
Exploiting Ontologies for better Recommendations

Abdulbaki Uzun

Service-centric Networking

Deutsche Telekom Laboratories, TU Berlin

abdulbaki.uzun@telekom.de

Christian Räck

Competence Center FAME

Fraunhofer Institute FOKUS

christian.raeck@fokus.fraunhofer.de

Abstract: Traditional recommender systems as they are mostly used in today’s rec-
ommendation applications (e.g. the SMART Recommendations Engine of Fraunhofer
FOKUS) primarily concentrate on recommending items to users. However, thinking
of many modern (mobile) applications, contextual and semantic information may pro-
vide a significant preciseness to the recommendation process. That’s why, Fraunhofer
FOKUS’ engine has been extended by two new extensions making the engine capable
of incorporating contextual and semantic information when generating recommenda-
tions. This paper focuses on one of them, the SMART Ontology Extension.

1 Introduction

In a world of information overload, recommender systems filter relevant information and

provide personalized content recommendations to users based on their interests and rat-

ings. Numerous recommendation methods were designed over the years to enhance the

preciseness of recommendations, such as content-based and collaborative filtering or hy-

brid approaches [AT05]. These traditional recommender systems primarily focus on rec-

ommending items to users. Existing ratings for items and content meta-data are the ba-

sis for effective recommendations. The SMART Recommendations Engine of Fraunhofer

FOKUS [RS09], for example, belongs to this category of recommender systems.

However, thinking of many modern (mobile) applications, not only user and item, but also

contextual and semantic information may provide a significant preciseness to the recom-

mendation process. If for example, a user is vegan, eats only organic food, goes shopping

nearby and tries to live economical, it would not make sense to recommend him stores far

away or only discounters without taking his preference for vegan food into consideration.

In order to make the SMART Recommendations Engine meet the demands of modern appli-

cations, Fraunhofer’s engine has been extended by two recommender extensions. Inspired

by Adomavicius et al. [ASST05], the SMART Multidimensionality Extensions enhance

the two-dimensional matrix representation of recommender data (see Figure 1) by a mul-

tidimensional recommendation model enabling the incorporation of relevant contextual

information into the recommendation process. The SMART Ontology Extension, on the

other hand, exploits semantic ontology information in order to use implicit and semantic

knowledge in the recommender. Since the SMART Multidimensionality Extensions are

still in the conceptual phase, the scope of this paper is to present the functionality of the

SMART Ontology Extension.

565



2 The SMART Recommendations Engine

The SMART Recommendations Engine developed by the Fraunhofer Institute FOKUS is a

generic recommender system, which provides personalized recommendations for different

applications. It can be licensed and used by various Internet businesses, rich media and

entertainment services or SMEs. A flexible, general purpose algorithmic model is offered

by the engine, which enables the formulation of application specific recommendation al-

gorithms. These algorithms as well as the optimized entity-relationship-like data model

are declared at configuration time by assembling the featured components. Through the

provided API, custom components can be added as well extending the engine’s capabili-

ties to meet specific application demands. These components can be built using functional

groups, such as basic mathematical operations, similarity and relevance computations,

sorting and filtering, and data access. The recommender system also provides a custom

query language called Sugar Query Language (SuQL), which is used to request recom-

mendations and related data at runtime.

In the SMART Recommendations Engine, data is represented in a data model consisting of

entities and relationships between them. A domain represents a set of entities, whereas the

relations between these entities are represented by matrices. A user domain, for example,

can incorporate the set of all users, while an item domain can consist of all items in a cer-

tain application. The relation between the user and item domain can represent the ratings

given by a user to an item stored as data values in the matrix table (see Figure 1).

Figure 1: Basic data model building block

A recommendation algorithm, which estimates predictions for each User x Item pair, is as-

sembled at runtime configuration by defining a computation tree of matrix transformation

components based on the requirements of the given application. Having some sort of data

input (e.g. user profile, feedback) as a source, a number of transformations are applied in

a hierarchical manner. The estimated utility function is provided by the top node of the

tree. The engine also offers a variety of filters, which can be applied in a chain in order to

alter the result set.

3 Related Work

In recent years, more and more researchers have recognized the importance of contextual

and semantic information for recommendation processes and hence various approaches

have been developed so far.

566



The multidimensional recommendation model proposed by Adomavicius et al. [ASST05]

enhances the two-dimensional paradigm to a multidimensional matrix consisting of sev-

eral context dimensions that can be related to each other. By doing so, it allows calculating

different recommendations for different situations by taking different, but important as-

pects into consideration, such as user preferences, context or group information. A. Chen

[Che05] presents in her paper a context-aware collaborative filtering system that generates

item recommendations for a user based on different context situations.

The Semantic Web alleviates the search for information, enhances the visibility of knowl-

edge in the web, and helps to gain implicit knowledge about a certain concept domain.

Recommender systems can use these advantages to increase the preciseness of recommen-

dations by exploiting semantic information, such as implicit knowledge and using them in

the recommendation calculation process. One example for a semantic recommender sys-

tem is described in the paper of Farsani and Nematbakhsh [FN06]. They suggest a method-

ology, which recommends semantic products to customers in the context of E-Commerce

based on product and customer classification via OWL. Kim and Kwon [KK07], on the

other hand, developed an ontology model with a multiple-level concept hierarchy for a

grocery store scenario with four different ontologies.

Previous research activities are either focused on context or semantic information integra-

tion. However, incorporating both - context and semantic information - would increase

the preciseness of recommendations decisively. The food scenario, for example, shows

that the integration of both information types is necessary to satisfyingly answer a grocery

recommendation request. That’s why, Fraunhofer’s engine was extended using both types

of data.

