
Single-pass restore after a media failure

Caetano Sauer Goetz Graefe Theo Härder

TU Kaiserslautern Hewlett-Packard Laboratories TU Kaiserslautern

Germany Palo Alto, CA, USA Germany

csauer@cs.uni-kl.de goetz.graefe@hp.com haerder@cs.uni-kl.de

Abstract: When persistent storage fails, traditional media recovery first restores an old
backup image followed by replaying the recovery log since the last backup operation.
Restoring a backup can take hours, but log replay often takes much longer due to
its random access pattern. We introduce single-pass restore, a technique in which
restoration of all backups and log replay are performed in a single operation. This
allows hiding log replay within the initial restore of the backup, thus substantially
reducing the time and cost of media recovery and, incidentally, rendering incremental
backup techniques unnecessary.

Single-pass restore is enabled by a new organization of the log archive, created by a
continuous process that is easily incorporated into the traditional log archiving process.
Our empirical analysis shows that the imposed overhead is negligible in comparison
with the substantial benefits provided.

1 Introduction

With “big data” ever increasing in size as well as individual storage devices ever increas-

ing in capacity, failure and recovery of storage becomes an increasing concern, at least

among people with operational responsibility for large databases. Restoring a transac-

tional database on a replacement device requires not only copying a full database backup

but also replaying log records captured during the backup operation and the hours or days

hence. Traditional log replay incurs many random I/O operations on the replacement de-

vice and thus often takes much longer than restoring a full backup. Thus, database software

often supports and database administrators often employ incremental backups, e.g., daily

backups of database pages modified since the last backup.

The incremental backup approach does not eliminate the core problem, which is the ran-

dom I/O incurred on database pages during log replay. Rather, it tries to alleviate the issue

by restricting the length of log replay. The problem is that incremental backups are cum-

bersome to maintainÐboth in terms of implementation effort and processing overhead.

Furthermore, as transaction throughput increases due to modern hardware, log volumes

are expected to grow much faster. This requires incremental backups to be taken more fre-

quently, which not only disturbs transaction processing activity but also quickly becomes

ineffective, as frequently updated pages are backed up over and over. Therefore, in case

of data losses, system administrators are left with no choice but to pay the extremely high

penalty of traditional media recovery.

217



1.1 Media recovery costs

As an example scenario for predicting the time required for media recovery, consider a

database storage device of 1 TB. At 150 MB/s, a full backup or a restore operation takes

about 2 hours. If 5% of all database pages change over a day, the size of a daily incremental

backup is 50 GB, or 6.25 million pages of 8 KB. The restore operation for each incremen-

tal backup requires (at 1 ms average access time per page) 6,250 seconds or 1 hour and

45 minutes. Assuming that there are two log records per modified page, that the buffer

hit ratio during log replay is 75%, and that the miss penalty is a random I/O operation of

4 ms, then each day of log replay takes ∼12,500 seconds or 3.5 hours. Therefore, a media

failure occurring 7 days after the last full backup may take almost 16 hours to recover (2h

full backup + 6 × 1.75h incremental backups + 3.5h log replay). For around-the-clock

online businesses, these prospects are frightening. For some practical scenarios, this ex-

ample may even be considered conservativeÐif data volumes and transaction throughput

are much higher, recovery may easily reach the scale of multiple days.

Figure 1: Time to perform log replay
from a traditional vs. a sorted log

The inefficiency of traditional log replay is empha-

sized in Figure 1. We measure the time required to

replay a log produced by ∼7.5 million transactions,

i.e., one day worth of log under a load of ∼5k trans-

actions per minute. In a realistic scenario where the

device capacity is orders of magnitude larger than

the amount of main memory, single-pass restore re-

plays all updates in 7 minutes, as opposed to almost

4 hours in the traditional setting. This experiment

is described in more detail in Section 4.

As a remedy for this situation, enterprises may

choose the unconventional approach of backing

up data on flash devices (or even on non-volatile

RAM) to speed up recovery time, essentially de-

creasing the time to repair and thus improving

availability. However, as observed in our previ-

ous work [SGH14], the fundamental problem is

the random I/O pattern which is inherent to tradi-

tional “redo” recovery (from both system and media

failures). Therefore, low-latency devices are (like

incremental backups) not a solution to the prob-

lem but merely a temporary remedyÐas transaction

throughput increases due to new hardware and software techniques, such “fast” storage de-

vices are expected to become the bottleneck once again. What is needed, therefore, is a

software solution, preferably a simple one that requires only small incremental changes to

existing techniques.

218



1.2 Our contribution

Single-pass restore is a novel technique that provides much faster log replay and hence

media recovery. This is achieved by simply reorganizing the log into a different sort order

while performing log archiving, i.e., copying the recovery log from a latency-optimized

to a capacity- and cost-optimized device. With log replay practically free, incremental

and differential backups lose their justification. In the example scenario described above,

recovering a failed device to the most up-to-date state can take as long as simply restoring

an outdated full backup, i.e., ∼2 instead of 16 hours.

The complexity of the new logic for log archiving and for restore operations is comparable

to that of external merge sort, i.e., quite moderate. We demonstrate empirically that the

overhead during normal transaction processing is negligible in a normal setting, and even

in extremely fast OLTP scenarios it is as low as 1.5%.

In the remainder of this paper, Section 2 reviews related prior work, both competing ap-

proaches and technology adapted in the proposed data structures and algorithms. It also

lays out some of the assumptions of our current prototype design. Section 3 introduces

the new data structure for the log archive as well as algorithms for log archiving and for

single-pass restore operations. Section 4 reports on our prototype implementation and its

performance. Section 5 extends the basic techniques in order to overcome the simplifying

assumptions. Section 6 offers a summary and some conclusions.

