased volume of data, a cloud requires higher computational
resources. Moreover, the network connecting devices and cloud must provide a higher
bandwidth to be able to convey it. In fact, bandwidth is a constraint resource and both,
computational power and bandwidth are expensive. A solution to this problem is introduced
by Edge Computing where data is pre-processed at the edge.

The IoT is highly heterogeneous today [Qi18]. It can be seen at every layer of the ISO-OSI-
model. In addition, the representation of data within a protocol can be heterogeneous either.
For instance, there can be differences in units, scale and meaning. In fact, temperature of 32
could mean 32 m◦Cor 32 K and could be the room temperature or the average temperature
in space. Representation is usually deĄned by contract at protocol, platform or application
level. Besides, some domains have their own niche solutions. A proper way to overcome
heterogeneity of different data sources is to perform Data Integration. The approach of
using Semantic Web Technology has been introduced to the IoT and is called Semantic Web
of Things.

Edge Computing requires Data Integration when computations should be applied to data
from different sources. In order to produce sensible results, computations require their
inputs to be modeled according to the same schema. In fact, the Data Integration decouples
the execution of computations from the heterogeneity of data sources. As a result, Edge
Computing software that includes a Data Integration layer is more reusable than Edge
Computing software that handles speciĄc data sources.

The beneĄts of combining Semantic Data Integration and Edge Computing will be shown
by introducing the Semantic Edge Computing Runtime (SECR). Focused on performing
pre-processing for data science algorithms, it works as a backend for IoT-applications on the
edge. SECR is designed to be deployed at edge devices at least capable of running an OS.
This excludes the outermost edge devices like simple sensors and actuators. An abstraction
of data sources in combination with the developed Driver-approach allows SECRŠs Semantic
Data Integration to handle a wide range of data sources. In addition, a local RDF-graph is
maintained that provides all information of SECR, its host and environment. It is internally
used for conĄguration of services, either. Furthermore, a REST-API is provided to access the
graph. Moreover, the API allows for modiĄcation of Edge Computing tasks and Semantic
Data Integration at runtime.

2 Background

This section addresses the solutions to the problems of IoT before mentioned. In addition,
their background and technologies are covered.

140 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

2.1 Data Integration

Heterogeneity of data sources can be overcome by applying Data Integration. It is done
by transforming data into a common schema. As a consequence, all integrated data can
be queried as a whole. A schema is a description of how certain information is modeled.
Although, a schema only deĄnes the semantics of a data model not the syntax the data is
represented in.

Data Integration enables interoperability if the communicators understand the common
schema. The lower the system-layer Data Integration is applied the earlier interoperability
between IoT-systems can be achieved.

2.2 Semantic Web

The Semantic Web or Web of Data wants to interlink the data provided in the Internet. This
concept is called Linked Data [LPL17].

The standard used for Linked Data is the Resource Description Framework6 (RDF) a
recommendation of the World Wide Web Consortium (W3C). The Framework sees the
description of information in subject-predicate-object-triples, e. g. ŞHans is maleŤ. Subjects
and predicates must be resources identiĄed by an Uniform Resource IdentiĄer (URI) whereas
objects can be either a resource or a literal. Several interlinked RDF-triples build a directed
graph where subjects and objects are the nodes and the predicates are the directed edges.

2.2.1 Ontologies

An ontology describes entities and the relations between them. In case of the Semantic
Web an ontology is deĄned by RDF-statements (RDF-triples). These statements are divided
into two groups the terminological box (TBox) and the assertion box (ABox) [Bo17]. The
TBox-statements provide classes and predicates to identify entities and their kind of relations.
In contrast, the ABox-statements use the terms deĄned by the TBox to describe entities and
their relations.

Depending on the share of TBox- and ABox-statements, ontologies are either classiĄed as
vocabulary or as knowledge-graph in this paper. This is done in order to express the purpose
of an RDF-graph.