4 The SMART Ontology Extension

The SMART Ontology Extension provides semantic ontology capabilities to the SMART

Recommendations Engine. The first part of the extension is the Ontology Mapping. Here,

the ontology structure of given semantic ontologies is mapped onto data matrices of the

recommender. The second part makes use of the implicit knowledge present in the ontolo-

gies and generates semantic recommendations using the Ontology Filter on the previously

created data matrices.

Mainly, OWL ontologies consist of individuals, classes, a class hierarchy, object proper-

ties, datatype properties and restrictions. These constructs are mapped onto data matrices

of the recommender, so that the recommendation engine becomes capable of handling

ontology information. Figure 2 shows an example for a property representation in the

recommender of the ontology datatype property eatingHabit.

Once ontology data is stored in the recommender, the Ontology Filter can process the on-

tology information in the recommender. This filter is capable of performing two different

operations on the data matrices, the Concept Lookup and the Matrix Lookup operations.

The Concept Lookup is used to look up ontology concepts in the recommender. For the

operation of the Concept Lookup, at least two different matrices are needed, whereas the

column domain of the first matrix has to be the row domain of the second matrix. Applied

567



Figure 2: Ontology Mapping

on the first matrix, the Concept Lookup filters certain column elements for one single row

element based on given filter constraints. The Matrix Lookup filters information in a matrix

based on a given column domain result set of another matrix. Therefore, it also requires

the use of two different matrices, whereas the column domain of the first matrix remains

the column domain of the second matrix. Rows of the second matrix will be filtered based

on the given column domain result set and a predefined set operation (existential quantifi-

cation or universal quantification). The result is one set of filtered row elements.

Complex recommendation queries require combining both lookups to single a Concept

and Matrix Lookup operation. An example can be seen in section 5.

5 Demonstration

In order to present the functionality of the SMART Ontology Extension, three ontologies

were designed for the food scenario mentioned above. All data, such as food categories

and products, ingredients, eating preferences or location information were manually in-

cluded into these ontologies. After mapping all these data using the Ontology Mapping

tool, the recommender can generate various recommendations based on different SuQL

queries.

Assume that John is vegan, prefers only organic food and wants to get recommendations

for snacks, bread and dairy products. And also assume that he already bought the brown

bread product Naturkind SonnenblumenVollkornbrot Geschnitten and therefore rated this

product implicitly. The SuQL query is built in that way that at first several semantic fil-

terings are performed using the lookup operations several times in order to identify all

desired products that fit John’s eating preferences and his location. Afterwards, these ele-

ments are sorted by their relevance depending on the relevance predictions calculated by

the recommendation algorithm.

In order to be able to answer John’s query, the Ontology Filter first performs a Concept

Lookup in the User x EatingHabit matrix that looks up John’s eating preferences. In the

second matrix (EatingHabit x Ingredient), his eating preferences (vegan and organic) are

568



mapped to the ingredients. The Matrix Lookup then looks up all groceries in the Food x

Ingredient matrix for vegans and organic eating people individually. Both result sets are

then unified to one single result set and inversed by the Not set operation. The result is

a set of groceries, which can be eaten by John (see Figure 3). These groceries are also

filtered by their categories, so that only snacks, bread and dairy products remain.

Figure 3: Ontology Filter - Concept and Matrix Lookup

Finally, the recommendation algorithm is used in the recommendation process. The content-

based filtering approach calculates relevance predictions using the similarity of content

keywords and user feedback. This algorithm can be extended to an ontology-based filter-

ing approach, in which the ontology class structure data can represent content features. In

the food scenario, for instance, similarities between groceries can be calculated based on

the categories of the products (e.g. brown bread is more similar to white bread than to

snacks).

For John’s query, the recommender responds as seen in Figure 4. There is only one snack

fitting his eating preferences with a low relevance value since John did not purchase any

snacks yet. The recommender can present him a big choice of brown bread, but it has no

vegan and organic dairy products to offer.

6 Conclusion

As seen above, the SMART Ontology Extension provided all necessary tools to generate

semantic recommendations using the SMART Recommendations Engine. While the Ontol-

ogy Mapping tool prepared the engine for utilizing ontology information, such as implicit

knowledge or classification; recommendations were generated using the Ontology Filter

with both lookups in an ontology-based filtering algorithm. Valuable information, such as

a user’s eating preferences as well as ontology classification (e.g. food categories) were

integrated into the recommendation process providing much more precise recommenda-

tions than usual recommender systems. All in all, the SMART Ontology Extension affords

an added value to the SMART Recommendations Engine by enabling the engine to provide

569



Figure 4: SuQL Response of the Engine

accurate semantic and contextual recommendations.

References

[ASST05] Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexander
Tuzhilin. Incorporating contextual information in recommender systems using a mul-
tidimensional approach. ACM Trans. Inf. Syst., 23(1):103–145, 2005.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Generation of Rec-
ommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE
Trans. on Knowl. and Data Eng., 17(6):734–749, 2005.

[Che05] Annie Chen. Context-aware collaborative filtering system: predicting the user’s pref-
erences in ubiquitous computing. In CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, pages 1110–1111, New York, NY, USA, 2005. ACM.

[FN06] H.K. Farsani and M. Nematbakhsh. A Semantic Recommendation Procedure for Elec-
tronic Product Catalog. International Journal of Applied Mathematics and Computer
Sciences, 3:86–91, 2006.

[KK07] S. Kim and J. Kwon. Effective Context-aware Recommendation on the Semantic Web.
International Journal of Computer Science and Network Security, 7:154–159, 2007.

[RS09] Christian Raeck and Fabian Steinert. Fraunhofer Institute FOKUS, CC
FAME, myLab Research Laboratory, SMART Recommendations, 2009.
http://mylab.fokus.fraunhofer.de/content/smartrecommendations/overview.

570