2 Related prior work

We divide related prior work into competing approaches, for which the new techniques

may serve as alternatives, and adopted technology, upon which the proposed algorithms

and data structures rely.

2.1 Competing approaches

Multiple techniques reduce the probability of a media failure or the duration of a media re-

covery. Among the former, hardware techniques such as disk mirroring [BG88] and RAID

[PGK88] hide some failures from the operating system and all applications. Nonetheless,

both mirroring and RAID can experience data loss. For those cases, recovery in the data

management software remains required. Moreover, the new techniques do not require re-

dundancy in the data store and thus save hardware costs and related costs, e.g., energy.

Hot spares and replication have similar costs and dangers of data loss as mirroring and

RAID. Nonetheless, mirroring is a suitable technology for the recovery log and RAID

(e.g., RAID-6) is a suitable technology for the log archive.

Among the latter, incremental backups require a special in-database data structure for

tracking database pages changed between backups. This data structure is expensive to

219



maintain during transaction processing [MN93] and very difficult to switch over in online

incremental backup operations. In contrast, the new techniques hide days or weeks of log

replay within the restore operation of the full backup, i.e., all effort related to incremental

backups render the traditional restore techniques slower than the proposed ones. Since we

consider incremental backups to be the main competing approach to single-pass restore,

we provide a qualitative comparison between both approaches in Section 6.

In cases of single-page failures, traditional recovery requires media recovery. Some sys-

tems support selective media recovery, i.e., a full log scan with log replay limited to spe-

cific pages, e.g., Microsoft SQL Server [Mic14]. Some systems may also support dedi-

cated and efficient single-page recovery [GK12] in the future. In that sense, single-page

recovery is a competitor to media recovery if the recovery log embeds backward pointers

not only per transaction but also per database page. However, both solutions still suffer

from the random I/O pattern of traditional “redo” recovery.

Recent main-memory database systems make use of logical logging to eliminate the over-

head of generating log records for every update [MWMS14]. The techniques proposed

here apply to physiological or physical logging, as employed in ARIES [MHL+92], and

therefore in the vast majority of database systems deployed in production businesses today.

Essentially, we rely on the concept of pages as a fundamental characteristic of logging and

recovery: a page is the smallest unit of fault containment and repair. Logical recovery

schemes, such as those of in-memory databases, have no such concept. A comparison

between logical and physiological logging techniques is beyond the scope of this paper.

2.2 Adopted technologies

The proposed techniques rely on various existing technologies. The most important among

them is write-ahead logging [GR93] with physiological log records [MHL+92]. The new

techniques rely on reliable and efficient access to log records, including (where single-

page recovery [GK12] is used) efficient access to the history of a single database page

using appropriate backward pointers among log records in the recovery log.

Log archiving frees up space on latency-optimized stable storage by copying to cost- and

capacity-optimized long-term stable storage. The new techniques merely add some addi-

tional logic to log archiving, which remains a single-pass process, i.e., it reads and writes

each log record only once.

Log records in a recovery log are sorted on time, in the order they are generated by execut-

ing transactions. Sorting log records differently is an old idea. For example, Gray wrote

“For disk objects, log records can be sorted by cylinder, then track then sector then time”

and “Since it is sorted by physical address, media recovery becomes a merge of the image

dump of the object and its change accumulation tape” [Gra78]. The new techniques sort

log records but not at the expense implied by Gray’s design as sketched by the quoted sen-

tences. Instead of applying sorting as a pre-processing step prior to actual data recovery,

we propose maintaining a partially sorted log archive during normal operation, i.e., as part

of the log archiving process.

220



Sorting the log is essentially an external merge sort operation, which is executed in mul-

tiple phases: run generation fed by a scan or an input process, some (zero or more) inter-

mediate merge steps, and a single final merge step feeding directly the user of the sorted

data, e.g., a merge-join algorithm. The new techniques run the traditional phases of exter-

nal merge sort (input and run generation, intermediate merge steps, final merge step and

production of output), but not one phase immediately after another.

2.3 Assumptions

The initial description of the proposed techniques relies on several simplifying assump-

tions; Section 5 alleviates most of these. Our initial assumptions include that (i) there

is a single failure only; (ii) the database system and its transaction manager remain active

throughout failure and recovery, i.e., throughout media loss and restore; yet (iii) the system

stops transaction processing during a restore operation; and (iv) the latency-optimized sta-

ble storage for the recovery log has limited capacity such that long-term online transaction

processing requires log archiving with or without the new techniques. Furthermore, we as-

sume that (v) media recovery only requires “redo” recovery. This means that either backup

operations are offline, i.e., each backup is transaction-consistent; or that uncommitted up-

dates can be rolled back by a following crash recovery process, which feeds exclusively

from the normal recovery log instead of the log archive. In practice, the latter case would

be more common.

3 Partially sorted log archives

The new data structure which enables single-pass restore is a partially sorted log archive.

The log archive is partially sorted because it is a collection of sorted runs instead of a single

sorted file. Within each run, log records are sorted by page identifier (within the database)

and by LSN. Figure 2 shows a sample recovery log for which four runs were generated in

the archive. To simplify the example, we consider only three database pages, illustrated in

three different shades. Due to the nature of physiological logging, only log records with

page identifiers, i.e., those representing modifications, are selected for archiving. This is

aligned with the assumption that the log archive supports only “redo”, whereas “undo”

relies on the active recovery log.

