Deriving Dependability Measur es of
M easurements Recorded in a Matrix

Oliver Tschéche
Institut fur Informatik 3
Friedrich Alexander Universitdt Erlangen-Nurnberg
Martensstr. 3
D-91058 Erlangen
ot@cs.fau.de

Abstract:

Dependability benchmarking is meant to measure system characteristics like availa-
bility, reliablity, data integrity etc. Todays systems are working at high levels of the-
se characteristics. Evaluation of these characteristics demands to inject faults forcing
fault tolerant mechanisms to exercise their tasks. Observing the response of the system
leads to measurements assessing the quality of these mechanisms.

Our paper’s focus is not on how to create a special dependability benchmark but
on how to deduce significant dependability characteristics out of fault injection based
measurements. We disclose which information we need for a general dependability
benchmark, from whom they should be supplied and, finally, how to derive assess-
ments of dependability metrics from this information.

Our method is universally applicable to all fault injection based dependability
benchmarking methods. Using one method for the presentation of dependability has
several advantages: E.g. benchmarks become comparable to each other, benchmarkers
faster learn how to interpret similarly looking results.

1 Introduction

Performance benchmarks assess systems or applications according to different metrics like
instructions per second (MIPS), transactions per minute (tpm), delay of response, resource
usage etc. This is done by applying an application dependent workload to the system. De-
pendability benchmarks extend performance benchmarks to assess dependability metrics,
additionally.

A common way to evaluate a system’s dependability assessment is to use fault injecti-
on techniques while running the system. Therefore, a workload is run several times: The
Golden Run is a faultless run serving as reference for the other runs called experiments.
For each experiment at least one fault is activated and the impact of that fault is classi-
fied according to failure modes. Finally, the dependability assessment is derived from the
distribution of failure modes which is evaluated by injecting each fault several times.

Todays dependability benchmarks, see [VMO02, BT03, NLZ*03], differ in recording the

123

Y
Y

l-— —

Workload
Observer

R Faultload N

Abbildung 1: Dependability Benchmark Environment

measurements and calculating the dependability assessments. Our approach starts an ab-
straction layer higher consolidating these methods resulting in a universal method which
could be used for all fault injection based dependability assessment approaches.

A common setup used in published dependability benchmarks, see [VM02, BT03, NLZ*03],
is shown in figure 1: The system under benchmark (SUB) is embedded into a testbench
which is referred to as the dependability benchmarking environment (DBE). The DBE’s
task, see figure 1, is to stimulate the SUB with a workload and faultload while observing
the behaviour of the SUB and detecting failure modes classifying the system’s response,
e.g. system crash, graceful degradation etc.:

Workload: An easy way to obtain a workload is to use an already known performance bench-
mark. In addition a performance benchmark supplies methods to measure the app-
lication’s characteristic e.g. number of transactions finished, delays, resource usage
etc.

Faultload: To apply the faultload fault injection methods are used. According to the dependa-
bility benchmarked application the faults are e.g. stuck at and bitflip faults in case
of embedded systems or in case of higher level applications like web or database
servers harddisk, power fail and network faults.

Observer: The DBE’s observer classifies the system’s response to the workload and faultload.
Measurements assessing the system’s performance are already handled by perfor-
mance benchmarks. These measurements are completed to dependability measure-
ments by methods detecting the system’s state after an activated fault. E.g. a system
crashes (and needs to be repaired) or gracefully degrades after a fault injection.

The method presented in this paper specifies how to derive dependability assessments
using fault injection technigues. [BT03, VMO02, NLZ*03] propose dependability bench-
marks using fault injection techniques, too. Although they assess systems according to the

124

L | K | By | F | Fm |
fo || p(fo = Fo) | p(fo = F1) | p(fo = Fy) | p(fo = Fur)
fi | plfi— Fo) | p(fi— F1) | p(fi = Fy) | p(fr = Fu)
fi || p(fi = Fo) (fi=F) | p(fi=F;) | p(fi = Fu)
In || p(fn =) | p(fn = F1) | p(fn = F)) | p(fn = Fu)

Tabelle 1: Matrix describing system’s behaviour

distribution of failure modes and according to a set of faults, they differ in the matter how
to present measurements and, finally, the dependability measures. Using a universal pre-
sentation scheme would simplify the evaluation of the results by a benchmarker. Thus, our
approach is able to cover already published dependability benchmarks, too.

