
Self-Stabilizing Tree and Cluster Management for Dynamic
Networks

Olivier FLAUZAC, Bachar Salim HAGGAR and Florent NOLOT

CReSTIC/SYSCOM
University of Reims Champagne-Ardenne

UFR Sciences Exactes et Naturelles
Department of Mathematics, Mecanics and Computer Sciences

E-mail: {olivier.flauzac, bachar-salim.haggar, florent.nolot}@univ-reims.fr

Abstract: The lack of infrastructure and dynamic nature of mobile ad hoc networks
demand new networking strategies to be implemented in order to provide efficient
end-to-end communication. Some researches proposed to organize the network into
groups called clusters and use different routing protocols for inter and intra cluster to
propagate an information. But with these solutions, the network needs first to be orga-
nized into clusters and next, we need to construct each routing table. Other researchers
proposed to build a spanning tree on the network to forward informations on a tree but
many solutions need to know the global network topology. In this paper, we propose
a self-stabilizing algorithm both to construct cluster and simultaneously build a span-
ning tree on the network. Without any global knowledge, we use only one type of
periodically exchanged messages of size Log(5n + 3) bits, and we construct clusters
and the spanning tree on the network with a convergence time of at most D+6 rounds.

1 Introduction

Today, wireless networks are increasingly popular because of ease of deployment. These
networks provide information access to users regardless of their location. However, mo-
bile networks are divided into two main categories: cellular networks and ad hoc net-
works [BKP02]. While cellular networks are characterized by centralized devices, ad hoc
networks are characterized by the absence of infrastructure. Thus, an ad hoc network
is a collection of mobile entities inter-connected by a technology without wire, forming
a temporary network without the assistance of any management and any fixed architec-
ture. The concept of ad hoc mobile networks tries to extend the notions of mobility to all
the components of the environment, contrary to the networks based on the cellular com-
munication. Due to mobility of nodes, the network topology may change quickly and
unpredictably over time. The network is decentralized, meaning network organization and
message delivery must be executed by the nodes themselves, i.e., routing functionality will
be incorporated into mobile nodes.
Mobile ad hoc network can be widely and quickly deployed, without any support from
an existing infrastructure or any other kind of fixed stations. The main characteristics of

20

ad hoc systems: they are self-organizing, fully decentralized and highly dynamic. These
characteristics prohibit usage of many applications of algorithms which work in a wired
network. On the other hand they provide opportunities for a range of new and interesting
applications: conferences, meetings, wireless communication between vehicles in road
traffic, disaster relief, rescue missions, military applications, etc. Such scenarios typically
lack a central administration or wired infrastructure and, hence, ad hoc systems are very
useful for them. Under the limited resources such as network bandwidth, memory ca-
pacity, and battery power, the efficiency of routing schemes in ad hoc wireless networks
becomes more important and challenging.
In this paper, we proposed a new self-stabilizing algorithm to create clusters on ad hoc
network which simultaneously constructs a spanning tree of the network. In each clus-
ter, a node can be clusterhead, gateway or ordinary node. A clusterhead manages data
forwarding in its cluster. A gateway is charged to relay messages between clusters. An
ordinary node has no particular function, it is neither a clusterhead nor a gateway. With
this solution, we have a new solution, with few messages, to forward information over the
network.

2 Related Works

We present in this part some existing works on clustering and spanning tree problem.
Many solutions for clustering ad hoc networks are intended to identify a subset of nodes
geographically closed in a network.
In the Lowest-ID Cluster Algorithm [EWB88], each node in the network must hold an
unique identity. The node with the lowest identity over all its neighbors is elected clus-
ter head and the cluster is formed by the cluster head and all its neighbors. In High-
Connectivity Clustering [GPL99] and [YC03], cluster head election is based on degree of
each node instead of node identity. A node is elected as a cluster head if it has the highest
connected node.
The three previous cited algorithms are not self-stabilizing solutions. So they need another
algorithm to maintain clusters. Least Clusterhead Change Algorithm (LCC) [Chi97] is de-
signed to minimize cluster head changing. Cluster heads only change when they come
neighbors, or when a node becomes disconnected from all cluster heads. This is an im-
provement (in stability) over existing algorithms which select the clusterhead every time
the cluster membership changes.
A different approach of clustering is taken by Basagni in [Bas99]. He presents two clus-
tering algorithms, Distributed Clustering Algorithm (DCA), for “quasi-static” network
and Distributed and Mobility-Adaptive Clustering algorithm (DMAC) for mobile network.
Each node reacts locally to any topological change in its neighborhood. Both DCA and
DMAC assign to nodes different weights and assume that each node is aware of its respec-
tive weight. A node is chosen to be a clusterhead if its node-weight is higher than any of
its neighbors node-weight. In the DMAC protocol, if two clusters leaders become neigh-
bors, the one with the smaller weight must revoke its leader Status. In [JN06a], [JN06b]
and [JN09] the authors propose a self-stabilizing version of DCA and DMAC. Moreover,