The TBox-statements of a vocabulary deĄne a schema for modeling data. They can describe
a broad domain or extend such a vocabulary into more detail. An example is the Semantic
Sensor Network (SSN) ontology7 that exapnds the Sensor, Observation, Sample and Actuator

6 https://www.w3.org/RDF/
7 https://www.w3.org/TR/vocab-ssn/

Combining the Concepts of Semantic Data Integration and Edge Computing 141

(SOSA) ontology. Both are ontologies provided by the W3C. The term ontology is often
used as a synonym for vocabulary.

Knowledge-graphs use vocabularies to model entities and their relations. By using a
common vocabulary the semantics of a graph can be understood by everyone that knows the
vocabulary.

2.2.2 Data Integration by Application of Vocabularies

Building knowledge graphs by using the terms of vocabularies is a kind of Data Integration,
in the future referred to as Semantic Data Integration (SDI). The schema built from a
vocabularyŠs statements works as a common schema for Data Integration. Being a directed
graph, the linked statements of an RDF-ontology can be traversed. Therefore, if a reader
knows the vocabulary used to describe the entities of a graph he is able to infer the semantics
of that graph.

2.3 Edge Computing

Edge Computing tackles IoTŠs issue of an increasing volume of data. It utilizes the execution
of computations on edge devices. The concept leverages the computational powers of
devices of the outer ends of an IoT-system to reduce the payloads for network and cloud.

Fig. 1: Cloud-centric IoT-architecture (left) and decentralized IoT-architecture including Edge
Computing (right). Conversion from Data to Information takes place at gateway level. Redrawn
according to [Pa17].

The term Edge Computing is not globally deĄned. The deĄnition of the ŞedgeŤ used in
this article is shown in Figure 1. It is composed of the gateways connecting sensors and
actuators to the infrastructure of the IoT. Therefore, the Edge Computing introduced by

142 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

SECR only targets those edge devices. For example, Brown, Kathrivel and Akthar deĄne
Edge Computing to be executed on decentral micro-clouds [Br17; KA17] (see Fog in
Figure 1). Whereas others see the edge as the outermost sensors and actuators (see Things
in Figure 1).

The distribution of computations increases the complexity of an IoT-system because the cloud
is no longer the only instance that conducts computations. Edge devices are heterogeneous
and provide different levels of computational powers. As a consequence, a system has to be
introduced to manage deployment of Edge Computing and load balancing. Such systems
are referred to as Edge Computing platforms. In contrast, the software deployed at an edge
device to execute Edge Computing is called Edge Computing software. An Edge Computing
platform distributes tasks requested by an application to edge devices deploying Edge
Computing software. After all, depending on the complexity of a system and the number of
edge devices Edge Computing platforms are optional.

3 Related Work

Semantic Data Integration and data pre-processing has been suggested by other projects
before and will be examined in the following.

Desai et al. introduced the concept of Semantic Gateway as a Service [Al15]. The purpose
of it is to break up vertical silos. These are closed IoT-applications which are obstacles on
the way to enable gateway-level interoperability. In fact, the concept is limited to Semantic
Data Integration. Applications can access the results either by push-pull REST-API or by
event-driven MQTT. Besides, a multi-protocol proxy is used for handling of data sources.
In a Semantic Gateway the data sources must implement a certain protocol. So, the sources
itself provide descriptions of their packages for the gateway. These descriptions are used
to extract the contained data of a package. All in all, the requirement for data sources to
implement a protocol limits the data sources that can be handled by the Semantic Gateway.

Semantic enrichment of data causes an increase of payload due to additional metadata.
Al-Osta et al. further developed the concept of Semantic Gateway to reduce the data that
must be forwarded by pre-processing incoming data [AAA17]. According to this reportŠs
deĄnition this is Edge Computing. However, data sources are still required to implement a
certain protocol to work within this system. Their Data Preparation Module reduces traffic
by applying rules of aggregation and Ąltering. Consequently, Edge Computing capabilities
are restricted. In contrast, SECR provides richer Edge Computing capabilities, allowing for
dependencies between sources, scaling and converting of data.