Focusing on reproducability of a dependability benchmark all details of how the assess-
ment is derived have to be disclosed. Our approach discloses all parameters and the for-
mulas using them making a dependability benchmark reproducable.

Because dependability benchmarking allows very different sight of views our approach
introduces rates and costs weighting the measured distributions so that a specific depen-
dability metric is evaluated. Other dependability benchmarks like [VMO02] don’t account
that important issue.

2 Thematrix

As indicated in section 1 a dependability benchmark using fault injection techniques tracks
the system behaviour in two dimensions: The faults and their impact - the failure modes.
The impact of a fault depends on the time when it is injected (is the faulty component
active) and the design of the system (is a faulty system state tolerated). Therefore, each
fault must be injected several times, so that the distribution to failure modes can be recor-
ded. The more often a fault is injected the more accurate and confident are the measured
distribution to the failure modes of this fault.

For our approach we propose to record and to publish the system behaviour in a matrix, see
1. The rows of the matrix list the faults f; and the columns keep the failure modes F;. The
number of faults is IV, the number of failure modes is M. The fault injection experiments
provide the matrix with the frequency p(f; — F;) a fault f; impacts failure mode F;.

The phase of using fault injection techniques to fill the matrix only records the system
behaviour according to the selected experiments and is not a dependability assessment of
the system. For the dependability assessment of the system we need additional information
which is described in section 3.

As indicated above the confidence of the matrix elements depends on the number of ex-
periments. More precisely, the measured frequencies’ confidence to a fault f; depends on
the number of experiments n; executed with that fault. Thus, the confidence between lines

125

of the matrix differs if different number of experiments are made. The confidence of the
matrix elements can be visualized by an interval around the measured frequency. The tigh-
ter the interval the more confident the measured value. Using Student t-distribution, see
[St08], it is possible to estimate the size of the interval according to an applied significan-
ce 1 —a. 1—qa is the probability that the mean value is included in that interval. Assuming
a worst case standard deviation results in equation 1:

t o
size;(a,n;) = “a/2niz1 1)

N

Another issue on filling the matrix is, which fault should be injected how many times.
The overall number n of experiments is limited by the time in which the results have to
be obtained. The goal is to derive high confident dependability assessments. Section 3
shows how the dependability assessments are derived from the matrix elements and their
confidence intervals, resulting in an assessment with a confidence interval. The best way
is to find the global minimum of the interval size. We did not find the global minimum yet.
We suggest to start with a fault distribution in which the frequency of each injected fault
is proportional to its rate, see section 3.

All dependability assessments, see section 3, are based on that matrix 1. Therefore, it must
be generated accurately: In order to generate reproducable dependability assessments, the
matrix itself must be generated in a reproducable way. Therefore, we advice to use a fully
automated experiment controller, see [BDH+02].

3 Deriving Dependability Measures

Dependability benchmarking is more than evaluating the system behaviour by using fault
injection experiments. In our point of view a dependability benchmark should be split
into two phases: Evaluating the matrix elements, see 2, and deriving dependability assess-
ments from them. Thus, the first phase can be supplied by the manufacturer of the system
by running the fault injection experiments. In the second phase the system’s user deri-
ves the dependability assessment according to his environment. This section explains the
parameters we are using to describe the user’s environment.

3.1 Faultrates

Dependability benchmarking must take into account a faults’ rate. E.g. the difference of
two systems could be that a system is using a more reliable harddisk than the other which,
in general, must be honored with a better assessment.

On the other hand a dependability benchmark must be able to relate faults to each other.
E.g. if a system is benchmarked according to operator and hardware faults a dependability
benchmark must take into account the quality of each service related to each other. Again,

126

using fault rates enables a kind of weighting.

