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Abstract: In the paper, a novel Neuro-Fuzzy Kolmogorov's Network (NFKN) is 
considered. The NFKN is based on the famous Kolmogorov’s superposition 
theorem (KST). The network consists of two layers of neo-fuzzy neurons (NFNs) 
and is linear in both the hidden and output layer parameters, so it can be trained 
with very fast and simple procedures without any nonlinear operations. The 
validity of theoretical results and the advantages of the NFKN are confirmed by
application examples: electric load forecasting, and classification of data from
medical and banking domains.

1 Introduction

According to the Kolmogorov's superposition theorem (KST) [Kol57], any continuous 
function of d variables can be exactly represented by superposition of continuous 
functions of one variable and addition: 
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maxmin xxxxx , )(lg  and )(,il are some continuous 
univariate functions, and )(,il  are independent of f. Aside from the exact 
representation, the KST can be used as the basis for the construction of parsimonious 
universal approximators, and has thus attracted the attention of many researchers in the 
field of soft computing. Hecht-Nielsen was the first to propose a neural network 
implementation of KST [Hec87], but did not consider how such a network can be 
constructed. Computational aspects of approximate version of KST were studied by 
Sprecher [Spr96], [Spr97] and K rková [Kur91]. Yam et al [YNK99] proposed the 
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multi-resolution approach to fuzzy control, based on the KST, and proved that the KST 
representation can be realized by a two-stage rule base, but did not demonstrate how 
such a rule base could be created from data. Lopez-Gomez and Hirota developed the 
Fuzzy Functional Link Network (FFLN) [LYH02] based on the fuzzy extension of the 
Kolmogorov's theorem. The FFLN is trained via fuzzy delta rule, whose convergence 
can be quite slow. A novel KST-based universal approximator called Fuzzy 
Kolmogorov's Network (FKN) with simple structure and training procedure with high 
rate of convergence was proposed in [KB04, KBO04]. The training of the FKN is based 
on the alternating linear least squares technique for both the output and hidden layers.

In this paper we consider a modification of the FKN, called Neuro-Fuzzy Kolmogorov's
Network (NFKN), in which inputs can have variable number of membership functions. 
This provides more flexibility for the NFKN model and enables it to deal with both 
numerical and categorical variables. We also propose an efficient and computationally 
simple learning algorithm, whose complexity depends linearly on the dimensionality of 
the input space. The algorithm is a combination of the gradient descent procedure for the 
tuning of the hidden layer weights, and linear least squares method for the output layer. 

2 Network Architecture 

The NFKN (Fig. 1) is comprised of two layers of neo-fuzzy neurons (NFNs, Fig. 2) 
[Yam92] and is described by the following equations: 
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where n is the number of hidden layer neurons, )( ],1[]2[ l
l of  is the l-th nonlinear synapse 

in the output layer, ],1[ lo  is the output of the l-th NFN in the hidden layer, )(],1[
i

l
i xf  is 

the i-th nonlinear synapse of the l-th NFN in the hidden layer. 

The equations for the hidden and output layer synapses are 
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where im ,1  and lm ,2  is the number of membership functions (MFs) per input in the 

hidden and output layers respectively, )(]1[
, ihi x and )( ],1[]2[

,
l

jl o  are the MFs, ],1[
,

l
hiw  and 

]2[
, jlw  are tunable weights. We assume that the MFs are fixed, triangular, and 

equidistantly spaced over the range of each NFN input. The parameters of the MFs are 
not tuned.
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Fig 1: NFKN architecture with d inputs and n hidden layer neurons
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Fig. 2: Neo-fuzzy neuron (left) and its nonlinear synapse (right)

Nonlinear synapse is a single input-single output fuzzy inference system, and is thus a 
universal approximator [Kos92] of univariate functions, including )(lg  and )(,il  in
(1). An example of approximation of a univatiate function is shown in Fig. 3. So the 
NFKN, in turn, can approximate any function ),,( 1 dxxf .

As in the FKN, the MFs in the NFKN at each input in the hidden layer are shared 
between all neurons (see Fig. 4). However, in the NFKN architecture we allow for 
different number of membership functions at each input.
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Fig. 3: Approximation of a univariate nonlinear function by a nonlinear synapse 
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Fig. 4: Representation of the hidden layer of the NFKN with shared MFs 
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This property is essential for the processing of data with mixed numerical and 
categorical inputs, such that each category value of a categorical input corresponds to 
one MF and is encoded with a numerical value corresponding to the center of that MF. 
This is a more parsimonious and convenient approach than the conventional binary 
coding of categories, because we do not have to introduce additional inputs to the 
classifier.