To sum up, Semantic Gateway and its derivatives show that Semantic Data Integration
can be done at gateway-level. In addition, Semantic Data Integration and rule-based data
processing can not only reduce the emitted information but also create new information.

Combining the Concepts of Semantic Data Integration and Edge Computing 143

4 The Semantic Edge Computing Runtime

Designed as a backend for IoT-applications on the edge, SECR is Edge Computing software.
Besides, the small footprint leaves enough resources to run further services on the same
host. All results of SECRŠs services are published as RDF-graphs enabling edge-level
interoperability. Moreover, SECRŠs Edge Computing capabilities focus on data processing,
e. g. Ąltering, aggregation, fuzzyĄcation and classiĄcation.

Publish-subscribe HTTP and event-driven MQTT is used for SECRŠs public API (see
Figure 2). The HTTP-API is used to pull results from SECRŠs services, conĄgure the
services and for querying SECRŠs local RDF-graph whereas MQTT is used for event-driven
publication of service results. In MQTT content is published to so-called topics. The
protocol is handled by a broker, which notiĄes all subscribers of a topic when new content
is published. The Data Source Managers (DSMs) in Figure 2 are a proxy for the instances
that handle the Semantic Data Integration. Similarly, the Edge Computing Tasks (ECTs) do
the Edge Computing.

Fig. 2: Architecture of SECR. Applications can either interact with the REST-API or the MQTT-
broker. Update Services are launched by the Semantic Manager which holds access to SECRŠs local
RDF-graph. Edge Computing relies on the results of other Update Services.

The components of SECR will be further discussed and explained in the rest of this section.

4.1 SECRŠs Public Services

Metadata of SECR can be obtained from the public accessible local RDF-graph and from
the Resource-Usage-Information service. Provided are memory allocation and CPU load
of SECRŠs host system, the average latencies of Edge Computing and Semantic Data
Integration as well as a description of the host system, its environment and SECRŠs deployed
services. For reasons of clarity these services are not shown in Figure 2.

A vital part of SECR are Update Services. Each Update Service handles a Semantic
Struct which is SECRŠs representation of results from Semantic Data Integration or Edge

144 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

Computing. An Update ServiceŠs purpose is to provide updates of a Semantic Struct to
consumers of the serviceŠs results. Furthermore, Semantic Structs can be serialized into an
RDF-graph. A user can subscribe to a Semantic StructŠs state at an MQTT-topic. However,
an Update Service must be set to publish to MQTT.

4.2 Semantic Structs

Semantic Structs consist of a timestamp of their last update, the URI of their Update Service
and at least one Field identiĄed by a label, an URI and the type of data they hold.

1 @prefix rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 @prefix sosa <http://www.w3.org/ns/sosa/> .

3 @prefix sec <http://iis.fraunhofer.de/vocab/sec/> .

4
5 _:obs a sosa:Observation ;

6 sosa:usedProcedure {Update-Service-URI} ;

7 # for each of Semantic Struct's Fields

8 sosa:hasResult [

9 sec:instanceOF {Field-URI} ;

10 rdf:value {current-value-of-Field}

11] ;

12 sosa:resultTime {Semantic-Structs-timestamp as

YYYY-MM-DDThh:mm:ss.sss} .

Fig. 3: Pattern of an RDF-graph representing the state of a Semantic Struct. The Turtle-syntax is used.

The state of a Semantic Struct is returned as an RDF-graph to users. The RDF-graph
resembles a sosa:Observation following the pattern of Figure 3. The chosen graph-pattern
provides all information necessary to discover the full semantic description of the Semantic
Struct and the changing values of Fields and time of update.

4.3 Semantic Data Integration

Semantic Data Integration is performed by a combination of Drivers, Data Source Managers
(DSMs) and Semantic Conversion Services (SCSs). The components of SECRŠs Semantic
Data Integration layer are shown in Figure 4 and described in the following paragraphs.

