
Generalizing of a High Performance Parallel Strassen
Implementation on Distributed Memory MIMD

Architectures

Duc Kien Nguyen1, Ivan Lavallee2, Marc Bui2

1CHArt - Ecole Pratique des Hautes Etudes & Université Paris 8, France
Kien.Duc-Nguyen@univ-paris8.fr

2LaISC - Ecole Pratique des Hautes Etudes, France
Ivan.Lavallee@ephe.sorbonne.fr

Marc.Bui@ephe.sorbonne.fr

Abstract: Strassen’s algorithm to multiply two n×n matrices reduces the asymptotic
operation count from O(n3) of the traditional algorithm to O(n2.81), thus designing
efficient parallelizing for this algorithm becomes essential. In this paper, we present
our generalizing of a parallel Strassen implementation which obtained a very nice
performance on an Intel Paragon: faster 20% for n ≈ 1000 and more than 100%
for n ≈ 5000 in comparison to the parallel traditional algorithms (as Fox, Cannon).
Our method can be applied to all the matrix multiplication algorithms on distributed
memory computers that use Strassen’s algorithm at the system level, hence it gives us
compatibility to find better parallel implementations of Strassen’s algorithm.

1 Introduction

Matrix multiplication (MM) is one of the most fundamental operations in linear algebra
and serves as the main building block in many different algorithms, including the solution
of systems of linear equations, matrix inversion, evaluation of the matrix determinant and
the transitive closure of a graph. In several cases the asymptotic complexities of these
algorithms depend directly on the complexity of matrix multiplication - which motivates
the study of possibilities to speed up matrix multiplication. Also, the inclusion of ma-
trix multiplication in many benchmarks points at its role as a determining factor for the
performance of high speed computations.

Strassen was the first to introduce a better algorithm [Str69] for MM with O(N log2 7)than
the traditional one which needs O(N3) operations. Then Winograd variant [Win71] of
Strassen’s algorithm has the same exponent but a slightly lower constant as the number of
additions/subtractions is reduced from 18 down to 15. The record of complexity owed to
Coppersmith and Winograd is O(N2.376), resulted from arithmetic aggregation [CW90].
However, only Winograd’s algorithm and Strassen’s algorithm offer better performance
than traditional algorithm for matrices of practical sizes, say, less than 1020[LPS92]. The

359



full potential of these algorithms can be realized only on large matrices, which require
large machines such as parallel computers. Thus, designing efficient parallel implementa-
tions for theses algorithms becomes essential.

This research was started when a paper by Chung-Chiang Chou, Yuefan Deng, Gang Li,
and Yuan Wang [CDLW95] on the Strassen parallelizing came to our attention. Their
implementation already obtained a nice performance: in comparison to the parallel tradi-
tional algorithms (as Fox, Cannon) on an Intel Paragon, it’s faster 20% for n ≈ 1000 and
more than 100% for n ≈ 5000. The principle of this implementation is to parallelize the
Strassen’s algorithm at the system level - i.e. to stop on the recursion level r of execu-
tion tree - and the calculation of the products of sub matrices is locally performed by the
processors. The most significant point here is to determine the sub matrices after having
recursively executed r time the Strassen’s formula (these sub matrices are corresponding to
the nodes of level r in the execution tree of Strassen’s algorithm) and then to find the result
matrix from these sub matrices (corresponding to the process of backtracking the execu-
tion tree). It is simple to solve this problem for a sequential machine, but it’s much harder
for a parallel machine. With a definite value of r, we can manually do it like [CDLW95],
[LD95], and [GSv96] made (r = 1, 2) but the solution for the general case has not been
found.

In this paper, we present our method to determine all the nodes at the unspecified level
r in the execution tree of Strassen’s algorithm, and to show the expression representing
the relation between the result matrix and the sub matrices at the level recursion r; this
expression allows us to calculate directly the result matrix from the sub matrices calculated
by parallel matrix multiplication algorithms at the bottom level. By combining this result
with the matrix multiplication algorithms at the bottom level, we have a generalizing of the
high performance parallel Strassen implementation in [CDLW95]. It can be applied to all
the matrix multiplication algorithms on distributed memory computers that use Strassen’s
algorithm at the system level, besides the running time for these algorithms decreases
when the recursion level increases hence this general solution gives us compatibility to
find better implementations (which correspond with a definite value of the recursive level
and a definite matrix multiplication algorithm at the bottom level).