21

their solution is robust.
In [CR09] all the previous cited algorithm, Mobility Metric Based Algorithm (MOBIC)
[BKL01], Weighted Clustering Algorithm (WCA) [CDT02], [CDT00a], [CDT00b], and
Weight Based Clustering Algorithm (WBCA) [YZ07] are studied and compared.
The cluster construction algorithms are not a solution to propagate any information over
the network. We need either routing algorithm or spanning tree. We concentrate now
our study on existing spanning solution on cluster network. Some authors propose LMST
algorithm (Local Minimum Spanning Tree) as in [LHS03]. Each node builds a graph of
its neighborhood and broadcasts periodically a hello message which contains its identity
and its position. Each node needs to use a system to gather its position, applying Prim’s
algorithm [Pri57] independently to obtain its local minimum spanning tree. In [CSS04]
the authors propose Directed LMST Broadcast Oriented Protocol, an algorithm based on
LMST and using directional antennas. The nodes require the knowledge of neighbors po-
sition. In [MJ06], the author presents a self-stabilizing distributed algorithms to build a
spanning tree. Although this algorithm is self-stabilizing, the number of exchanged mes-
sages during operations is important. In [EOD08], distributed algorithms to construct a
spanning tree over a network with cluster. In first time, the authors use HEED (Distributed
Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach) to build the
clusters of the networks. In HEED the cluster formation is based on the residual energy
of a node and its degree. After clustering, the authors modify the distributed spanning tree
formation algorithm for general networks. After formation of spanning trees, each node
will have a unique subroot cluster head node. This algorithm uses different kind of mes-
sages and are not self-stabilizing.
From this study of existing algorithms, to the best of our knowledge, we can notice there
exists no self-stabilizing solution which organize a network in clusters and simultaneously,
without a full knowledge of the topology and without a positioning system, builds a span-
ning tree on the network and on the clusters, with only one type of message.

3 Contributions

From all existing algorithms which build clusters of diameter two, the built clusters can be
overlapping, i.e., a node can be in two clusters simultaneously. The deterministic algorithm
MaxCwST proposed in this paper builds both clusters of diameter at most equal to two
and simultaneously, a spanning tree on the network and on the built clusters. Moreover, it
does need neither initialization phase, nor network discovery nor cluster maintain phase.
To obtain this result, each node periodically exchanges only one type of message of size
Log(5n + 3) bits, when n denotes the number of nodes in the network. The convergence
time of our algorithm is at most equal to D + 6 rounds, with D the diameter of the graph.

22

4 Preliminaries

We consider the network as an undirected graph G = (V,E) in which V is the set of nodes
and E the set of edges. The size of the network is denoted by |V | = n and we say there
exists a link between two nodes u and v if there is an edge {u, v} ∈ E. In this case we
say that u and v are neighbors and the set of neighbors of a node u ∈ V will be denoted
in this paper by Neighu. The link to Node v is denoted by linkv . We also assume that
every node u in the network has an unique identifier which will be u. We define d(u, v)
the distance between two nodes u and v in G as the number of edges along a minimal path
between the two nodes in G and D is the diameter of the graph.
Clustering means partitioning network nodes into groups called clusters. A cluster (illus-
trated in Figure 1) is a subgraph of G and we assume that the diameter of a cluster must
be lower or equal to two and each node belongs to only one cluster and the intersection
between any cluster is empty. A node uses Variable Cl-id to store the identity of its cluster
and we denote a cluster by Variable Cl.
Each node exchanges only one type of messages : hello message. This message contains
some variables and we use m to denote a message. m.x denotes the variable x contained
in Message m. For other variable x, used by Node u, to avoid conflict reading we use
notation xu.
The algorithms presented in this paper are self-stabilizing. The self-stabilizing concept
was introduced for the first time by E. Dijkstra in [Dij74] as a system, regardless its initial
state, which is guaranteed to converge to a legitimate state in a finite number of steps. For
the clustering problem, to define the legitimate state, we use the following definition.