Data Sources are an abstraction used by SECRŠs Semantic Data Integration to handle IoTŠs
heterogeneous data sources. A Data Source is able to emit packages of raw data. These
packages are called Frames which consist of different Fields similar to Fields of a Semantic
Struct. The Fields of a Frame hold the raw data.

For each Data Source SECR handles, a full semantic description is provided in SECRŠs local
RDF-graph. Different Data Sources can be of the same type, e. g. several sensors (entities)

Combining the Concepts of Semantic Data Integration and Edge Computing 145

Fig. 4: SECRŠs Semantic Data Integration of a Data Source is a collaboration of several components.

of the same model (type) could be deployed. A typeŠs description deĄnes the Driver to be
used and which Frames are emitted and their properties. Furthermore, a FrameŠs description
includes its URI, a label, a pattern that uniquely identiĄes the Frame, the description of
its Fields and information how to extract the data of the Fields. Accepted Frame formats
are byte-arrays, ASCII-strings, XML and Json. A Frames pattern depends on its format.
For example, the pattern of a byte-array Frame is a sequence of bytes that must match the
FrameŠs content. In contrast, the pattern of a Json-format Frame is a key-value-pair that
must be contained in the Json. As of Semantic Structs, Fields of a Frame are deĄned by
an URI, a label and their type of data. The encoding of the Fields as well as the pattern
depends on a FrameŠs format. For example for byte-array Frames a Field is localized by
position and length in the array whereas Json- and XML-encodings provide the keys where
the data is found.

The developed Driver-approach allows SECRs to abstract over IoTŠs heterogeneous data
sources. A DriverŠs purpose is to validate a Data SourceŠs protocol, to handle the connection
between the Data Source and the SECR and to forward validated Frames to its DSM. For
each Data Source handled by SECR one Driver is launched. As depicted in Figure 4 a Driver
is a child-process launched by SECR. Therefore, Drivers can be conĄgured by passing
command-line-arguments at their launch. Arguments can be speciĄed for each Data Source
type, for each Data Source and at setup of a DSM.

As an example, we assume a HTTP-server as Data Source. Therefore, the Driver would be
responsible to continuously request new Frames from the server. In addition, the response
bodies contain a custom checksum that must be validated by the Driver to proof a Frames
validity.

A Data Source Manager (DSM) coordinates the conversion of Frames into Semantic
Structs. This is done by receiving validated Frames from the Driver and passing them to
the responsible Semantic Conversion Service. Therefore, it is the DSMŠs task to determine
which kind of Frame is received by applying the patterns of the handled Data SourceŠs
Frames.

146 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

For each Frame a Data Source can emit a Semantic Conversion Service is deployed by
the Data Source Manager. They are Update Services whose task is to convert a Frame
into their Semantic Struct. The conversion is done by extracting the raw data of the Frame
and updating the corresponding Fields of the SCSŠs Semantic Struce. For extraction the
encoding information from the FrameŠs description is used.

4.4 Edge Computing Tasks

Edge Computing Tasks (ECTs) are SECRŠs source of Edge Computing capabilities. Conse-
quently, each ECT is an Update Service. Indeed, the Edge Computing is done by calculating
new values for the Fields of an ECTŠs Semantic Struct. For each Field an expression is pro-
vided. SECRŠs supported types of data are Numeric, Boolean and Categorical. Furthermore,
a Boolean expression called publish-condition is provided for each ECT. It deĄnes the
moments when an ECT updates the state of its Semantic Struct.

4.4.1 Setup of an ECT

The creation of an ECT requires a SECR-wide unique label, description of the new Semantic
StructŠs Fields, the expression for them and the publish-condition. Accordingly, all
required information must be provided except for the ECTŠs label which is encoded in the
HTTP-requestŠs URL.

