
Incremental Detection of Parameterized Code Clones

Torsten Görg

University of Stuttgart

Universitaetsstr. 38, 70569 Stuttgart, Germany
torsten.goerg@informatik.uni-stuttgart.de

Abstract: This paper presents a new approach to

incremental code clone detection that is based on a

special clone representation model. The algorithm

detects parameterized clones with parameters of

arbitrary size. It can be used for cross-system and

cross-revision clone detection.

1 Introduction

Many approaches to code clone detection have been

developed during the last two decades [1]. Most of

them calculate a set of clone pairs for a given

source code. To detect clones incremantally is a

more advanced problem. Incremental clone detec-

tion tries to determine an updated set of clones with

minimal effort when source code modules are

added or modified [7]. Usually a clone detection

algorithm derives some data from the source code

and transforms it in further processing steps. E.g.,

the tree-based algorithm of Baxter et al. calculates a

hash map to cluster AST subtrees and uses these

clusters to find clone pairs by comparing each

subtree with all subtrees in the same cluster [3]. The

derived intermediate data has to be recalculated for

the whole source code on each subsequent clone

detection pass if it is just held transiently for one

pass. The whole set of clones has to be recalculated

because to search for new clones in the modified or

added code separately misses clone pair relation-

ships between old and new code. Our clone detector

solves this problem by using a special clone repre-

sentation model.

Different kinds of clones are distinguished in the

clone literature [1]. Our approach is able to detect

parameterized code clones incrementally. Parame-

terized clones are a generalization of gapped clones

with arbitrary gaps of any size. A parameterized

clone is characterized by an upper and a lower

horizontal cut in an AST [4].

2 Clone Representation Model

Our clone detection approach is based on the data

model to represent code clones provided in [2].

This model consists of a set of clone groups. Each

clone group is characterized by a prototype which is

a subtree copied from an AST. This prototype

implicitly specifies the upper and lower horizontal

AST cuts of the grouped parameterized clones. A

code fragment is matched against the prototype of a

clone group to check whether it is an adequate

clone belonging to that group.

The clone representation model also expresses rela-

tionships between the clone groups. A clone group

A is called a supergroup of a clone group B iff the

prototype of A is a subtree of the prototype of B. Iff

A is a supergroup of B then B is called a subgroup

of A. This construction guarantees that a super-

group represents the commonalities of its sub-

groups. The supergroup relation forms a DAG

(directed acyclic graph). Optionally, a clone group

can hold references to the instances in a given AST.

A further design idea of the model is to encompass

not only code fragments that are clones but also

fragments that appear just once. In this way the

model is equivalent to the original AST.

3 Incremental Detection Approach

The clone detection algorithm suggested in [2]

creates a clone representation model for a given

AST by successively processing all AST nodes and

adding subtrees that are spanned by the processed

nodes to the model as clone fragments. For inser-

ting a clone fragment the most appropriate clone

group is found following a principle called stepwise

flooding (see Fig. 1). The search starts with the

smallest clone groups whose prototypes contain a

node that matches the currently processed AST

node. If the whole prototype can be flooded with

coinciding AST nodes the search proceeds with the

subgroups.

Fig. 1. Example of an insertion of a clone fragment into the

clone group hierarchy with stepwise flooding

Softwaretechnik-Trends 33:2, Mai 2013 25

A new clone group is created and linked into the

clone group hierarchy whenever currently unco-

vered commonalities are detected. Thus the clone

group hierarchy is constructed incrementally by

adding further clone groups on demand. This incre-

mental fashion of the internal process of the algo-

rithm is exploited to realize an incremental code

clone detector.

Fig. 2. The incremental clone detection process

The incremental process is depicted in Fig. 2 as an

UML activity diagram. After the creation of an

initial clone representation model (CRM) with our

incremental clone detector (icd) a modified syntax

tree (AST’) is handled incrementally. Its differen-

ces to the previous AST are calculated as additions

and removals of subtrees (diff). Modifications are

replaced by a removal of the original subtree fol-

lowed by an addition of the modified subtree.