The process of generating the partially sorted log archive, including the sorting algorithm

to use, is discussed in Section 3.1 below. To perform single-pass restore, all runs must

be merged into a single sorted input stream. This process is discussed in Section 3.2.

Finally, since failures may happen during any phase of both archiving and restore, we

describe a restart mechanism that guarantees atomicity of archive and restore operations

in Section 3.4.

221



Figure 2: Visualization of partially sorted log archiving from the normal recovery log.

3.1 Log archiving logic

Traditional log archiving consists of copying log records from a latency-optimized device,

where the recovery log is kept, into a capacity- and cost-optimized device. A latency-

optimized device, such as a flash device or even non-volatile memory, allows more efficient

transaction processing in which the log can be flushed at a higher ratio (in terms of I/O

operations per second) and thus more transactions are committed per second. The log

archive device, on the other hand, provides higher capacity and lower cost in terms of

dollar per gigabyte. Thus, it is usually a hard disk, potentially replicated with RAID.

The use of tape is discouraged in our approach, because external merge sort would be

prohibitively slow.

Instead of copying “raw” log data, e.g., by copying files between file systems or physical

blocks between devices, log archiving processes a log record at a time. This is done in

order to compress the log archive by removing unnecessary log records such as transaction

begin and commit/abort, checkpoint information, page flushing activity, etc. In essence,

only log records that modify physical data, i.e., pertaining to a page, are kept. Furthermore,

additional compression techniques can be applied such as removing “undo” information,

combining updates into a “net change” record, or skipping aborted updates, as done in

ARIES with the technique of restricted repeating of history [MP91]. Such inspection and

manipulation of log records entails a certain CPU overhead to the process of log archiving.

A partially sorted log archive increases the CPU effort by additionally sorting log records.

For example, in order to generate a run of 1 M log records, each log record participates in

∼20 comparisons (i.e., log(n)). In a fully tuned implementation, this amounts to 1,000

instruction cycles. Assuming the average log record size is 100 bytes, the process re-

quires 10 CPU cycles per byte sorted. Thus, in order to maintain a sorting throughput of

200 MB/s, which is the typical sequential write speed of enterprise hard disks, 2 billion

cycles per second, or 1 whole CPU core, must be reserved to the sorting procedure. This

may seem like a large overhead at first, but typical OLTP workloads rarely fully utilize the

CPU [TPK+13], meaning that sorting can exploit idle CPU cycles, thereby causing little

to nonexistent impact on transaction processing. In Section 4, we present experiments that

quantify this overhead on a real system.

222



The sorting algorithm used to generate runs also plays an important role. While quicksort

performs quite well in terms of CPU utilization, it exhibits a periodic load-sort-store be-

havior, in which a chunk of data is first loaded into the sort workspace, then fully sorted,

and finally written to external memory in a single pass. The disadvantage of this behavior

is that it does not allow read and write operations to occur in parallel if the output device

is different from the input device, which is the case in log archiving. Furthermore, I/O

operations cannot overlap with the CPU effort of sorting. For these reasons, we propose

the replacement-selection algorithm [Gra06], which exhibits a continuous behavior where

read and write activity can occur in parallel.

One advantage of replacement selection is that it can generate runs larger than the in-

memory sort workspace. This is done by holding log records in the selection tree in order

to optimize the sorting distance within each run [Knu73]. However, we do not make

use of this feature in our prototype implementation, because the resulting runs cannot be

mapped to contiguous regions of the input, which is the recovery log. If such mapping

is not provided, it becomes cumbersome to keep track of regions already archived, which

is essential for resuming the log archiving process after a system crash, as we discuss in

Section 3.4 below. In order to maintain this simple mapping with replacement selection,

we simply eliminate the logic that places incoming log records into the current or the next

run depending on their key value. Instead, log records are always assigned to a run number

greater than the current root of the selection tree, regardless of their key values.

Despite influencing the behavior of the log archiving process, the choice of sorting algo-

rithm for run generation is orthogonal to the algorithms of single-pass restore. Therefore,

an implementation based on quicksort, or any other internal sorting algorithm, is equally

conceivable.

3.2 Media restore logic

Restoring a database device after a media failure can occur in two different ways, depend-

ing on how the latest full backup is made available. If the backup is maintained in a disk

on hot stand-by, then only log replay on this device is required. If the backup must first

be fetched from a separate (potentially slower but cheaper) device, then log replay is per-

formed on individual pages as they are restored from the backup. Regardless of which

scenario is considered, the logic for log replay is the same. Therefore, we focus on the

first use case: replaying the log on an existing backup copy. Later on, we discuss how log

replay can be incorporated on the initial backup restore.

Log replay for single-pass restore must be executed on one page at a time in sequential

order. Therefore, it requires the existing log archive runs to be merged into a single sorted

input stream. Since runs are partitioned by LSN and, thus, by time, it is possible to merge

only runs newer than the oldest LSN found in the backup. We omit such details in this

discussion. A traditional multi-way external merge can be used to that end, and, at this

point, we assume that enough memory is available to merge all runs in a single pass. Later

on, we discuss techniques to alleviate this assumption.

223



Since log records are sorted by page identifier, the database can be restored one page at

a time, by replaying all relevant updates of a page in a single read/write cycle. The end

effect is that the database is restored from the backup in a single pass, thus exploiting the

device sequential bandwidth for restore. A traditional log replay, on the other hand, applies

log records to pages in an arbitrary order of page identifiers, which requires a substantial

amount of random I/O operations. Furthermore, the efficiency of single-pass restore does

not depend on the size of the buffer pool, whereas the performance of traditional log replay

degrades for smaller buffer pools. These hypotheses are verified empirically in Section 4.