Definition 4.1 (Cluster well formed) A cluster is said well formed when it verifies the
four properties :

1. it contains only one cluster head

2. the cluster head is the node with the largest identity among all nodes in the cluster

3. the diameter of the cluster is at most equal to two

4. for every pair x, y of clusterhead, x is not a neighbor of y

From this definition, we can define the legal state as a network in which all clusters are
well formed and all nodes are in one cluster.

5 MaxC Self-Stabilizing Clustering Algorithm

The choice of the cluster heads is based on the identity of each node. The cluster head is the
node which has the highest identity among all its neighbors, in its cluster. But without lost
of generality, we could also choose the node which has the lowest identity. Moreover, from
our algorithm, each node eventually satisfies the three following properties : (i) every node

23

in the network must belong to only one cluster,(ii) all nodes which are not cluster head,
are at a distance at most one of a cluster head, and (iii) each cluster has only one cluster
head.

2

Clusterhead

Ordinary Node

Gateway

Cluster 11 Cluster 6

10

9

5

6

16

3

7

4

Cluster 13

11

13

1

Figure 1: Cluster example

Each node executes the first enabled rule of MaxC algorithm (Algorithm 1). It uses only
two variables: cl-id and Status. cl-id stores the identify of the cluster in which it belongs.
Status stores the type of the node. Each node can be in one of the following types : clus-
ter head (CH), gateway (GN) and ordinary node (ON). These three types can be described
like this: a cluster head is a node which has the highest identity in its cluster like Nodes
11, 13, and 16 in Figure 1. Gateway node is a node which is adjacent to at least one node
belonging to another cluster than him like Node 5 and 6 in Cluster 13 in Figure 1. Node
11 is in cluster 11 and it has two neighbors nodes, Nodes 2 and 5 which are, respectively,
in Cluster 6 and 13. Finally, a node which has only neighbor in the same cluster is an
ordinary node, like Nodes 4 and 3 for instance, in Figure 1.
We now present the modifications made on MaxC algorithm in order to obtain MaxCwST
algorithm, the first algorithm which builds both clusters and simultaneously the spanning
tree.

6 Spanning Tree Construction

At the same time to clusters creation, we build a spanning tree of the graph and on the
cluster, with very simple modification of MaxC algorithm. We have just add two new
informations in the hello message: the identity of neighbor cluster and the identity of the
gateway node which must be used to join the neighbor cluster.

6.1 MaxCwST algorithm principle

Our spanning tree algorithm is called MaxCwST . It is a modification of MaxC algo-
rithm in order to both construct clusters and simultaneously a spanning tree. But to avoid
to write all MaxC algorithm rules, we have just, in this paper, write the rules which con-
structs the spanning tree. It works according to following principle: each node of the graph

24

Algorithm 1 MaxC Clustering Algorithm on a Node u
cl-id: Identity of the cluster of Node u.
m.X: The variable X in the message m
Status ∈ {CH, ON, GN}
On receiving Hello(j, Status, cl-id)
R1.a)
if (Status = CH) ∧ (cl-id �= id) then

cl-id ← id;
Send Hello(id, Status, cl-id);

end if
R1.b)
if (Status �= CH) ∧ (cl-id = id ∨(∀ m ∈ Hello, cl-id �= m.j)∨(∃ m ∈ Hello, cl-id = m.j ∧ m.status �=
CH)) then

Status ← CH;
cl-id ← id;
Send Hello(id, Status, cl-id);

end if
R2:
R2.a)
if (Status �= CH) ∧ (∀ m ∈ Hello, m.j < id) then

Status ← CH;
cl-id ← id;
Send Hello(id, Status, cl-id);

end if
R2.b)
if (Status �= CH) ∧ (∃ m ∈ Hello, m.Status = CH ∧ m.cl-id > cl-id) then

Status ← GN ;
cl-id ← m.cl-id;
Send Hello(id, Status, cl-id);

end if
R2.c)
if (Status �= CH) ∧ (∃ m ∈ Hello, m.Status = CH ∧ m.cl-id < cl-id) then