2 Background

2.1 Strassen’s Algorithm

We start by considering the formation of the matrix product Q = XY , where Q ∈

m×n, X ∈ 
m×k, and Y ∈ 
k×n. We will assume that m, n, and k are all even in-
tegers. By partitioning

X =
�

X00 X01

X10 X11

�
, Y =

�
Y00 Y01

Y10 Y11

�
, Q =

�
Q00 Q01

Q10 Q11

�

360



where Qij ∈ 
m
2 ×n

2 , Xij ∈ 
m
2 × k

2 , and Yij ∈ 
 k
2×n

2 , it can be shown [Win71, GL89]
that the following computations compute Q = XY :

M0 = (X00 + M11)(Y00 + Y 11)
M1 = (X10 + X11)Y00

M2 = X00(Y01 − Y11)
M3 = X11(−Y00 + Y10)
M4 = (X00 + X01)Y11

M5 = (X10 −X00)(Y00 + Y01)
M6 = (X01 −X11)(Y10 + Y11)
Q00 = M0 + M3 −M4 + M6

Q01 = M1 + M3

Q10 = M2 + M4

Q11 = M0 + M2 −M1 + M5

(1)

The Strassen’s algorithm does the above computation recursively until one of the dimen-
sions of the matrices is 1.

2.2 A High Performance Parallel Strassen Implementation

In this section, we will see the principle of the hight performance parallel Strassen imple-
mentation presented in [CDLW95], which is foundation for our generalizing.

First, decompose the matrix X into 2 × 2 blocks of sub matrices Xij where i, j = 0, 1.
Seconde, decompose further these four sub matrices into four 2 × 2 (i.e. 4 × 4) blocks of
sub matrices xij where i, j = 0, 1, 2, 3.

X =
�

X00 X01

X10 X11

�
=

��
x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

��
Similarly, perform the same decomposition on matrix Y and get:

Y =
�

Y00 Y01

Y10 Y11

�
=

��
y00 y01 y02 y03

y10 y11 y12 y13

y20 y21 y22 y23

y30 y31 y32 y33

��
Then, use the Strassen’s formula to multiply the matrices X and Y , and get the following

361



seven matrix multiplication expressions:����������������

M0 = (X00 + X11)(Y00 + Y11)
M1 = (X10 + X11)Y00

M2 = X00(Y01 − Y11)
M3 = X11(−Y00 + Y10)
M4 = (X00 + X01)Y11

M5 = (−X00 + X10)(Y00 + Y01)
M6 = (X01 −X11)(Y10 + Y11)

Next, apply the Strassen’s formula to these seven expressions to obtain 49 matrix multipli-
cation expressions on sub matrices x and y. Taking M0 as an example:

M00 = (x00 + x22 + x11 + x33) (y00 + y22 + y11 + y33)
M01 = (x10 + x32 + x11 + x33) (y00 + y22)
M02 = (x00 + x22) (y01 + y23 − y11 − y33)
M03 = (x11 + x33) (y10 + y32 − y00 − y22)
M04 = (x00 + x22 + x01 + x23) (y11 + y33)
M05 = (x10 + x32 − x00 − x22) (y00 + y22 + y01 + y23)
M06 = (x01 + x23 − x11 − x33) (y10 + y32 + y11 + y33)

Similarly, each of the remaining six matrix multiplication expressions Mi for i = 1, 2, . . . , 6
can also be expanded into six groups of matrix multiplications in terms of x and y.

