
Dynamical Vertical Integration of Distributed Java
Components Using an Architecture Model

Alexander Prack (ap@sernet.de)
Ulf Schreier (schreier@fh-furtwangen.de)

Abstract: A key idea of architecture is the description of components and their con-
nections. This information can be extended to define the horizontal and vertical dis-
tribution of components. RemoteXParts is a framework that uses such a model and
exploits it for dynamic deployment at runtime along the vertical client/server line. Its
goal is the support of the POJO (Plain Old Java Object) programmer. It enables him
to distribute application layers between different systems without concerning himself
with actual distributed programming. He does not have to take care of tasks like ex-
ecuting remote calls, checking for version differences, and updating old classes or
transferring new ones where needed. It is a minimal extension to Java, as small as
possible. Additionally it does not need the generation of source code like in MDA
approaches [OM03], although it is based on the UML2 component concepts.

1 Introduction

When faced with the task of bringing together different applications or data in an enter-
prise, a programmer today can choose between a multitude of competing — sometimes
contradicting — client / server approaches. A distribution model can be based on concepts
like web services [W303], Enterprise Java Beans [Mi03] or Microsoft’s DCOM or .NET
framework [Mi99] amongst others. The common denominator of these techniques is their
compulsiveness: either in the regard of committing to certain types of interfaces of one
particular solution without the possibility to change later, or because the distribution of the
components has to be decided during installation, not dynamically during runtime.

However, ideally it would be possible to make vertical integration happen where the need
for it arises. If a client has the capabilities to take over some of the server’s tasks, it
should be possible to harness these capabilities. Otherwise an increase from for example
15 to 15,000 clients leaves the additional load to be handled exclusively by the server. This
should happen only for those clients that do not have the computing power or storage space
to assume additional tasks themselves, such as PDAs or programmable cellular phones.
For this reason, it is desirable to define vertical distribution of an application based on
each individual client, and not generally for the whole client base.

RemoteXParts [Pr04] aims to be a solution for the pure POJO programmer who doesn’t
want to intertwine his application with a component model that adds its own complexity
to the problem. This complexity is most likely the main reason why distributed compo-

96



nents are not commonly used to address the demands of a distributed architecture. Instead,
programmers have turned to server-centric approaches. The server / thin client (browser)
model that is being used by the majority of distributed applications with an HTML fron-
tend eases installation and maintainability, but is accompanied by restrictions for the user
interface and other disadvantages.

2 The Basic Component Model

An XParts visualisation is very close to a UML2 component diagram [OM02]. Fig. 1
shows an example application. Subsystems exist of other subsystems (or packaged com-
ponents in the new UML2 terminology) and bound components (or basic components in
UML2), implemented directly in Java. Interfaces can be delegated from outer to inner
components. Connections between components can be explicitly modelled by references
to neighbouring components (this notion will need slight changes in order to support the
new UML2 port notation). The actual representation of an XParts application is based on
an XML file.

1_a 1_b 1_c 1_d

BC1_1

BC1_2

BC1_3_1

BC1_4_2_1
BC1_4_1

Export1

Ref1_1_a

1_c 1_d

1_d

Subsystem1

Subsystem1_3 Subsystem1_4

Subsystem1_4_2

1_4_a

R
ef

1_
4_

1_
a

Ref1_3_1_a

uses

<<remote>>

<<remote>>

<<remote>>

<<local>>

Figure 1: Example of XParts Components

The following code excerpt shows the XML representation of a subsystem.

<subsystem name="Subsystem1"
access="remote" locality="free" dimension="singleton">
<delegates refInterface="Ifc1_a" type="method"

refPart="BoundComponent1_1"/>
<consists-of refPart="BoundComponent1_1" />
<export name="ExportClass1"/>

97



</subsystem>

The following code shows how a component instance according to the XML description
is created and accessed. A factory takes care of instantiating the necessary objects and
creating proxies where necessary to access the component as a whole. A component can
be cast to any interface that it implements itself or delegates to a subcomponent:

XPartsFactory componentFactory =
new XPartsClientsideFactory(
"./build/classes",
"./build/classes/TestComponents.xml");
Subsystem subsystem1 = componentFactory.createSubsystem("Subsystem1");

Ifc1_a subsystemTyped = (Ifc1_a) subsystem1;
String returnValue = subsystemTyped.testMethod();

3 Distribution of Components

RemoteXParts introduces the ability to define a server for XParts components. Compo-
nents can be distributed from the server to multiple clients. The server authoritatively
defines for each component whether it should run on the client or the server, or if this deci-
sion is left to each individual client (Attributes access and locality in the component
definition shown above). Figure 1 shows Subsystem1 4 (in blue) residing on the client,
all others are running on the server. If a client does not have all components for a complete
architecture, the server offers support for remote instantiation and invocation of the miss-
ing parts or migrating the class code to the client. Delegations from component instances
on the server back to the client are possible, even nested components can be distributed
between client and server.