If the backup must first be copied from a separate capacity-optimized device such as tape

or network-attached storage (which is the most common case in practice), then log replay

can be executed on each page as it is copied. This corresponds essentially to a merge-

join operation between the backup and the log archive, as noted in the early work of Gray

[Gra78]. If the total log volume is less than the size of the database, then an up-to-date,

fully operational database can be restored in the same time it takes traditional restore to

simply copy an old database backup. Therefore, it is again a single-pass process, on both

the log and the backup.

In some cases, the log volume to be replayed can be greater than the size of the device.

This can happen on small OLTP databases with very high update frequency. In this case,

the cost of single-pass restore is bounded by the size of the log, and not by the backup

size. The same situation occurs in a merge-join algorithm: the cost is determined by the

largest input. The point which must be emphasized is that in both situations (smaller or

larger log), media recovery is performed as a single-pass, sequential operation. Note that

traditional media recovery performs much worse if the log is larger. We analyze these

situations empirically in Section 4.

3.3 Asynchronous merging

In order to maintain a manageable number of runs in the log archive, thereby enabling a

single merge pass for log replay, an asynchronous merge daemon can be used to merge

runs in the background during normal operation. The daemon can run at any specified

pace and using as little memory as made available by the system. It can be scheduled

to run during relatively idle periods, or to run continuously, but at a slow, unobtrusive

pace. Our prototype implementation includes a simple merge daemon, which we evaluate

empirically in Section 4.

If, during restore, there is not enough memory to merge the log archive in a single pass,

despite proper asynchronous merging policies, a slower form of restore (but probably still

much faster than traditional restore) is still possible. One obvious option is to perform

offline merge steps until the number of runs decreases to the amount required by a single

pass. In this procedure, the smallest runs should be merged first. Because these are prob-

ably the most recently generated runs, they will correspond to a very small percentage of

the overall log archive volume, and, therefore, the added delay should be relatively small.

For example, assume a scenario with 120 runs amounting to a total log archive volume of

224



1 TB. Despite the large overall volume, most of the runs, say, 80 of them, will probably

be initial runs, i.e., runs generated directly from the sort workspace of log archiving. If the

maximum merge fan-in is 100, simply merging 21 of these small runs is enough in order to

perform single-pass restore. If we assume that the small runs are 1 GB in size, the offline

merge incurs only a 4% delay (2% for each read and write) on the total cost of log replay.

Note, however, that such scenario should be very unlikely in practice due to asynchronous

merging.

3.4 Restart logic for log archiving and merging

Tolerating failures during the archiving process, for both the log and database backups,

is an essential requirement. A proper implementation must not only restart the archiving

process correctly, but it should also minimize the amount of work that must be repeated

(e.g., copying log records multiple times). In our approach, such requirements are of ut-

most importance, since archiving is always active as an inherent part of normal transaction

processing. This is in contrast to incremental backups, which run periodically in a fashion

similar to fuzzy checkpoints [MN93].

In order to restart the log archiving and asynchronous merging daemons after a system

failure, the filesystem must provide certain guarantees in order to generate runs (both ini-

tial and merged) in atomic steps. Since initial runs are generated by a continuous-output

sorting algorithmÐin this case replacement selectionÐ, log records are first written into

a temporary file. Once the run is finished, the file is renamed into its permanent format,

which contains the LSN boundaries of the log records contained in it. This means that

runs are mapped to contiguous regions of the recovery log (as discussed in Section 3.1)

by means of file naming conventions. The end boundary of each file is an exclusive one,

meaning that the log archive can be checked for consistency (i.e., absence of “holes”) by

simply comparing the end of one run with the begin of the next.

The contiguous mapping of runs to LSN ranges provides an easy and safe way of deter-

mining the “low water mark” of log archiving [GR93]. If traditional replacement selection

is used instead of our adapted version, determining this mark can be quite cumbersome.

Not only that, the amount of effort lost would be higher, since retaining log records in the

selection tree essentially blocks the advance of the low water mark.

In order to generate initial runs atomically, file renaming must be provided as an atomic

operation. Fortunately, this is the case for most common UNIX filesystems [GLI14]. Upon

restart, the temporary file corresponding to the run that was being generated at the time of

failure can simply be deleted, and log archiving restarts from the end boundary of the last

generated run. Unfortunately, there is no simple way to avoid losing the whole temporary

run, because that would require information about the in-memory selection tree, which

is lost in a crash1. Note, however, that log archiving may be resumed while the system

recovers, perhaps even in coordination with the log analysis or “redo” phases. Therefore,

it is likely that the lost run will be restored by the time the system comes back up.

1Other sorting methods such as quicksort unavoidably lose the current run, since it is kept entirely in memory.

225



Asynchronous merging works in a similar way: runs are produced in a temporary file

and renamed when completed. One crucial requirement is that only adjacent runs may be

merged, in order to keep the contiguous mapping to LSN ranges. One additional concern

in this case is that, after the file is renamed, the input runs must be deleted, which cannot

be done atomically. Therefore, upon restart, the system must check all file names for

overlapping LSN ranges, deleting the smaller runs it finds. This is essentially a “redo”

operation that guarantees atomicity of run generation, in conjunction with the “undo” step

of deleting temporary runs.