M10 = (x20 + x22 + x31 + x33) (y00 + y11)
M11 = (x30 + x32 + x31 + x33) y00

M12 = (x20 + x22) (y01 − y11)
M13 = (x31 + x33) (y10 − y00)
M14 = (x20 + x22 + x21 + x23) y11

M15 = (x30 + x32 − x20 − x22) (y00 + y01)
M16 = (x21 + x23 − x31 − x33) (y10 + y11)

M20 = (x00 + x11) (y02 − y22 + y13 − y33)
M21 = (x10 + x11) (y02 − y22)
M22 = x00 (y03 − y23 − y13 + y33)
M23 = x11 (y12 − y32 − y02 + y22)
M24 = (x00 + x01) (y13 − y33)
M25 = (x10 − x00) (y02 − y22 + y03 − y23)
M26 = (x01 − x11) (y12 − y32 + y13 − y33)

M30 = (x22 + x33) (y20 − y00 + y31 − y11)
M31 = (x32 + x33) (y20 − y00)
M32 = x22 (y21 − y01 − y31 + y11)
M33 = x33 (y30 − y10 − y20 + y00)
M34 = (x22 + x23) (y31 − y11)
M35 = (x32 − x22) (y20 − y00 + y21 − y01)
M36 = (x22 + x33) (y30 − y10 + y31 − y11)

362



M40 = (x00 + x02 + x11 + x13) (y22 + y33)
M41 = (x10 + x12 + x11 + x13) y22

M42 = (x00 + x02) (y23 − y33)
M43 = (x11 + x13) (y32 − y22)
M44 = (x00 + x02 + x01 + x03) y33

M45 = (x10 + x13 − x00 − x02) (y22 + y23)
M46 = (x01 + x03 − x11 − x13) (y32 + y33)

M50 = (x20 − x00 + x31 − x11) (y00 + y02 + y11 + y13)
M51 = (x30 − x10 + x31 − x11) (y00 + y02)
M52 = (x20 − x00) (y01 + y03 − y11 − y13)
M53 = (x31 − x11) (y10 + y12 − y00 − y02)
M54 = (x20 − x00 + x21 − x01) (y11 + y13)
M55 = (x30 − x10 − x20 + x00) (y00 + y02 + y01 + y03)
M56 = (x21 − x01 − x31 + x11) (y10 + y12 + y11 + y13)

M60 = (x02 − x22 + x13 − x22) (y20 + y22 + y31 + y33)
M61 = (x12 − x32 + x13 − x33) (y20 + y22)
M62 = (x02 − x22) (y21 + y23 − y31 − y33)
M63 = (x13 − x33) (y30 + y32 − y20 − y22)
M64 = (x02 − x22 + x03 − x23) (y31 + y33)
M65 = (x12 − x32 − x02 + x22) (y20 + y22 + y21 + y23)
M66 = (x03 − x23 − x13 + x33) (y30 + y32 + y31 + y33)

After finishing these 49 matrix multiplications, we need to combine the resulting Mij

where i, j = 0, 1, . . . , 6 to form the final product matrix.

Q =
�

Q00 Q01

Q10 Q11

�
=

��
q00 q01 q02 q03

q10 q11 q12 q13

q20 q21 q22 q23

q30 q31 q32 q33

��
First, define some variables δi =

� −1, if i = 4
1 otherwise and γi =

� −1, if i = 1
1 otherwise , the 4 x 4

blocks of sub matrices forming the product matrix Q can be written as:

q00 =
�

i∈S1
δi (Mi0 + Mi3 −Mi4 + Mi6)

q01 =
�

i∈S1
δi (Mi2 + Mi4)

q02 =
�

i∈S3
Mi0 + Mi3 −Mi4 + Mi6

q03 =
�

i∈S3
Mi2 + Mi4

q10 =
�

i∈S1
δi (Mi1 + Mi3)

q11 =
�

i∈S1
δi (Mi0 + Mi2 −Mi1 + Mi5)

q12 =
�

i∈S3
Mi1 + Mi3

q13 =
�

i∈S3
Mi0 + Mi2 −Mi1 + Mi5

363



Figure 1: Principle of the Strassen parallelizing in [CDLW95].

q20 =
�

i∈S2
Mi0 + Mi3 −Mi4 + Mi6

q21 =
�

i∈S2
Mi2 + Mi4

q22 =
�

i∈S4
γi (Mi0 + Mi3 −Mi4 + Mi6)

q23 =
�

i∈S4
γi (Mi2 + Mi4)

q30 =
�

i∈S2
Mi1 + Mi3

q31 =
�

i∈S2
Mi0 + Mi2 −Mi1 + Mi5

q32 =
�

i∈S4
γi (Mi1 + Mi3)

q33 =
�

i∈S4
γi (Mi0 + Mi2 −Mi1 + Mi5)

As you saw above, it is not very simple although they have only 49 matrix multiplications.
It become great complicated if we want to go further - when we have 343, 2401 or more
matrix multiplications.