Status ← GN ;
Send Hello(id, Status, cl-id);

end if
R2.d)
if (Status �= CH) ∧ (∃ m ∈ Hello, (m.Status = GN ∨ m.Status = ON) ∧ m.cl-id �= cl-id) then

Status ← GN ;
Send Hello(id, Status, cl-id);

end if
R2.e)
if (Status �= CH) ∧ (∃ m ∈ Hello, (m.Status = CH ∧ m.cl-id= cl-id) then

Status ← ON ;
Send Hello(id, Status, cl-id);

end if
R3)
if (Status = CH) ∧ (∃ m ∈ Hello, m.Status = CH ∧ m.j > id) then

Status ← ON ;
cl-id ← m.cl-id;
Send Hello(id, Status, cl-id);

end if
R4)
Send Hello(id, Status, cl-id);

25

15

4

7

2

Clusterhead

Ordinary node

Gateway

Blocking link
Forwarding link

Cluster 10

Cluster 11
Cluster 15

10

9 3

11

8

(a) Cluster and Spanning tree obtained from
MaxCwST

Cluster

Cluster Cluster

15

10 11

(b) Spanning tree view on the
clusters

4

7

10

9

8

11

15

2

3

(c) Spanning tree view on
the network

Figure 2: Example of constructing spanning tree of network by MaxCwST

chooses only one neighbor node as father node in the spanning tree. Within each cluster,
the cluster head will be the father of each nodes of its cluster. for instance, in Figure 2(a),
Node 4 and 2 of Cluster 15 have chosen Node 15, their cluster head, as their father in this
cluster. Nodes 7 and 8 have chosen Node 11 and Nodes 9 and 3 have chosen Node 10. All
links between gateway or ordinary nodes in the same cluster will be in a blocking state. In
this state, link will forward only hello messages. Now, between each cluster, we need to
make the spanning tree. So, only one gateway between two clusters need to “activate” its
link. So, the cluster head will choose which gateway can be use to join a neighbor cluster.
For instance, in Figure 2(a), Node 7 and 8 can be used to join Cluster 15. So, to avoid
to make a loop, and to construct a spanning tree on the network and on the cluster, we
have to activate only one link between Cluster 11 and 15. In the hello message, we add
the identity of the neighbor cluster. So, Node 8 will receive an hello message from Node
2 which contains the cluster identity 15. This information will be forward to the cluster
head, in the hello message send by Node 8. The same exchange is made between Node
2 and 7 and next, between Node 7 and 11. When the cluster head 11 has received the
two hello messages from Node 7 and 8. It can choose only one gateway. This choice is
based on the identity of this gateway. The gateway node with the highest identity will be
chosen. In our example, cluster head of cluster 11 will choose gateway 8. We need also
avoid another case. When a gateway has a link to more than one cluster, like Node 8 in
Figure 2(a). In this case, the gateway always chooses the hello message from the highest
identity cluster. So, Node 8 chooses Cluster 15 as father. From our algorithm, we obtain a
spanning tree on all clusters (Figure 2(b)) and on the network (Figure 2(c)).

6.2 The proof

To prove the MaxCwST algorithm, we use the following property:

Property 6.1 (Characteristic of a tree) Let S be a subgraph of a graph G and n the size
of G. S has exactly n-1 edges iff S is a tree of n nodes.

26

Property 6.2 Let i be a cluster. Each node which is not a cluster head, chooses only one
link to another node in Cluster i. This link will be the link to the cluster head of cluster i.

Proof. Only Rules R3.a and R3.b can be executed in this case. From Rule R3.a, the link
to the cluster head will be in forwarding mode and from Rule R3.b, all other link to nodes
in the same cluster (m.cl-id= cl-idi) will be in blocking state. �

Algorithm 2 MaxCwST on Node i
MaxCwST : Clustering and Spanning Tree Algorithm
idi: Identity of node i
m.cl-id: Identity of the cluster in message m
cl-idi: Identity of the cluster of Node i
cl-idadj : An array that contains identity of gateway cl-idadj .id which can be used to access to neighbor cluster cl-idadj .cl-
id
Forwarding: In this state, the link will transmit data packets
Blocking: In this state, the link will transmit only hello message
Port ∈ {Forwarding, Blocking}
Port(cl-idadj): Identity of the link which can be used to join neighbor cluster cl-idadj