A fragment remover (fr) processes the required

removals, producing CRM’. To insert the additions

icd is called again. CRM’’ is the updated result

model. For each new version of the AST the pro-

cess is repeated starting with the diff step.

The fragment remover implements an algorithm

inverse to the clone detection algorithm in icd. The

AST nodes of the removed code parts are processed

one by one and the footprint of each node is

eliminated in the clone representation model. This

potentially includes the deletion of clone groups.

Our implementation is based on the reengineering

framework Bauhaus [5]. This implies that the clone

detection process can be applied on C and C++

code as Bauhaus provides an appropriate frontend.

4 Related Work

Another approach to incremental tree-based clone

detection is presented in [6]. Similar to our algo-

rithm, it finds clone pairs by pairwise comparisons

of code fragments that are clustered into buckets.

Several heuristics are used, i.e., vector distances are

calculated as similarity values and compared with a

distance threshold to detect clone pairs. It is not

guaranteed that an incremental calculation provides

the same clone groups as a non-incremental cal-

culation. Our approach provides always the exact

results at the cost of higher calculation effort.

A token-based incremental algorithm is realized in

the clone detection tool iClones [7]. It calculates

generalized suffix trees to detect clones. Similar to

our algorithm modifications are handled as additi-

ons and removals, but restricted to file granularity.

5 Conclusion

Together with the inverse algorithm for fragment

removal cross-revision clone detection is realized.

This allows updating a clone representation model

in order to reflect all code clones in modified

source code.

The incremental clone detection process makes it

possible to successively feed the ASTs of further

systems into an existing clone representation mo-

del. The algorithm guarantees to detect all parame-

terized clones without any loss of information even

if they are spread over multiple systems. Such

cross-system clone detections provide code idioms

that are relevant for more than one system.

References

[1] Chanchal Kumar Roy and James R. Cordy, “A

survey on software clone detection research,”

technical report, Queen’s University, Canada, 2007.

[2] Torsten Görg, “Mining of Source Code Concepts

and Idioms,” unpublished, available on

http://www.iste.uni-stuttgart.de/ps/goerg.html.

[3] Ira Baxter, Andrew Yahin, Leonardo Moura,

Marcelo Sant Anna, and Lorraine Bier, “Clone

Detection Using Abstract Syntax Trees,” in

Proceedings of the 14th International Conference on

Software Maintenance (ICSM’98), pp. 368-377,

Bethesda, Maryland, November 1998.

[4] Torsten Görg, “A Model-Based Approach to Type-3

Clone Elimination,” in Proceedings of the 14.

Workshop Software-Reengineering (WSR 2012) of

the Gesellschaft für Informatik (GI) special interest

group Software-Reengineering, pp. 21-22, Bad-

Honnef, May 2012.

[5] Aoun Raza, Gunther Vogel, and Erhard Plödereder,

“Bauhaus – A Tool Suite for Program Analysis and

Reverse Engineering,” in Proceedings of Ada

Europe 2006, LNCS 4006, pp. 71-82.

[6] Tung Thang Nguyen, Hoan Anh Nguyen, Jafar M.

Al-Kofahi, Nam H. Pham, and Tien N. Nguyen,

„Scalable and Incremental Clone Detection for

Evolving Software,“ in Proceedings of IEEE

International Conference on Software Maintenance

(ICSM 2009), pp. 491-494, September 2009

[7] Nils Göde and Rainer Koschke, “Incremental Clone

Detection,” in Proceedings of the 2009 European

Conference on Software Maintenance and

Reengineering (CSMR ’09), pp. 219–228, 2009

26 Softwaretechnik-Trends 33:2, Mai 2013

	Incremental Detection of Parameterized Code Clones
	1 Introduction
	2 Clone Representation Model
	3 Incremental Detection Approach
	4 Related Work
	5 Conclusion
	References