3 Generalizing of the Parallel Strassen Implementation

The principle of the method that has been presented is to parallelize the Strassen’s algo-
rithm at the system level - i.e. to stop on the recursion level r of execution tree - and the
calculation of the products of sub matrices is locally performed by the processors. The
most important point here is to determine the sub matrices after having applied r time the
Strassen’s formula, and to find the result matrix from the products of these sub matrices.
In the preceding works, the solutions are given with fixed values of r (= 1, 2). But the
solution for the general case has not been found.

Such are the problems with which we are confronted and the solution will be presented in
this section.

364



3.1 Recursion Removal in Fast Matrix Multiplication

We represent the Strassen’s formula:

ml =
�

i,j=0,1

xijSX(l, i, j)× �
i,j=0,1

yijSY (l, i, j)

l = 0 · · · 6
and qij =

6�
l=0

mlSQ(l, i, j)

(2)

with

Each of 7k product can be represented as in the following:

ml =
�

i,j=0,n−1

xijSXk(l, i, j)× �
i,j=0,n−1

yijSYk(l, i, j)

l = 0...7k − 1

and qij =
7k−1�
l=0

mlSQk(l, i, j)

(3)

In fact, SX = SX1, SY = SY1, SQ = SQ1. Now we have to determine values of
matrices SXk, SYk, and SQk from SX1, SY1, and SQ1. In order to obtain this, we extend
the definition of tensor product in [KHJS90] for arrays of arbitrary dimensions as followed:

Definition. Let A and B are arrays of same dimension l and of size m1 × m2 × . . . ×
ml, n1 × n2 × . . . × nl respectively. Then the tensor product (TP) is an array of same
dimension and of size m1n1 ×m2n2 × . . .×mlnl defined by replacing each element of
A with the product of the element and B.
P = A ⊗ B where P [i1, i2, ..., il] = A [k1, k2, ..., kl] B [h1, h2, ..., hl] , ij = kjnj + hj

with ∀1 ≤ j ≤ l;

Let P =
n⊗

i=1
Ai = (...(A1 ⊗ A2) ⊗ A3)... ⊗ An) with Ai is array of dimension l and of

size mi1 ×mi2 × . . . ×mil. The following theorem allows computing directly elements
of P

Theorem.
P [j1, j2, ..., jl] =

n�
i=1

Ai [hi1, hi2, ..., hil]

where jk =
n�

s=1

�
hsk

n�
r=s+1

mrk

�
.

(4)

365



Proof. We prove the theorem by induction. With n = 1, the proof is trivial. With n = 2,
it is true by the definition. Suppose it is true with n− 1. We show that it is true with n.

We have Pn−1 [t1, t2, ..., tl] =
n−1�
i=1

Ai [hi1, hi2, ..., hil] where tk =
n−1�
s=1

�
hsk

n−1�
r=s+1

mrk

�
with ∀1 ≤ k ≤ l; and then Pn = Pn−1 ⊗An.

By definition

Pn [j1, j2, ..., jl] = Pn−1 [p1, p2, ..., pl] An [hn1, hn2, ..., hnl] =
n�

i=1

Ai [hi1, hi2, ..., hil]

where jk = pkmnk + hnk = mnk ×
n−1�
s=1

�
hsk

n−1�
r=s+1

mrk

�
+ hnk

=
n−1�
s=1

�
hsk

n�
r=s+1

mrk

�
+ hnk =

n�
s=1

�
hsk

n�
r=s+1

mrk

�
The theorem is proved. ✷

In particular, if all Ai have the same size m1×m2× . . .×ml, we have P [j1, j2, ..., jl] =
n�

i=1

Ai [hi1, hi2, ..., hil] where jk =
n�

s=1

�
hskmn−s

k

�
.

Remark. jk =
n�

s=1

�
hskmn−s

k

�
is a jk’s factorization in base mk. We note a = a1a2...al(b)

the a’s factorization in base b hence P [j1, j2, ..., jl] =
n�

i=1

Ai [hi1, hi2, ..., hil] then jk =

hi1hi2...hin(mk).

