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Tracing of Multi-Threaded Java Applications in Score-P
Using JVMTI and User Instrumentation
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Abstract:

Over the past years, parallel Java applications received a substantial boost in the research field of
High Performance Computing, especially in the field of Big Data Analytics by the development
of Java-based frameworks, i. e., Apache Hadoop, Flink or Spark, amongst others, for processing
large-scale datasets. Analyzing the performance of said Big Data frameworks in particular, and
multi-threaded Java applications in general, is indispensable for efficient execution. Due to the high
number of threads, this requires a scalable runtime performance measurement infrastructure. The
established, open-source tracing framework Score-P provides such an infrastructure, but did not
support (parallel) Java applications, previously. We added support for tracing multi-threaded Java
applications to Score-P by implementing two instrumentation approaches. The first instrumentation
approach is based on the Java Virtual Machine tool interface (JVMTI) and allows to easily trace
an application without source code modifications. The second instrumentation approach allows to
manually modify sources via API functions such that only those parts of an application are recorded
which the user is interested in. Both instrumentation approaches were successfully applied to the LU
kernel of the established Java benchmark suite SPECjvm2008 at a modern HPC machine. We show
the quality of the implementations by determining the tracing overheads of the instrumented ver-
sions for different test scenarios using varying numbers of Java threads, and thus, varying numbers
of recorded events.

Keywords: Tracing, Java, Multi-Threaded, Score-P, Performance Analysis, Profiling, Instrumenta-
tion, JVMTI

1 Introduction

The programming language Java received a substantial boost in the research field of High
Performance Computing mainly due to features like networking and multi-threading sup-
port [TRE*13], [SBO1], [BGS06].
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The development of Big Data frameworks like Flink?, Hadoop6, or Spalrk7 increased the
usage of Java to process large-scale datasets in parallel in the past years. Due to their
generic nature, these frameworks leave room for performance improvements for particular
use cases or environments, €. g., when Remote Direct Memory Access (RDMA) is avail-
able [IRJ"12]. However, we perceive that their performance has not been systematically
analysed up to now. Performance analysis of programs written with these frameworks is
often based on measuring their runtimes, seldom on profiling [HB11]. Thus, the current
research within this field focuses on new methods for debugging and recording [Leil4]. In
general, the performance analysis of parallel Java applications is an active research field.

Profiling can provide statistics wrt. function runtimes accumulated over the total runtime
of an application and can already help to find bottlenecks. However, it introduces some
recording overhead. Tracing retains each event of each thread with its timestamp and pro-
vides more details, and can therefore be considered to be better suited to find dependencies
between threads, changed behavior caused by transient noise or skew during processing.
Unfortunately, tracing influences the runtime behavior even more than profiling since more
information is collected.

To overcome the challenge of recording Java applications utilizing many threads, a scal-
able performance measurement runtime infrastructure is required. Furthermore, to serve
the most common pattern of use, this infrastructure should require no or only minimal
code modifications and has to be applicable fast. For more advanced measurements, a
more fine-grained level of recording performance data should be offered to users which
can be used to manually select code regions of interest.

Our paper is structured as follows. Sect. 2 gives an overview about related work and sum-
marizes the main goals. Sect. 3 describes the methods needed to generate events during
the program’s execution, Sect. 4 describes the evaluation of the implementations and the
obtained results. Sect. 5 concludes this paper and sketches our future work.

2 Related work and main goal

Many proprietary and open-source software tools are available for analyzing the perfor-
mance of Java applications based on profiling and tracing. VisualVM® provides CPU and
memory profiling, HPROF can profile the heap. BTrace’ can apply user-defined trace
scripts to Java programs. InTrace'® only adds output instructions to programs. A tool for
monitoring is jMonitor which allows to add user-defined tracing logic to applications at
bytecode level [KF05]. DynaTrace'! is an established, but proprietary profiling and trac-
ing tool. VampirTrace [JBKT07] is open-source and capable to trace multi-threaded Java
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applications using an JVMTI!2-based instrumentation approach. More popular profiling

tools are AppPerfect Java Profiler or Eclipse Memory Analyzer. SLF4J!3 provides an ex-
tension for basic profiling. However, many of these tools lack support for collecting and
storing large traces for later analysis with other visualization tools, are not suited for multi-
threaded applications, or require to change the code, when switching from profiling to
tracing. hTrace'* and Zipkin'® follow the idea of Dapper [SBB*10] and provide an API
for user-defined trace generation and collection. However, both frameworks require to run
an additional service for collecting events. Additionally, Dapper’s intended use is to only
trace requests and responses. IBM JTrace'® allows the manual instrumentation of Java ap-
plications via a given set of API functions such that JVM internal methods, applications,
and Java methods can be traced.