4 Experiments

4.1 Environment and prototype implementation

We implemented the basic algorithms for partially sorted log archiving and single-pass re-

store in Shore-MT [JPH+09], an open-source transactional storage manager which scales

well on multi-core CPUs. In order to generate workload, we executed the TPC-C bench-

mark using the Shore-Kits package2, which implements several standard benchmarks on

top of Shore-MT. Our code is made available in an online open-source repository3.

Being a research prototype, our system lacks some important features that would be ex-

pected on a product-level implementation. For instance, it does not support multiple de-

vices for database pages or additional replication measures to support multiple failures.

It also does not support the detection and automatic repair of media failuresÐsingle-pass

restore must be invoked explicitly and while the system is offline. Furthermore, it does not

implement an online backup utilityÐall experiments rely on backups generated explicitly

also while the system is offline. However, it is important to note that these limitations are

simply due to implementation effort and not conceptually inherent to the design.

The experiments described here were carried out on an Intel Xeon X5670 server with

96 GB of 1333 MHz DDR3 memory. The system provides dual 6-core CPUs with hyper-

threading capabilities, which gives a total of 24 hardware thread contexts. The operating

system is a 64-bit Ubuntu Linux 12.04 with Kernel version 3.11.0. Unless noted otherwise,

the log archive and database backups are kept on a high-capacity hard disk.

4.2 Hypotheses under test

Our experiments are designed to test the following hypotheses:

1. In single-pass restore, the cost of log replay can be hidden in the initial phase of

copying a full database backup, leading to substantially faster recovery.

2http://bitbucket.org/shoremt/shore-kits
3http://bitbucket.org/caetanosauer

226



2. Contrary to traditional media recovery, the time required to perform single-pass

restore is independent of the amount of memory available.

3. Log archiving with run generation can be executed concurrently with high-throughput

transaction processing with negligible impact on performance.

When analyzing the results of the experiments below, we refer back to these hypotheses

and show that our method successfully accomplishes the goals laid out therein.

4.3 Media recovery performance

The first-glance results provided in Figure 1 demonstrate the potential gains of maintaining

a partially sorted log archive. This section analyzes the performance of single-pass restore

in more detail. First, we analyze the total time to perform media restore, with the goal of

testing Hypothesis 1. Then, we provide a detailed analysis of log replay costs in isolation,

as performed for Figure 1, but this time varying the amount of main memory available.

The restore procedure based on a sorted log archive is called “single pass” because it allows

the failed device to be restored one page at a time in sequential order. The algorithm for

single-pass restore is essentially a merge join between a full database backup and the log

archive (i.e., the stream of log records produced by a merge of all existing runs). Since a

merge join requires a single pass over each input, the device can be restored in O(n) time,

where n is the number of pages to be restored. In traditional restore, copying an outdated

database backup alone already requires O(n) I/O operations. Thus, we compare single-

pass restore with copying a full backup in terms of total execution time. If Hypothesis 1

is correct, single-pass restore should be slower due to the additional merge logic, but only

by a negligible margin.

In order to test this hypothesis, we performed an experiment where database files of dif-

ferent sizes are restored. We generate TPC-C databases of exponentially increasing scale

factors, starting from 32 and up to 512, which yield sizes of 4 to 65 GB, respectively. For

single-pass restore, we consider a log with about 50%±60% the size of the full backup.

Note that the cost of a merge join depends only on the larger input, and so the log volume

is only relevant if it is greater than the database size. As discussed in Section 3.2, even if

the log is much larger than the device capacity, restore is still a single-pass operation, but,

in this case, the cost is bound by the log size. Figure 3 shows the results of this experiment.

Note that both axes are in logarithmic scale.

As the results confirm, there is only a marginal difference on every scale factor consid-

ered. This shows that the cost of log replay is indeed completely hidden in the process of

restoring a full backup, as predicted by Hypothesis 1.

The experiment does not consider new pages which are allocated during replay of the log.

Such pages can be either restored directly in the buffer pool or written to the replace-

ment device in the same single-pass process. In the latter case, a slightly larger marginÐ

dependent on workload characteristicsÐwould be observed for the results above. Note

that this is still much more efficient than restoring new pages during log replay, as done in

227



Figure 3: Time to perform single-pass restore vs. copy outdated full backup

traditional media recovery. Nevertheless, we emphasize the fact that the times measured

for single-pass restore are for up-to-date recovery of device contents, whereas the baseline

is just restoring an outdated backup, i.e., the long-running phase of log replay is still re-

quired afterwards. As we demonstrate on the following experiments, traditional log replay

can be orders of magnitude more expensive than replay of a partially sorted log archive.

The cost for log replay in traditional restore is more complex to predict, since it depends

on the amount of memory available and buffer replacement policy. If the complexity of

buffer replacement is abstracted, the cost is O(nm), where m is the average number of

times each page gets replaced in the buffer pool. Since m grows very fast as the ratio

between buffer size and device capacity decreases, so does the total cost of log replay. A

sorted log archive, on the other hand, can be replayed using roughly the same number of

I/O operations regardless of buffer pool size. To demonstrate these facts empiricallyÐin

support of Hypothesis 2Ðwe compare the number of page reads observed with varying

buffer pool sizes. For this experiment, we consider a log volume of 48 GB, which is

generated by ∼7.5 million transactions, and a database with scale factor 64 (8 GB). Such

discrepancy between log volume and database size is chosen deliberately in order to em-

phasize the costs of log replay.