For example we want to create a new ECT called task on a SECR (${base} =
http://example.org:8080/secr0). On the SECR a SCS (${base}/dsm/other/scs/frame)
and an ECT (${base}/ect/another) are already running. Field x of the new ECT should
be calculated from the value of SCSŠs Field a and 30 and Field y should be calculated from
the value of x and value t of the other ECT. At last, updates should be published when x
exceeds 50. We achieve the described behaviour by sending the Json-LD from Figure 5 to
POST http://example.org:8080/secr0/ect/task.

Unlike most of the required semantics, the expressions are not encoded as RDF (see Figure 5).
This decision was made for user friendliness because complex expressions would result in
large and complex RDF-graphs.

Fields in expressions are accessed by {identifier}#{FieldLabel} where an identiĄer is
either the URI of another Update Service or SELF which indicates that the Field is part of
the ECTŠs own Semantic Struct. Own Fields can only be referenced when they have been
declared before, e. g. Field x could not reference Field y.

Combining the Concepts of Semantic Data Integration and Edge Computing 147

1 // replace ${base} by http://example.org:8080/secr0

2
3 { "@context":"${base}/context.json",

4 "dependencies": [

5 { "other":"${base}/dsm/other/scs/frame" },

6 { "another":"${base}/ect/another" }

7],

8 "fields": [{

9 "label":"x", "ofType":"Numeric",

10 "expression":"<other#a> + 30"

11 }, {

12 "label":"y", "ofType":"Numeric",

13 "expression":"<another#t> + SELF#x"

14 }],

15 "publish_when": { "expression":"<SELF#x> > 50" }

16 }

Fig. 5: Example content of POST to create a new Edge Computing Task. The Semantic Struct will
consist of Fields x and y. The ECT will depend on SCS other/frame and ECT another.

4.4.2 Algorithm of Evaluation

The evaluation of ECTŠs expressions is driven by the updates of the services they depend on.
For each dependency an execution plan is created, e. g. the execution plan for the example
ECT task is shown in Table 1. Indeed, the Update Service other is only mentioned in the
expression for Field x (see Figure 5). However, the execution plan for updates from other
additionally recalculates Field y and the publish-condition because they depend on Field
x.

Tab. 1: Resulting execution plans from the instruction of Figure 5.

Update from Execution plan

other Recalculate x→ recalculate y→ recalculate publish-condition
another Recalculate y

5 Evaluation

The prototype implementation of SECR is tested for scalability and suitability for deployment
at the edge.

For evaluation purposes, a special Driver has been implemented. The Driver itself simulates
a Data Source that emits every 50 ms one Frame. Furthermore, the Data Source can send
three different kinds of Frames which one is sent is determined by chance.

148 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

5.1 The Test Scenario

For the tests SECR is deployed on a RaspberryPi 3 Model B that runs a quad-core
Arm-processor at 1.2 GHz.

For testing the scalability several tests are run with 2 up to 128 (2, 4, 8, 16, 32, 64, 96, 128)
simulated Data Sources at one time. All tests are run for 120 s 30-times. Four test cases
have been evaluated:

1. n DSMs are deployed; Nothing is published to MQTT.

2. n DSMs are deployed; All results are published to MQTT.

3. n DSMs and n − 4 ECTs are deployed; Nothing is published to MQTT.

4. n DSMs and n − 4 ECTs are deployed; All results are published to MQTT.

In the third and fourth case the ECTs depending on four SCSs, created from instructions like
the example in Figure 6. Indeed, the fourth test case can be seen as a worst-case scenario.

1 // replace ${base} by http://localhost:8080/secr0

2
3 { "@context":"${base}/context.json",

4 "dependencies": [

5 { "s31_temp":"${base}/dsm/S31/scs/temp" },

6 { "s32_vel":"${base}/dsm/S32/scs/vel" },

7 { "s33_temp":"${base}/dsm/S33/scs/temp" },

8 { "s34_temp":"${base}/dsm/S34/scs/temp" }

9],

10 "fields": [{

11 "label":"temp_avg", "ofType":"Numeric",

12 "expression":"mov_avg(4, s31_temp#t * 0.01)"

13 }, {

14 "label":"mul", "ofType":"Numeric",

15 "expression":"s32_vel#v * s33_temp#t"

16 }],

17 "publish_when": { "expression":"s34_temp#t.ROSE" }

18 }

Fig. 6: Body of POST http://localhost:8080/secr0/ect/alert34. Instruction to create ECT
alert34 for the evaluation of SECRŠs prototype implementation.