Now we return to our algorithm. We have following theorem:

Theorem.
SXk =

k⊗
i=1

SX

SYk =
k⊗

i=1
SY

SQk =
k⊗

i=1
SQ

(5)

Proof. We prove the theorem by induction. Clearly it is true with k = 1. Suppose it is true
with k − 1. The algorithm’s execution tree is balanced with depth k and degree 7. Thanks
to (3), we have at the level k − 1 of the tree:

Ml =
 �
0≤i,j≤2k−1−1

Xk−1,ijSXk−1 (l, i, j)

�
×


 �
0≤i,j≤2k−1−1

Yk−1,ijSYk−1 (l, i, j)

�
0 ≤ l ≤ 7k−1 − 1

Then thanks to (2) at the level k we have

366



Ml[l�] =�
0≤i�,j�≤1



 �
0≤i,j≤2k−1−1

Xk−1,ij [i�, j�]SXk−1 (l, i, j)

�
SX(l�, i�, j�)

�
×

�
0≤i�,j�≤1



 �
0≤i,j≤2k−1−1

Yk−1,ij [i�, j�]SYk−1 (l, i, j)

�
SY (l�, i�, j�)

�
0 ≤ l ≤ 7k−1 − 1
0 ≤ l� ≤ 6
= �
0≤i�,j�≤1


 �
0≤i,j≤2k−1−1

Xk−1,ij [i�, j�]SXk−1 (l, i, j)SX(l�, i�, j�)

�
×

�
0≤i�,j�≤1


 �
0≤i,j≤2k−1−1

Yk−1,ij [i�, j�]SYk−1 (l, i, j)SY (l�, i�, j�)

�
0 ≤ l ≤ 7k−1 − 1
0 ≤ l� ≤ 6

(6)

where Xk−1,ij [i�, j�], Yk−1,ij [i�, j�] are 2k×2k matrices obtained by division Xk−1,ij , Yk−1,ij

in 4 sub matrices (i�, j� indicate the sub matrix’s quarter).

We present l, l� in the base 7, and i, j, i�, j� in the base 2 and remark that Xk−1,ij [i�, j�] =

Xk

�
ii�2, jj

�
2

	
. Then (6) becomes

M [ll�(7)] = �
0≤ii�(2),jj�

(2)≤2k−1−1

Xk[ii�(2), jj�(2)]SXk−1 (l, i, j)SX(l�, i�, j�)

× �
0≤ii�(2),jj�

(2)≤2k−1−1

Yk[ii�(2), jj�(2)]SYk−1 (l, i, j)SY (l�, i�, j�)


0 ≤ ll�(7) ≤ 7k−1 − 1

(7)

In addition, we have directly from (3):

M [ll�(7)] = �
0≤ii�(2),jj�

(2)≤2k−1−1

Xk[ii�(2), jj�(2)]SXk

�
ll�(7), ii�(2), jj�(2)

�× �
0≤ii�(2),jj�

(2)≤2k−1−1

Yk[ii�(2), jj�(2)]SYk

�
ll�(7), ii�(2), jj�(2)

�
0 ≤ ll�(7) ≤ 7k−1 − 1

(8)

Compare (7) and (8) we have

SXk

�
ll�7, ii

�
2, jj

�
2

�
= SXk−1 (l, i, j) SX (l�, i�, j�)

SYk

�
ll�7, ii

�
2, jj

�
2

�
= SYk−1 (l, i, j) SY (l�, i�, j�)

367



By definition, we have

SXk = SXk−1 ⊗ SX =
k⊗

i=1
SX

SYk = SYk−1 ⊗ SY =
k⊗

i=1
SY

Similarly

SQk = SQk−1 ⊗ SQ =
k⊗

i=1
SQ

The theorem is proved. ✷

Thanks to Theorem 3.1 and Remark 3.1 we have

SXk (l, i, j) =
k�

r=1
SX (lr, ir, jr)

SYk (l, i, j) =
k�

r=1
SY (lr, ir, jr)

SQk (l, i, j) =
k�

r=1
SQ (lr, ir, jr)

(9)

Apply (9) in (3) we have nodes leafs ml and all the elements of result matrix.