Port(Max(cl-idadj)): Identity of the link which can be used to join a neighbor cluster which have the highest identity
Port(j): The link which connects a node i to a node j
NPC: contains cl-id and identity of gateway chosen
NPC.id: identity of gateway contained in the variable NPC
R1)
if (Statusi = CH) ∧ (cl-idadj .id > 1) then

NPC ← Max(cl-idadj .id)
end if
On receiving Hello(j, Status, cl-id, cl-idadj , NPC)
R2.a)
if (Statusi = CH)∧ (∀ m ∈ Hello, cl-idi ¿ cl-idadj .cl-id) then

Port(cladj) ← Forwarding;
end if
R2.b)
if (Statusi = CH)∧(∃ m ∈ Hello, cl-idadj .cl-id ¿ cl-idi) then

Port(Max(cl-idadj)) ← Forwarding;
Port(¬Max(cl-idadj)) ← Blocking;

end if
R3.a)
if (Statusi = ON ∨ Statusi = NP) ∧ ((∃ m ∈ Hello, m.Status = CH) ∧ (m.cl-id= cl-idi)) then

Portj ← Forwarding;
end if
R3.b)
if (Statusi = NP) ∧ ((∃ m ∈ Hello, m.Status �= CH) ∧ (m.cl-id= cl-idi) then

Portj ← Blocking;
end if
R4.a)
if (Statusi = NP) ∧ ((∃ m ∈ Hello, m.Status = CH) ∧ (m.cl-id= cl-idi) ∧ (idi �= NPC.id)) then

Port(cl-idadj) ← Blocking;
end if
R4.b)
if (Statusi = NP) ∧ ((∃ m ∈ Hello, m.Status = CH) ∧ (m.cl-id= cl-idi) ∧ (idi = NPC.id)) then

Port(cl-idadj) ← Forwarding;
end if

From this property, for each node in a cluster, only one link to another node in the same
cluster will be in forwarding state. So, in each cluster, we have a spanning tree.

Property 6.3 Each cluster chooses only on father cluster

Proof. We need to examine two cases. Either the node which can communicate with
another cluster is a cluster head, or it is a gateway. For the first case, like a cluster head

27

is also a gateway, from Rule R2.b, only one link to another cluster will be chosen. In a
second case, from Rule R1, the cluster head of each cluster chooses the highest identity
of neighbor cluster and from R4.a and R4.b only one link will be chosen. So a gateway
node chooses also only one father. �
From the previous properties, each cluster head chooses only one gateway node which has
the permission to activate its link to a father cluster and in each cluster, each node chooses
only one link towards a father node. Only the node with the highest identity activates all
its links. So, on a graph of n nodes, only n − 1 nodes have only one link in forwarding
state. From Property 6.1, we have a tree.

7 Conclusion

In this paper, we have proposed the first deterministic and self-stabilizing algorithm for
partitioning a network into multiple clusters which simultaneously constructs a spanning
tree on the network and on the cluster. After at most D + 6 rounds, the spanning tree is
created and the clusters are formed. Each node just needs to discover its neighborhood and
their identity. No global knowledge is required to make the spanning tree. Moreover, we
do not need maintain phase to maintain the cluster. Our solution is self-stabilizing and self-
organized on an ad hoc network. The presented algorithm may be easily and efficiently
applied in a broadcasting protocol for a distributed network. Unfortunately, our solution
overload the cluster heads because they are responsible of the choice of right gateway to
propagate informations. We need to find solution to this problem to achieve an improved
version of this algorithm.

References

[Bas99] Stefano Basagni. Distributed Clustering for Ad Hoc Networks. In ISPAN, pages 310–
315, 1999.

[BKL01] Prithwish Basu, Naved Khan, and Thomas D.C. Little. A Mobility Based Metric for
Clustering in Mobile Ad Hoc Networks. In In International Workshop on Wireless Net-
works and Mobile Computing (WNMC2001, pages 413–418, 2001.

[BKP02] Claudio Basile, Marc-Oliver Killijian, and David Powell. A survey of dependability
issues in mobile wireless networks. Technical Report 02637, LAAS, Toulouse, 2002.