RemoteXParts offers the ability to change the whereabouts of a component at any time for
each individual client using a high level API. The methods of the ApplicationState
interface allow querying the current location of a component – since it is otherwise com-
pletely transparent to the application programmer. Distributing an application becomes as
simple as setting a property:

ApplicationState currentState = Architecture.getArchitecture();
currentState.setRemote("Subsystem1");

After the change, the subsystem is accessed in exactly the same way as in the previous
example but all calls are remotely delegated to the implementing classes running on the
server. The Architecture class is the runtime representation of the XML architecture
description file. Any changes made by the application to its own model description are
synchronised back to the XML file on the client. The server saves a master copy of an
architecture description that remains untouched.

Although the communication of the XParts framework between client and server is han-
dled using stateless session beans, all user defined XParts components on the server are

98



stateful. All objects and their fields are preserved during the lifetime of the client. Com-
ponents are removed as soon as the client no longer holds a reference to them. The main-
tainability of distributed XParts applications is increased by XPart’s ability to identify and
resolve version differences between components on different systems. An application can
be updated on all clients by simply replacing the affected components on the server.

XParts support can be added to any EJB application server by deploying the XParts EAR.
The application programmer does not have to program a single EJB himself, nor does he
have to make any RMI calls. The stateless session bean is exclusively used by the frame-
work. All the application developer has to do, is to subclass theAbstractBasicBoundCo
class. Apart from the constructor, no methods of the superclass have to be rewritten. The
extended BoundComponent can implement all interfaces that the developer wishes the
component to offer. In executing the interface methods he can use as many other objects
derived from plain Java classes as he likes.

Client

Server

Main

An XParts Component XParts Framework

EJB Container

Another XParts Component XParts framework

XParts
architecture
description

XParts
architecture
description
master
copy

Figure 2: Deployment of XParts on client and server

Figure 2 shows how framework and user components are deployed on client and server.
XParts components on the client are used by a regular Java application. If delegation of
a call to a remote component residing on the server becomes necessary, the framework
contacts a stateless session bean running in an EJB container, which in turn forwards the
call to the correct component instance. This happens transparently for the application.

Calls from the server to the client (upcalls to components of a higher layer) are also pos-
sible and useful for tasks like notifying a client GUI about model changes on the server.
Upcalls are also transparent to the programmer and implemented as a normal component
delegation. They are realized in the framework using a separate connection to the server

99



originating on the client-side, enabling this functionality over any firewall configuration.
The upcall mechanism utilises asynchronous events to notify one or more clients, not only
about method calls to execute but also about updated classes or interfaces. The event
stream can also be accessed by the application programmer directly if he wants to do so,
enabling him to register multiple listeners to an event received by the XParts framework.

4 Summary

By using RemoteXParts together with other available free software it becomes possible
to integrate existing Java application layers vertically across different systems by turning
them into individual components. The goal is to achieve this with a minimum of additional
programming, most of the existing Java classes can be reused without any changes. Once
this is done, the existing interfaces can be called between different systems using automat-
ically generated proxies that represent the defined application components and handle all
necessary remote calls and further issues caused by distribution, such as resolving version
differences.

An XParts description can be exported by a UML modelling tool supporting the XMI
format. The file is parsed by the XParts framework and a runtime representation of all
components and their interactions is created. Calls to a remote component are handled
transparently, migrating and running components between systems becomes possible. The
migration of already instantiated components during runtime while they are being accessed
is being worked on right now and will be finished in the near future.

To support horizontal integration, it would become necessary to have one EJB container
for each component server and support the synchronisation of architecture descriptions
between them. This will require further implementation to be done on the framework.

References

[Mi99] Microsoft: The Component Object Model Specification. http://www.microsoft.com/
com/resources/comdocs.asp. 1999.

[Mi03] Microsystems, S.: Enterprise Java Beans Specification Version 2.1.
http://java.sun.com/products/ejb/docs.html. 2003.

[OM02] OMG: UML Profile for Enterprise Distributed Object Computing Specification Final
Adopted Specification. OMG. 2002.

[OM03] OMG: OMG Model Driven Architecture. http://www.omg.org/mda/. 2003.

[Pr04] Prack, A.: Dynamisch verteilbare Java Anwendungskomponenten. http://webuser.fh-
furtwangen.de/˜schreier/Diplomarbeit AlexanderPrack.pdf. 2004.

[Sc02] Schreier, U.: XParts. http://webuser.fh-furtwangen.de/˜schreier/xparts.html. 2002.

[W303] W3C: Web Services Architecture. http://www.w3.org/TR/ws-arch/. 2003.

100