We decided to implement the proposed instrumentation approaches within the Score-P
framework [KRM™12] for the following reasons: Score-P is an established, open-source
profiling and tracing framework!”. It is open-source and runs on modern HPC machines
with the possibility to implement extensions to it. In particular, an intent during design
was to unify existing measurement environments such that various analysis and visual-
ization tools, like Vampir[KBD08]'®, Cube!”, Tau or Periscope Tuning Framework”!
are supported. Furthermore, the design of Score-P allows that added instrumentation ap-
proaches can reuse all basic features of Score-P like scalability, trace collection or trace
file compressions.

Summarizing, the main goal of this paper is to present and discuss the support for pro-
filing and tracing of multi-threaded Java applications to the performance measurement
infrastructure Score-P by implementing two instrumentation approaches.

3 Implementation of instrumentation types in Score-P

Estimating the behavior of a program by tracing or profiling techniques requires to gen-
erate, collect, and store runtime events. Event collection and storage is common for all
instrumentation approaches and therefore the core of Score-P. Only the event generation
method is specific to the measurement environment and needs to adapt events for the rest
of the Score-P framework. Thus, we focused on the generation of events, which can be
done
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Fig. 1: Design of the JVMTI-based instrumentation. As the user code executes on the JVM, callbacks of the
JVMTI agent are invoked triggering appropriate actions in the Score-P framework. The new software component
is shown in gray.

1. externally, by using the unmodified source code and external tools which generate
events at runtime (e. g., via interpreter programs, library substitution, or other means
available in the execution context) and

2. internally, where the source code regions are annotated to generate tracing events.

We propose methods for external and internal event generation using an instrumentation
approach based on the Java Virtual Machine Tools Interface (JVMTI) (Subsection 3.1)
and an approach based on Java API methods (Subsection 3.2), i. e., users have to add
method calls to their source code to generate entry and exit events for each region they are
interested in.

Recording method entries and exits requires the creation of events for entering and leaving
the methods. Entry and exit events have to be linked with correct thread information, i. e.,
Score-P locations. Therefore, events for each thread start have to be created. Score-P uses
these thread start events to initialize the location. Later, this location can be passed to meth-
ods which create events for region entry and exit events. For visualization purposes, we
annotate the location with the thread’s name like it is specified in the Java source code.
Regions can be annotated with e. g. method name, source file name, and line numbers.

3.1 Instrumentation using JVMTI

The first proposed instrumentation approach is based on the Java Virtual Machine Tools
Interface and can be used to automatically record events for code regions of a program
at runtime. The JVMTI specification describes how a shared library, a so-called JVMTI
agent, is loaded into the Java Virtual Machine (JVM) and how functions of that library can
be registered as callbacks for various JVM events. The JVMTI agent receives calls at run-
time which are used to generate events for the measurement system. Callback parameters
contain additional information about the JVM event. The required thread context for the
callback is stored in thread local storage. Fig. 1 shows the details of our design.

Callbacks are registered for the entry and exit of methods, thread start and end, garbage
collection start and finish, object allocation and freeing. A detailed list of all registered
callbacks and their corresponding responsibilities is shown in Tab. 1.

Filtering rules can be used to steer the collection of events. This can be necessary when a
user is only interested in some regions, e. g. wants to ignore all methods in the java.lang
package, or wants to reduce the overhead of collecting and storing too many events. A
filter rule applies to either region names, source file names, or thread names and decides



JVM event Callback responsibilities

Method Entry Records an entry event for the method. Additionally, registers
the method when called for the first time.

Method Exit Records an exit event for the method.

Thread Start Registers the thread as a new location stored in thread local stor-
age.

Thread End Marks the end of the thread.

Garbage Collection Start Sets the garbage collection metrics to true.

Garbage Collection Finish ~ Sets the garbage collection metrics to false.

Object Allocation Adds the size of the allocated object to the object allocation
metrics, increments the number of allocations.