3.2 Generalizing

Now we known how to parallelize Strassen’s algorithm in general case: firstwe stop at
therecursion level r, thanks to the expressions (9) and (3),we have the entire corresponding
sub matrices:

Ml =
�

i, j = 0, 2r − 1
Xij

�
r�

t=1
SX (lt, it, jt)

�
× �
i, j = 0, 2r − 1

Yij

�
r�

t=1
SY (lt, it, jt)

�
l = 0...7r − 1

(10)

with

Xij =

 xi∗2k−r,j∗2k−r ... xi∗2k−r,j∗2k−r+2k−r−1

... ... ...
xi∗2k−r+2k−r−1,j∗2k−r ... xi∗2k−r+2k−r−1,j∗2k−r+2k−r−1


Yij =

 yi∗2k−r,j∗2k−r ... yi∗2k−r,j∗2k−r+2k−r−1

... ... ...
yi∗2k−r+2k−r−1,j∗2k−r ... yi∗2k−r+2k−r−1,j∗2k−r+2k−r−1


i = 0, 2r − 1, j = 0, 2r − 1

368



The product Ml of the sub matrices

���� �
i = 0, 2r − 1
j = 0, 2r − 1

Xij

�
r�

t=1
SX (lt, it, jt)

�����

and

���� �
i = 0, 2r − 1
j = 0, 2r − 1

Yij

�
r�

t=1
SY (lt, it, jt)

����� is locally calculated on each processor

by the sequential matrix multiplication algorithms.

Finally, thanks to (9) & (3) we have directly sub matrix elements of result matrix by
applying matrix additions instead of backtracking manually the recursive tree to calculate
the root in [LD95], [CDLW95], and [GSv96]:

Qij =
7r−1�
l=0

MlSQr(l, i, j)

=
7r−1�
l=0

Ml

�
r�

t=1
SQ (lt, it, jt)

� (11)

4 Conclusion

We have presented a general scalable parallelization for all the matrix multiplication algo-
rithms on distributed memory computers that use Strassen’s algorithm at inter-processor
level. The running time for these algorithms decreases when the recursion level increases
hence this general solution gives us compatibility to find better algorithms (which corre-
spond with a definite value of the recursive level and a definite matrix multiplication algo-
rithm at the bottom level). And from a different view, we have generalized the Strassen’s
formula for the case where the matrices are divided into 2k parts (the case k = 2 gives
usoriginal formulas) thus we have a whole new direction to parallelize the Strassen’s al-
gorithm. In addition, we are applying these ideas to all the fast matrix multiplication
algorithms.

References

[CDLW95] Chung-Chiang Chou, Yuefan Deng, Gang Li, and Yuan Wang. Parallelizing Strassen’s
Method for Matrix Multiplication on Distributed Memory MIMD architectures. Com-
puters and Math. with Applications, 30(2):4–9, 1995.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[GL89] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 2nd edition, 1989.

369



[GSv96] Brian Grayson, Ajay Shah, and Robert van de Geijn. A High Performance Parallel
Strassen Implementation. Parallel Processing Letters, 6(1):3–12, 1996.

[KHJS90] B. Kumar, Chua-Huang Huang, Rodney W. Johnson, and P. Sadayappan. A tensor
product formulation of Strassen’s matrix multiplication algorithm. Applied Mathemat-
ics Letters, 3(3):67–71, 1990.

[LD95] Qingshan Luo and John B. Drake. A scalable parallel Strassen’s matrix multiplication
algorithm for distributed memory computers. In Proceedings of the 1995 ACM sympo-
sium on Applied computing, pages 221–226, Nashville, Tennessee, United States, 1995.
ACM Press.

[LPS92] J. Laderman, V. Y. Pan, and H. X. Sha. On Practical Algorithms for Accelerated Matrix
Multiplication. Linear Adgebra and Its Applications, 162:557–588, 1992.

[Str69] Volker Strassen. Gaussian Elimination is not Optimal. Numer. Math., 13:354–356,
1969.

[Win71] Shmuel Winograd. On multiplication of 2 x 2 matrices. Linear Algebra and its Appli-
cations, 4:381–388, 1971.

370