[CDT00a] Mainak Chatterjee, Sajal K. Das, and Damla Turgut. An On-Demand Weighted Cluster-
ing Algorithm (WCA) for Ad hoc Networks. In In Proceedings of IEEE GLOBECOM
2000, pages 1697–1701. ACM Press, 2000.

[CDT00b] Mainak Chatterjee, Sajal K. Das, and Damla Turgut. A Weight Based Distributed Clus-
tering Algorithm for Mobile ad hoc Networks. In HiPC ’00: Proceedings of the 7th
International Conference on High Performance Computing, pages 511–521, London,
UK, 2000. Springer-Verlag.

[CDT02] Mainak Chatterjee, Sajal K. Das, and Damla Turgut. WCA: A Weighted Clustering
Algorithm for Mobile Ad hoc Networks. Journal of Cluster Computing (Special Issue
on Mobile Ad hoc Networks, 5:193–204, 2002.

28

[Chi97] Ching-Chuan Chiang. Routing In Clustered Multihop, Mobile Wireless Networks With
Fading Channel, 1997.

[CR09] Suchismita Chinara and Santanu Kumar Rath. A Survey on One-Hop Clustering Algo-
rithms in Mobile Ad Hoc Networks. J. Netw. Syst. Manage., 17(1-2):183–207, 2009.

[CSS04] J. Cartigny, D. Simplot, and I. Stojmenovic. An Adaptive Localized Scheme for Energy-
efficient Broadcasting in Ad hoc Networks with Directional Antennas. In I. Niemegeers
and S. Heemstra de Groot, editors, Proc. 9th IFIP Int. Conf. on Personal Wireless Com-
munications (PWC 2004), volume 3260 of Lecture Notes in Computer Science, pages
399–413, Delft, The Netherlands, 2004. Springer-Verlag, Berlin. Best paper award.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[EOD08] Kayhan Erciyes, Deniz Ozsoyeller, and Orhan Dagdeviren. Distributed Algorithms to
Form Cluster Based Spanning Trees in Wireless Sensor Networks. In ICCS ’08: Pro-
ceedings of the 8th international conference on Computational Science, Part I, pages
519–528, Berlin, Heidelberg, 2008. Springer-Verlag.

[EWB88] A. Ephremides, J-E. Wieselthier, and D-J. Baker. A design concept for reliable mobile
radio networks with frequency-hopping signaling. NASA STI/Recon Technical Report N,
89:17772–+, September 1988.

[GPL99] M. Gerla, G. P, and S-J. Lee. Wireless, mobile ad-hoc network routing. In ACM FOCUS,
1999.

[JN06a] Colete Johnen and Le Huy Nguyen. Self-stabilizing Weight-Based Clustering Algorithm
for Ad Hoc Sensor Networks. In Sotiris E. Nikoletseas and José D. P. Rolim, editors,
Algorithmic Aspects of Wireless Sensor Networks, Second International Workshop, AL-
GOSENSORS 2006, Venice, Italy, July 15, 2006, Revised Selected Papers, volume 4240
of Lecture Notes in Computer Science, pages 83–94, 2006.

[JN06b] Colette Johnen and Le Huy Nguyen. Robust Self-stabilizing Clustering Algorithm. In
OPODIS, pages 410–424, 2006.

[JN09] Colette Johnen and Le Huy Nguyen. Robust self-stabilizing weight-based clustering
algorithm. Theor. Comput. Sci., 410(6-7):581–594, 2009.

[LHS03] Ning Li, Jennifer C. Hou, and Lui Sha. Design and Analysis of an MST-Based Topology
Control Algorithm. In INFOCOM, 2003.

[MJ06] Ricardo Marcelin-Jimnez. Locally-Constructed Trees for Adhoc Routing. In PWC,
pages 194–204, 2006.

[Pri57] R. C. Prim. Shortest connection networks and some generalizations. Bell Systems Tech-
nical Journal, pages 1389–1401, nov 1957.

[YC03] J.Y Yu and P.H.J Chong. 3hBAC (3-hop between adjacent clusterheads): a novel non-
overlapping clustering algorithm for mobile ad hoc networks. 1:318–321, 2003.

[YZ07] Wei-Dong Yang and Guang-Zhao Zhang. A Weight-Based Clustering Algorithm for Mo-
bile Ad Hoc Network. Wireless and Mobile Communications, International Conference
on, 0:3, 2007.

29