Figure 4 shows the results for this experiment. As predicted by Hypothesis 2, the number

of page reads required for log replay in single-pass restore remains constant. As the table

on the right shows, there is actually a very small variation of up to 3 page reads in single-

pass restore. This is a limitation of the Shore-MT recovery algorithms, and it can occur if

the same slot on the disk is reused by pages being released and allocated multiple times.

If the replay algorithm can properly detect when a page is being reformatted, such rare

superfluous reads can be avoided.

Traditional log replay, on the other hand, varies drastically as the buffer size changes. For

a buffer of 1% of the device size, 50 million random page reads are required, as opposed

228



Ratio Traditional Single pass

0.01 50,335,811 1,472,945

0.05 41,020,158 1,472,945

0.1 34,283,852 1,472,945

0.2 22,373,075 1,472,945

0.3 12,155,559 1,472,945

0.4 4,879,686 1,472,944

0.5 2,387,143 1,472,942

0.6 1,791,567 1,472,942

0.7 1,601,986 1,472,943

0.8 1,542,317 1,472,943

0.9 1,513,885 1,472,942

1.0 1,491,613 1,472,942

Figure 4: Number of page reads performed during log replay for varying buffer pool sizes

to 1.4 million sequential reads in the single-pass scenario. If the backup is stored in a hard

disk with average read latency of 4 ms, traditional log replay would require approximately

56 hours. Single-pass restore, in this case, would be bound by the log size, which is

much larger than the database size in this experiment. Even then, assuming that a read

bandwidth of 150 MB/s can be sustained (i.e., typical of modern desktop hard drives), the

log of 48 GB could be replayed in 31⁄2 minutes.

4.4 Impact on transaction processing

The second set of experiments analyzes the impact of log archiving on normal transaction

processing, in order to test Hypothesis 3. We compare four different scenarios with dif-

ferent archiving configurations. The baseline system has all log archiving features turned

off, meaning that transactions can be executed at full speed without any interference. It is

an impractical scenario because it does not support media recovery, but it gives a general

baseline to any kind of archiving method. The second scenario represents traditional log

archiving, i.e., without sorting. It requires some CPU overhead to process individual log

records for suppressing log records which are irrelevant for media recovery, e.g., “undo”

log records, checkpoints, transaction begin and commit/abort, etc. In the last two scenar-

ios, partially sorted log archiving is performed, first with asynchronous merging turned off

and lastly with this feature turned on.

To measure transaction processing performance in the four scenarios, we performed 30

TPC-C runs of five minutes each on a warm buffer. The environment was set up to provide

229



(a) (b)

Figure 5: Transaction throughput (a) and CPU utilization (b) on 30 repetitions of each scenario

maximum transaction throughput: all CPU contexts are utilized, the complete dataset fits

in the buffer pool, and the recovery log is kept in RAM. Logging to volatile memory is

obviously incorrect from a transactional perspective, but it permits a worst-case analysis

of the interference of log archiving, because I/O bottlenecks are eliminated and CPUs

are better utilized. It also provides expectations for future non-volatile memory devices,

for which write-ahead logging is a very suitable application. To provide measurements

representative of current technology, we also provide results with the log on a flash device

(Samsung SSD 840 Pro).

Figure 5 shows the transaction throughput (a) and the CPU utilization (b) observed in the

30 benchmark runs. Values on the y-axis represent the average transaction throughput

achieved on a single 5-minute run, while the x-axis shows the four different scenarios:

baseline (B), traditional archiving (T), and partially sorted archiving, both without (S) and

with asynchronous merging (S+M). Note that the y-axis does not start on zero. The results

are presented in a box plot format. The line in the middle of each box represents the

median observation. Each box ranges from the 25-percentile on the lower boundary to the

75-percentile on the upper one. The lines extending below and above the boxes represent

the minimum and maximum values observed, respectively. The box plot representation

provides a summary of the statistical distribution of the observed throughput. It is therefore

more useful than a simple average value.

The results show that partially sorted log archiving with asynchronous merging (S+M) has

a median throughput of a little over 19.2 ktps, which is only about 1.5% less than tradi-

tional log archiving (T) at 19.5 ktps. However, it seems like partially sorted log archiving

230



(a) (b)

Figure 6: Transaction throughput (a) and CPU utilization (b) with log on an SSD device

produces more outliers on the lower side, as can be seen on the long bars extending below

the quartile boxes. Such variation possibly originates from the randomness of page ID

orders in the recovery logÐless order in the input requires more swap operations in the

sorting algorithm. Similar behavior can be observed on the CPU utilization results. The

additional overhead of sorting translates directly into more CPU usage, again with a dif-

ference of approximately 1.5%. Note that the baseline actually has higher CPU utilization

than traditional log archiving. This can be attributed to the fact that the baseline scenario

has higher transaction throughput, probably because context switches are more costly than

the actual computational effort in traditional log archiving.

Figure 6 presents the same analysis with the log on an SSD device. Contrary to the pre-

vious experiment, there is no observable difference between the four scenarios. This is

expected because log I/O becomes the bottleneck, therefore leaving much more idle CPU

time, which log archiving can exploit. This fact can be confirmed by comparing the CPU

utilization of the baseline scenario with the rest, which is the only noticeable difference

in the results. Note that CPU utilization fluctuates around 24%, as opposed to 60% in the

previous scenario. The transaction throughput is also substantially lower.

Based on these results, we conclude that partially sorted log archiving only produces an

observable impact on transaction processing performance if the I/O bottleneck is com-

pletely eliminated, which traditionally is not the case in database systems. Even if the

system delivers main-memory performance for I/O, we showed that the overhead is usu-

ally as little as 1.5%, which is acceptable given the dramatical decrease on recovery time.