Time and resource consumption measurements are part of SECRŠs Resource-Usage-
Information service. Therefore, the measurements do not generate any extra costs.

The latencies of the Update Services where measured to determine the payload possible to
be handled by SECR running on a RaspberryPi 3. On the one hand, the latency of Semantic
Data Integration deĄnes the time elapsed from the moment a new Frame is read from the

Combining the Concepts of Semantic Data Integration and Edge Computing 149

DriverŠs stdout to the moment the serialized RDF is sent to the MQTT-broker. On the other
hand, the latency of Edge Computing is deĄned as the time elapsed from the moment the
ECT received the notiĄcation of update to the moment the serialized RDF is sent to the
MQTT-broker.

5.2 Results and Discussion

The results of the tests are shown in Figure 7 through Figure 10. Note the non-linear x-axis.
In addition, it should be considered that due to other processes the latencies can be disturbed.
Therefore, the results are presented as boxplots.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 16 32 64 96 128

C
P

U
 l

o
a

d
 [

%
]

deployed DSMs

CPU load

SDI only
SDI(pub) only

SDI + EC
SDI(pub) + EC

Fig. 7: CPU load of the RaspberryPi 3 when
running SECR.

 7

 8

 9

 10

 11

 12

 13

 14

 15

2 4 8 16 32 64 96 128

a
ll

o
ca

te
d

 m
e

m
o

ry
 [

k
B

]

deployed DSMs

memory usage

SDI only
SDI(pub) only

SDI + EC
SDI(pub) + EC

Fig. 8: Allocated memory of SECRŠs process on
the RaspberryPi 3.

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 96 128

la
te

n
cy

 [
m

s]

deployed DSMs

latency of Seman�c Data Integra�on

SDI(pub) only
SDI(pub) + EC

Fig. 9: Latency of Semantic Data Integration.

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 96 128

la
te

n
cy

 [
m

s]

deployed DSMs

latency of Edge Compu�ng

SDI + EC
SDI(pub) + EC

Fig. 10: Latency of Edge Computing.

As expected, in each test case the CPU load rises nearly linear with the number of Data
Sources handled. By capturing one third of the hosts CPU in a worst-case scenario, SECR
leaves enough resources to run further processes achieving the objective deĄned in section 4.

The memory allocation of SECRŠs process starts with an offset of 8 kB and rises in all
test cases nearly linear. The offset is mainly derived from SECRŠs local RDF-graph. By

150 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

allocating 13.5 kB in test case 4, SECR is suitable to be deployed at systems with limited
memory capacities.

The latency of Semantic Data Integration shows a number of outliers but stays generally
below 4 ms. The latencies of both Semantic Data Integration and Edge Computing rise
with the number of deployed services due to emerging dependencies between them. In the
worst-case a new Frame is integrated within 6 ms and processed by an ECT within 5 ms.
Finally, the sum of both propagation times is nearly 5-times faster than the occurrence of
new Frames.

6 Conclusion and Future Work

In this paper the authors introduced the Semantic Edge Computing Runtime (SECR). The
software enables Edge Computing capabilities on the host system. The heterogeneity of the
Internet of Things (IoT) is handled by applying Data Integration before the Edge Computing.
Besides, SECRŠs Data Integration is done by converting raw data into RDF-graphs. This
abstraction before the computations allows SECR to apply Edge Computing on a wide range
of Data Sources.

The evaluation of the prototype SECR has proven its suitability for deployment at the edge.
Compared to the results of [AAA17] the overall worst latency of 11 ms is 3-times faster
than their average latency of 30 ms.