N

W= ri p(fi = Fj))

=0

The unit of the fault rates is number of fault appearances per unit of time. Multiplying each
matrix element with the fault rate r; and summing up over all columns leads to the rate W;
of each failure mode, see equation 2. In a real system this rate of each failure mode should
be detected when the system is observed a very long time.

3.2 Costs

Dependability benchmarks come along with various metrics like availability, reliability,
costs etc. In our approach the differences of these metrics are mapped to different weigh-
tings R;?”t”'c of the rates a failure mode appears, see equation 2. Each metric has its own
weighting.

The unit of the weighting R;”em'c may vary according to the focussed metric. E.g. to

derive an assessment for the dependability metric unavailability, R}™*"***"**¥ is of di-
mension time describing how long the system is unavailable if it enters failure mode
F};. Summing up over all failure modes, see equation 3, results in the dependability as-

sessment costuneveilability which has the unit 9228Lm The availability of the system is
1— Costunavailability_

M
cost™etric — Z R;netric i Wj (3)
Jj=0

The following example illustrates the usefulness of our approach if a company has to assess
several systems in order to select the best one according to the company’s cost metric. This
demands that the company has to provide the costs R;°"”*"¥ which are raised if the failure
mode Fj is entered. Only the company itself knows about the fault rates =;: It decides
which hardware to use (hardware faults) and only the company knows at which quality
level its IT service operates (operator faults). In the best case the matrix is provided by the
manufacturer of the system, so that the decision maker only has to derive the assessment
using equations 2 and 3. In contrast to deriving a metric of availability this company metric
has the unit 2ollars

time
Equation 3 calculates the mean costs missing confidence information. We propose to derive
the confidence of that assessment by calculating the minimal and maximal edge values
applying the confidence interval to each observed frequency p(f; — Fj):

Pedge(fi = Fj) = edge(p(fi — F}), size;) (4)

127

The functions edge() subtract/add the size;/2 (see equation 1) from/to the frequency
p(fi — Fj) according to the selected edge. If the result is less than 0 or greater than 1
they return 0 and 1, respectively. Using equation 4, the minimal and mazimal costs ac-
cording to that confidence can be calculated by replacing p(f; — F;) of equation 2 by
Pmin(fi = Fj) and ppaz (fi = F;). Using equation 3 leads to equation 5:

M N
costz’}i‘;tem = Z R}"emc . Zri “ Dedge (fi = F}) ()
=0 =0

In case of comparison of two benchmarked systems we demand that the intervals of the
costs must not overlap. If they overlap we propose to state that the decision of which
system is better is hidden in statistic noise.

3.3 Characteristics

In this section we assess our method. We explain the dependencies raised by that method
and disclose advantages and disadvantages.

An improvement with respect to other known methods is that our method provides a con-
fidence estimation. The higher the confidence of a cost calculation the more tighten is the
interval around the mean value. The size of the interval depends on the number of expe-
riments n; exercised on each fault f;. Increasing n; tightens the interval and, therefore,
increases confidence.

Unfortunately the size of the confidence interval is proportional to the squareroot of the
number of experiments, so that increasing the number of experiments by 4 times only
doubles the confidence of the results.

Currently we are investigating how confidence changes with different n; distributions.
Maybe the overall confidence for a cost calculation can be increased by distributing the
total number of experiments to the different faults in a special way.

An advantage of our method is that experiments done by different groups can easily be
merged. E.g. if one group investigates the behaviour of the system according to operator
faults and the other group investigates hardware faults, the matrix can be extended by
adding new lines for each new fault.

The seperation of recording a system’s behaviour in a matrix and providing fault rates and
costs seems to move work to the benchmarker. Other benchmarks set these values, someti-
mes implicitely, to fixed values. We think that dependability benchmarking is only useful,
if the benchmarker’s environment influences the system’s assessment. On the other hand
trying to apply our method to other methods might help to disclose inherent assumptions.