These observations confirm Hypothesis 3 presented earlier.

231



Two final observations are important to conclude our analysis on transaction processing

impact. First, as already hinted to above, the overhead depends on the amount of idle CPU

cycles observed during the benchmark. If we consider a workload with much less logical

contention, e.g., an insert-heavy benchmark such as TATP [TAT12], transactions running

at full speed are able to better exploit the CPU and thus leave less room for log archiving.

However, such workloads are more of a special case and not the general norm. Further-

more, an OLTP system running at full speed around the clock is an extremely uncommon

scenario in real deployments. This leads to our second observation: log archiving can be

scheduled to run at periods of lower transaction activity, and at an adjusted pace. Such

policies are highly recommended in a product-level implementation. Nevertheless, our

experiment shows that even at periods of peak activity, the overhead of log archiving can

be considered negligible.

5 Extensions

The system for log archiving and media recovery as described so far is limited by the

assumptions introduced above. The present section lifts some of these assumptions and

introduces further promising extensions. The text here merely sketches opportunities and

techniques. Future work will develop more detail on assumptions, conditions, algorithms,

expected performance and scalability, tuning, etc.

5.1 Online backups

Online backups have been a standard industrial capability for a long time [Gra78]. While a

backup operation is active, concurrent queries and update transactions may not only remain

incomplete but may actively modify the database. Individual page images in the backup

may or may not include updates by transactions concurrent to the backup operation.

After an offline backup, i.e., without concurrent transaction processing, all page images

in the database backup have PageLSN values older than the start of the backup operation.

After an online backup, some database pages in the back may have newer PageLSN values,

but always older than the end of the backup operation. Restore from a backup taken with

concurrent transaction processing must consider the PageLSN value of each database page

and apply only new log records.

Thus, the log archiving logic must suspend log compression for the duration of the backup

operation, i.e., combining log records. The restore logic must suppress log records preced-

ing a page image obtained from a backup. Gray suggested to post-process each backup to

obtain a transaction-consistent backup; in contrast, we propose that the required logic be

in the restore operation.

232



5.2 Online restore

Ideally, a transactional data service remains available while one of its persistent devices or

storage volumes is in media recovery. When a device first fails, if the buffer pool holds

some pages of the failed device at the time of the failure, all those pages may be marked

dirty immediately and do not require any further restore logic. While the database system

recovers a failed device, transaction processing continues on all other devices. Incomplete

transactions with updates on the failed device may, after the restore operation is complete,

resume or roll back. Several of the following extensions relax this restriction.

5.3 Incremental media recovery

If the media recovery merges backup and (partitions of the) log archive in the order of

database page identifiers, the replacement media can become available to transaction pro-

cessing incrementally. New log records ought to capture the progress, i.e., indicate the

restored and available page ranges on the replacement media. Transaction processingÐ

including queries, updates, transaction rollback, and even restart after a crashÐmanages

restored page ranges in the same way as media without failure or ongoing restore.

5.4 Multiple failures

During recovery from a media failure, other failures may occur. In an online restore oper-

ation, this includes transaction failuresÐrollback should be possible as much as forward

processing. Single-page failures (other than ahead of the restore process) can proceed pre-

cisely in the same way as in the absence of concurrent media failure and restore operations.

A media failure of another device simply invokes another instance of the (single-pass)

restore logic. A media failure of a replacement device simply requires another replacement

device and a new invocation of the (single-pass) restore logic. A system failure (software

crash) with an incomplete media recovery is the most complex case. It needs to resume the

media recovery at a database page identifier definitely reached prior to the system failure.

Thus, media recovery ought to log its progress occasionally as also suggested above for

incremental media recovery and incremental availability.

5.5 Virtual backups and remote virtual backup

In order to obtain an up-to-date full database backup, it is not required to increase the load

on a database server. Instead, merging an existing database backup and the runs in the log

archive produces the same result. Such a virtual backup “creates a backup without taking

a backup.”

233



If database transaction processing and recovery log are on one node in a network and

backups, log archiving, and log archive are on a second node, then this second node can

create a new, up-to-date backup without any load on the first node or the network between

the nodes. A remote virtual backup has great advantages for provisioning the network,

i.e., network bandwidth is required only for transaction processing but not for bursts due

to across-the-network backup operations.

6 Comparison with incremental backups

In traditional systems, incremental backups are the standard technique employed to in-

crease availability by decreasing time to repair on media failures. An incremental backup

is simply the set of pages that changed since the last full or incremental backup was taken.

As argued in this paper, partially sorted log archives render incremental backups com-

pletely unnecessary and thus obsolete. In this section, we provide a more in-depth dis-

cussion on the drawbacks of incremental backups as described by Mohan in the ARIES

family of algorithms [MN93]. The discussion also applies to differential backups, which

are taken always with respect to the last full backup.

Incremental backups require a special data structure to keep track of database pages that

changed since the last backup. In order to achieve acceptable performance, access to

this data structure must be done diligently, such that multiple updates to the same page

in between backups only require one update on the data structure. In Mohan’s method,

a special transaction first collects a list of pages that must be included in the backup,

resetting their state in the tracking data structure. Based on this list, the actual backup

copy is performed. The LSNs generated by this transaction are used as heuristic to avoid

updating the tracking state on every page update. The idea is that if the last update on a

certain page (given by its PageLSN) happened after the last backup was taken, then the

tracking state must have been already set by that last update. Thus, no extra access is

required.