3 Learning algorithm 

The weights of the FKN are determined by means of a batch-training algorithm as 
described below. A training set containing N samples is used. The minimized error 
function is 
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where TNyyY )(,),1( is the vector of target values, and 
TNtytytY ),(ˆ,),1,(ˆ)(ˆ  is the vector of network outputs at epoch t.

Since the nonlinear synapses (3) are linear in parameters, we can employ direct linear 
least squares (LS) optimization to find the ouput layer weights: 
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Using the linearization technique for the output layer, we can find the hidden layer 
weights in a similar way, as is done in the FKN training method [KB04, KBO04]. In 
order to reduce the computational complexity, we can also find the hidden layer weights 
through the well-known gradient descent method: 
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where )(t is the adjustable learning rate. The norm in the denominator is to speed up 
convergence as proposed in [Jan92]. 
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4 Applications 

We have applied the NFKN to the problem of electric load forecasting in a region of 
Germany. The data were provided by one of local electricity suppliers, and describe 
electric load every 15 minutes. We used the data from the year of 1999 for training, and 
from the year of 2000 for validation and testing. The forecast was 24 hours ahead. The 
input variables were the load at the same hour one, two, three days and a week ago, type 
of these days (‘normal’ day or holiday), type of the predicted day, type of the day 
following the predicted day, day of week for the predicted day, the number of the 
predicted hour, and the number of the predicted quarter of that hour (13 inputs 
altogether). Fig. 5 shows the forecast for the last two weeks of April, 2000. This period 
includes Easter, which can be distinguished by lower consumption for four days in 
succession. Mean absolute percentage error (MAPE) of the forecast for this period 
equals 2.6044%, which is quite good and acceptable for practical use. 
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Fig. 5: One day ahead forecast of electric load for a region in Germany for the period of 
17.04.2000 – 30.04.2000 (load data are scaled to [0, 1] according to the supplier’s requirement) 

We also applied the NFKN to classification problems using real-world data from the 
well-known UCI repository [UCI]. The parameters of the data sets are listed in Table 1. 
Note that two data sets, ‘Australian credit’ and ‘German credit’, have several categorical 
inputs. All the data sets have two classes.

278



Table 1: Data sets used in experiments 

Data set Number of 
samples

Numerical 
attributes

Categorical
attributes

Classes 

Wisconsin breast cancer 683 9 0 benign (65.5%), 
malignant (34.5%)

Australian credit 690 6 8 positive (44.5%),
negative (55.5%)

German credit 1000 7 13 good customer (70%),
bad customer (30%)

The results are summarized in Table 2, and are averages of 10-fold cross-validation. The 
column ‘neurons’ describes the NFKN architectures: the numbers separated by ‘+’ 
indicate the number of the hidden and output neurons respectively. The column
‘weights’ shows the number of tunable parameters. The next column shows average 
number of epochs required for the learning algorithm to converge. The last two columns
show the classification accuracy. 

All the results are at the level of accuracy achieved with the best classification 
techniques, e.g. the support vector machines [Duc].

Table 2: Results of classification experiments 

Data set Neurons Weights Epochs Training 
set 
accuracy 

Checking 
set
accuracy 

Wisconsin breast cancer 1+1 44 4 98.03% 97.51% 

Australian credit 2+1 116 11.7 89.58% 85.8% 

German credit 3+1 240 29 85.6778 75.2% 

5 Conclusion 

In the paper, a modification of the FKN approach was proposed. The advantages of the 
new neuro-fuzzy model (NFKN) were demonstrated in experiments with real-world 
data. 

Although the NFKN demonstrated quite good results in the experiments described
above, we expect that its performance can be further improved via the tuning of the 
centers of MFs, and the use of MFs different from triangular. For the tuning of the MFs, 
the gradient-based approach may be used. Another option is the use of clustering 
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methods. The clustering can be performed independently for each synapse, so it can be 
reduced to the one-dimensional case.

For the processing of very large data sets when the storage of matrices for the complete 
data set is impossible because of memory limitations, sequential algorithms can be easily 
derived. For this purpose, the recursive least squares method for the estimation of the 
output layer weights and iterative scheme for the calculation of the gradient for the 
hidden layer weights can be employed. 
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