128

| [SUCCESS [FAILS |
[Bitflip | 48% [52% |

Tabelle 2: Behaviour of System A

| [SUCCESS [FAIL |
| Bitflip [| 74 % | 26% |

Tabelle 3: Behaviour of System B

4 Example

This section explains the dependencies between the parameters needed to use our approach
and shows the usefulness of our approach.

4.1 Faultrate

This section shows that confidence decreases with increasing system complexity: The
SUBs are two systems, A and B. The only difference between these systems is that system
A has one CPU and system B has an additional and unused second CPU.

We define the following dependability benchmark: The workload consists of the installa-
tion of a linux distribution from CDROM to harddisk. The fault load are bitflip faults in
a randomly selected CPU register. The observer classifies the system behaviour into two
failure modes: successfully installed or not.

We assume a hypothetically measured, very simple matrix of 100 experiments including
only one line for that bitflip fault, see 2 and 3.

Investigating the matrix shows that system B seems to perform better according to the
selected fault model. But the half value for the FAIL failure mode of system B is invoked
by the fact, that the 100 experiments are distributed to both processors and the second
processor is not used. Thus, only 50 experiments are done on the critical first processor.

Our approach avoids this missinterpretation already in calculating the failure mode rates
Wit s15p. Because system B has two processors, the fault rate is double compared to sys-
tem A. Thus, setting r ¢ r1ip t0 1 fault per year leads to the failure mode rates shown in
table 4.

Columns 3 and 4 of table 4 show the failure mode rates according to the confidence in-
tervals calculated for a significance of 90% (t0.005,100—1 = 2.626). As it can be seen, the
interval increases by adding additional hardware. Thus, our method confirms the thesis
”more complex systems are harder to assess accurately”.

Table 4 shows that the confidence is poor. To increase confidence many more experiments

129

| | mean(FAILS) | min(FAILS) | max(FAILS) |
WeihmA | 0521 year 0.39/year | 0.65/year
woystemB 10 52 [year 0.26 / year | 0.78/year

Bitflip
Tabelle 4: Rates of failure mode
| DB | No effect | report | shutdown | corrupt |
Oracle 5.6 % 155% 78.9 % NO
Postgre || 3.2% 96.1 % NO 0.7 %

Tabelle 5: System behaviour according to harddisk failures

have to be exercised which comes along with increasing time to evaluate the results. Thus,
if time is a limiting factor of dependability assessment, fault injection based evaluation is
limited by low confident results.

4.2 Costs

The matrix of the following example was evaluated with a SWIFI-tool, see [SB02]. This
tool is able to simulate of-the-shelf Intel hardware running a Linux operating system.
Possible faults are high level harddisk faults, power fail, network package losses, bit-
flips in memory and cpu registers etc. It uses an automatically experiment controller, see
[BDHT02], to create reproducable values for system behaviour recorded in the matrix of
our approach.

This example illustrates how to derive assessments for different dependability metrics from
the matrix. We benchmarked two systems identical in hardware design but running diffe-
rent database systems: Oracle and Postgre. We injected transient harddisk faults like they
appear if the power supply connector is connected sloppily. We did 300 experiments for
each database recording table 5.

Table 5 contains the distribution of failure modes for harddisk faults only. Because there
is no other fault, we merged the matrices for both systems to one matrix. no effect means
that no error was observed by the DBE. report describes the case that the database was
complaining about a disk fault but keeps working. shutdown describes the case, that the
database complains about a disk fault and shuts itself down. corrupt means that the data-
base does not complain about an error but keeps corrupt data. The measured probabilities
are recorded by using a SWIFI-Tool, see [FA03]. NO means not observed and is equal to
0%.

Table 6 shows two different cost distributions. Each element of table 6 contains the R;-”etric.
The line for availability describes a model in which it is expensive if the service is not
available while the loss is relatively small, if it supplies wrong data. The second line de-

130

| Failure Mode || effect | report | shutdown | corrupt |
Tabilit

R?v[” abutty 0 0 100 10

Rqonszstency 0 0 10 100

2

Tabelle 6: Failure modes’ costs for different focusses

| Database | availability | consistency |
Cost(Oracle) 78,90 7,89
Cost(Postgre) 7,00 70,00

Tabelle 7: Failure modes’ costs for different focusses

scribes a model in which data integrity is an important metric while unavailability comes
along with relatively small loss. Using the same hardware for both system (equal fault
rates) leads to costs/time shown in table 7:

This example shows that the benchmarker himself has to supply the costs, because he is the
only one who knows them (loss per transaction). In other words, dependability measures
are highly dependent on the dependability metric a benchmarker wants.