We identify two main problems with Mohan’s approach. First, it adds complexity to the

buffer pool logic, since the responsibility of maintaining the tracking data structure falls

on normal page update operations. Our approach, in contrast, is completely independent

from buffer pool operations, since log archiving is a separate process that feeds only from

log data. This logical separation also implies less code complexity, less testing and main-

tenance effort, less concurrency control, and simpler recovery algorithms. Second, and

most importantly, incremental backup techniques become ineffective if higher availability

is desired. This is because frequent backups render the optimizations described by Mohan

[MN93] mostly ineffective, since the ratio between updates to the tracking data structure

and actual page updates increases. In contrast, partially sorted log archiving can be exe-

cuted at a very aggressive pace without any logical interference on transaction processing

activity. Only physical interference in the form of CPU and memory usage is expected,

which may not only be an acceptable trade-off for availability, but can also be mitigated

if log archiving is performed on a separate node in a network. This concern of logical

separation was also raised in the original paper [MN93], which proposes a technique to

234



perform full backups directly from data pages on disk, i.e., without involving the buffer

pool and thus not interfering with transaction processing. However, this technique is not

available for incremental backups.

One argument in favor of incremental backups may be that a single copy of a frequently

updated page may capture an arbitrarily large amount of updates since the last backup.

Relying on the archive log for redundancy, on the other hand, means that additional space

is consumed by log records of such hot-spot pages. However, as mentioned earlier, aggre-

gating updates on the same database page into “net changes” may be easily incorporated

in the processes of sorting the log (both during run generation and merging), thus reducing

the log volume of hot-spot database pages.

7 Summary and conclusions

In summary, the partially sorted log archive slightly increases the cost of transaction pro-

cessing, but reduces the duration of restore operations substantially. During transaction

processing, log archiving partially sorts the log records, quite similar to run generation

within an external merge sort. Restore operations merge a full database backup with runs

in the log archive. For a small and controllable increase in system load during transaction

processing, mean time to repair improves by a small factor, in some cases even an order of

magnitude. Improving the mean time to repair by an order of magnitude adds another “9”

to system availability, e.g., improving availability from 99.99% to 99.999%.

In conclusion, database backup and restore operations are ripe for innovation. The tech-

niques introduced and measured above reduce the time for media recovery by a substantial

factor. At the same time, with log replay practically free, there no longer is any advantage

in taking differential and incremental backups. Thus, the data structures required to guide

those partial backups are no longer required, simplifying database system implementa-

tion, quality assurance, and operations. Full backups no longer require access to the active

database. In fact, clusters with multiple nodes may create new, up-to-date backups without

access to the database server. In sum, single-pass restore based on the novel organization

of the log archive may do away with all database backup operations as we know them

today, in addition to speeding up restore operations and improving system availability.

Acknowledgments

We thank Pinar Tözün and Ryan Johnson for kindly and generously answering our ques-

tions about Shore-MT and Shore-Kits. Our gratitude is also extended to the Shore and

Shore-MT development teams for making their code available as open source, without

which this work would have been much harder to realize.

235



References

[BG88] Dina Bitton and Jim Gray. Disk Shadowing. In Proc. VLDB, pages 331±338, 1988.

[GK12] Goetz Graefe and Harumi A. Kuno. Definition, Detection, and Recovery of Single-
Page Failures, a Fourth Class of Database Failures. PVLDB, 5(7):646±655, 2012.

[GLI14] GLIBC. The GNU C Library Reference Manual. Available at:
http://www.gnu.org/software/libc/manual/html_node/

Renaming-Files.html, 2014. Accessed: 2014-10-06.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[Gra78] Jim Gray. Notes on Data Base Operating Systems. Lecture Notes in Computer Science,
60:393±481, 1978.

[Gra06] Goetz Graefe. Implementing sorting in database systems. ACM Computing Surveys
(CSUR), 38(3):10, 2006.

[JPH+09] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak
Falsafi. Shore-MT: a scalable storage manager for the multicore era. In Proc. EDBT,
pages 24±35, 2009.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, 1973.

[MHL+92] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES:
a transaction recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM TODS, 17(1):94±162, 1992.

[Mic14] Microsoft. Restore and Recovery Overview (SQL Server). Available at:
http://msdn.microsoft.com/en-us/library/ms191253.aspx,
2014. Accessed: 2014-10-09.

[MN93] C. Mohan and Inderpal Narang. An Efficient and Flexible Method for Archiving a
Data Base. SIGMOD Rec., 22(2):139±146, June 1993.

[MP91] C Mohan and Hamid Pirahesh. Aries-RRH: Restricted repeating of history in the
ARIES transaction recovery method. In Proc. ICDE, pages 718±727, 1991.

[MWMS14] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker. Re-
thinking main memory oltp recovery. In Proc. ICDE, pages 604±615, 2014.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays
of Inexpensive Disks (RAID). SIGMOD Rec., 17(3):109±116, June 1988.

[SGH14] Caetano Sauer, Goetz Graefe, and Theo Härder. An empirical analysis of database
recovery costs. In RDSS (SIGMOD Workshops), Snowbird, UT, USA, 2014.

[TAT12] TATP. Telecom Application Transaction Processing Benchmark. Available at
http://tatpbenchmark.sourceforge.net/, 2012. Accessed: Oct 2014.

[TPK+13] Pınar Tözün, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anastasia Aila-
maki. From A to E: analyzing TPC’s OLTP benchmarks: the obsolete, the ubiquitous,
the unexplored. In Proc. EDBT, pages 17±28, 2013.

236