In the future we will examine a real-world use-case to investigate the effects of Edge
Computing in terms of saving bandwidth. In order to make SECR production ready concerns
are taken towards security and failure safety.

With more computations taking place at the edge the interest of attackers raises. Therefore,
measures must be taken to prevent malicious attacks. Nevertheless, edge devices are resource
constraint. So, a compromise must be found between resource consumption and safety
measures.

The loss of functionality after failure must be prevented. Currently, SECR provides
no persistence of its services. Certainly, edge devices are more prone to failures than
computational centers. In addition, it is advantageous to turn of edge devices to save energy
sometimes. On restart SECR should restore the state of its services.

7 Acknowledgement

This work was partially supported by the Bavarian State Ministry of Economic Affairs,
Regional Development and Energy within the framework of the Bavarian Research and
Development Program ŞInformation and Communication TechnologyŤ.

Combining the Concepts of Semantic Data Integration and Edge Computing 151

References

[AAA17] Al-Osta, M.; Ahmed, B.; Abdelouahed, G.: A Lightweight Semantic Web-based
Approach for Data Annotation on IoT Gateways. International Conference on
Emerging Ubiquitous Systems and Pervasive Networks 8th/, 2017.

[Al15] Semantic Gateway as a Service Architecture for IoT Interoperability. In (Altin-
tas, O., ed.): 2015 IEEE International Conference on Mobile Services (MS).
IEEE, Piscataway, NJ, pp. 313Ű319, 2015, isbn: 978-1-4673-7284-8.

[Bo17] Bonte, P.; Ongenae, F.; Backere, F.; Schaballie, J.; Arndt, D.; Verstichel, S.;
Mannens, E.; Walle, R.; Turck, F.: The MASSIF Platform: A Modular and
Semantic Platform for the Development of Flexible IoT Services. Knowl. Inf.
Syst. 51/1, pp. 89Ű126, 2017, issn: 0219-1377, url: https://doi.org/10.
1007/s10115-016-0969-1.

[Br17] Brown, K.: Resiliency of Edge Data Centers in the Era of Cloud Computing,
YouTube, 2017, url: https://www.youtube.com/watch?v=ttto-t4asE0,
visited on: 07/31/2018.

[Ga17] Gartner, I.: Gartner Says 8.4 Billion Connected Things Will Be in Use in
2017, Up 31 Percent From 2016, 2017, url: https://www.gartner.com/
en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-

connected-things-will-be-in-use-in-2017-up-31-percent-from-2016,
visited on: 11/07/2018.

[KA17] Kathirvel, K.; Akhtar, H.: Implications of 5G and Edge Computing on Open-
Stack, Youtube, 2017, url: https://www.youtube.com/watch?v=9d5JtONGQSA,
visited on: 07/31/2018.

[Ka18] Kaed, C. E.; Khan, I.; van den Berg, A.; Hossayni, H.; Saint-Marcel, C.:
SRE: Semantic Rules Engine for the Industrial Internet-Of-Things Gateways.
IEEE Transactions on Industrial Informatics 14/2, pp. 715Ű724, 2018, issn:
1551-3203.

[LPL17] Li, W.; Privat, G.; Le Gall, F.: Towards a Semantics Extractor for Interoperability
of IoT Platforms. Global Internet of Things Sumit/, 2017.

[Pa17] Pande, A.: IOT Edge Computing | IoT Examples | Use Cases | HackerEarth
Webinar, YouTube, 2017, url: https : / / www . youtube . com / watch ? v =
Xm8frqTZRVI, visited on: 07/31/2018.

[Qi18] Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W.: How Can Heterogeneous
Internet of Things Build our Future: A Survey. IEEE Communications Surveys
& Tutorials/, p. 1, 2018.

152 Matthias Farnbauer-Schmidt, Julian Lindner, Christopher Kaffenberger, Jens Albrecht