5 Conclusion

We presented an abstract view on the process of calculating dependability measures using
fault injection based techniques. Seperating fault rates and failure modes from the process
of recording system behaviour and, thus, deviding the dependability benchmarking process
into two phases has the advantage of exercising the experiments for an application only
once. Having the system behaviour recorded, it is easy to calculate dependability measu-
res for different quality of hardware (hardware faults) and IT service (operator faults) by
setting their fault rates. Weighting the failure modes by their costs opens the possibility to
adapt dependability measures according to the benchmarker’s environment in which they
are used.

Our approach is the first which is able to estimate the confidence of the dependability
assessments. Confidence can be increased by increasing the number of experiments. Un-
fortunately confidence increases only proportional to the squareroot of the number of expe-
riments. Taking confidence into account for system comparison introduces the matter, that
the decision which is the better system might be hidden in statistic noise and, therefore,
can’t be made.

131

6 Outlook

While fault rates are supplied for some hardware components by the manufacturer, the
corresponding rates for operators can’t be referred as easy. Because humans learn with
experience fault rates of operator faults are dynamic. Nevertheless, we need fault rates for
all kind of faults to weight them against each other. So, we need methods to assess system
services to calculate accurate dependability measures.

Including confidence assessments for dependability measures is another import issue. A
first worst case approximation would be to calculate the costs according to the edges of
a confidence interval around the measured probabilities. But the resulting intervall seems
to be very wide, so that statistics noise seems to be very high. Thus, more sophisticated
methods must be developed, keeping confidence intervals tight.

Acknowledgement

The research presented in this paper is supported by the European Community (DBench
project, IST-2000-25425). We want to thank all the people who contributed to our bench-
marking environment FAUmachine and the head of Institute of Computer Architecture
Prof. M. Dal Cin.

Literatur

[BDH*02] Buchacker, K., Dal Cin, M., Hoxer, H., Sieh, V., und Tschéche, O.: Reproducible depen-
dability benchmarking experiments based on unambiguous benchmark setup descripti-
ons. Internal Report 1/2002. Institut fiir Informatik 3, Universitat Erlangen-Nurnberg.
2002.

[BTO3] Buchacker, K. und Tschche, O. Tpc benchmark-c version 5.2 dependability benchmark
extensions. URL http://www.faumachine.org/papers/tpcc-depend.pdf. 2003.

[FAO03] FAUmachine Team. FAUmachine. URL: http://www.FAUmachine.org/. 2003.

[NLZ*03] Nagaraja, K., Li, X., Zhang, B., Bianchini, R., Martin, R. P., und Nguyen, T. D.: Using
Fault Injection and Modeling to Evaluate the Performability of Cluster-Based Services.
In: Proceedings of the Usenix Symposiumon Internet Technol ogies and Systems. March
2003.

[SB02] Sieh, V. und Buchacker, K.: UMLinux — a versatile SWIFI tool. In: Bondavalli, A.
und Thevenod-Fosse, P. (Hrsg.), Fourth European Dependable Computing Conference,
Toulouse, France, October 23-25, 2002. S. 159-171. Springer Verlag, Berlin. 2002.

[St08] Student: The probable error of a mean. In: Biometrika 6. S. 1-25. 1908.

[VMO02] Vieira, M. und Madeira, H. DBench-OLTP: A dependability benchmark for OLTP app-
lication environments. URL http://eden.dei.uc.pt/ henrique/DBench-OLTP.D1.1.0.pdf.
2002.

132

http://www.faumachine.org/papers/tpcc-depend.pdf
http://www.FAUmachine.org/
http://eden.dei.uc.pt/