Object Free Subtracts the size of the object from the object allocation met-
rics, decrements the number of allocations.

Tab. 1: JVM events and description of corresponding callback code.

whether events for that region or thread are collected. To simplify the process of specifying
filters, users are allowed to use the wild card characters 7 and * matching any character
and strings of arbitrary length including the empty string, respectively. Filter rules can be
established by setting the environment variable SCOREP_FILTERING_FILE to the path of
a file containing these filter rules. If this variable is not set, a set of default filter rules is
automatically applied.

When a new region is registered, its name and the name of the source file containing that
region are checked against the filter rules. If the region should be filtered out, any events
for that region are discarded, so that no events for that region appear in the trace. Filtering
by location is implemented in a similar fashion. When a new thread has been started, the
thread start callback receives a handle of that thread so it can check whether the filter
accepts the thread’s name or not. If the filter allows recording of events for this thread, a
new location is created and stored in the thread local storage. When a method entry or exit
has been registered, the thread local storage of the current thread has to be accessed to get
the corresponding location. If a location is present in thread local storage, the event can be
recorded for that location. Otherwise, method entry or exit events are not recorded.

In summary, the JVMTI-based instrumentation approach offers the following benefits: For
the user, instrumentation is easy, as no source file modifications are required. The memory
size of classes and objects remains the same. Additional metrics, e. g., garbage collection
times, can be easily obtained. Tracing a different set of methods requires to change the filter
rules and rerun the program, but no recompilation is necessary. However, the approach is
limited to the method level, and filtering at runtime is required to exclude many events (of
core classes).

Further event generation, e. g., for synthetic or even native methods or object alloca-
tions, can be controlled by setting the environment variable SCOREP_JAVA_ENABLE to
synthetic, native, or memtrace, respectively. Combinations of these values are also
possible.



3.2 Java user instrumentation

Java user instrumentation, the second proposed instrumentation approach, allows users
to record only selected code regions of their applications using a set of API functions.
These functions invoke procedures of the measurement system directly, i. e., call internal
region and thread handling procedures of Score-P via the Java Native Interface (JNI)>2.
The design is shown in detail in Fig. 2. The user code calls functions of the proposed
Score-P Java API (in gray), which uses JNI to send information to the backend of Score-P.
If the user code calls C, C++ or Fortran functions, these native functions can use Score-P’s
native API to collect further events. The API for the programming languages C, C++, and
Fortran (native) is also depicted.

Score-P ]
Java
> region T Score-P
API internal
region
Score-P manage-
native w | ment
region 7
Java API
user |—
code Score-P ]
Java
> thread ':‘ Score-P
AP| internal
thread
Score-P manage-
pthread > ment
wrapper

Fig. 2: Design of the Java user instrumentation approach: API functions call internal Score-P functions via the
Java Native Interface. Newly developed software components are shown in gray boxes.

Essentially, users only have to use two Java functions for marking code regions. The
start and end of a selected region can be marked by adding a call to the API function
enterRegion and leaveRegion, respectively. To distinguish events of different threads,
users have to wrap java.lang.Thread objects with scorep.Thread objects. The com-
plexity of handling and passing around thread context objects is then hidden from the user.
The thread context is stored in thread local storage and automatically used by enterRe-
gion and leaveRegion.

The Java user instrumentation method is illustrated for the simple Java class Foo. List. 1
shows the source code of the original, non-instrumented class Foo. List. 2 shows the source
code of the Java user instrumented version of the method Foo.bar. The Score-P instru-
mentation class must be imported (step 1), the instrumentation environment has to be ini-
tialized (step 2) before any other method is called. Additionally, the source file (step 3) and
all regions (step 4) have to be registered before their use. Steps 1 to 4 have to be done only
once per source file. Then, every code region that should be included in the measurement
has to be surrounded by a try-finally clause (steps 5 and 6) to ensure that there is a
corresponding call to 1leaveRegion for each call to enterRegion, since exceptions can
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public class Foo extends Thread {
public void bar () {
// [...] Original code of method ’bar’ has to be added here.

}

@Override public void run() {
bar () ;

}

public static void main(Stringl[] args) {
// Normal method body.
new Foo().start();

List. 1: Original, non-instrumented version of the example class Foo.

import scorep.Instrumentation; // Step 1. Import Score-P instrumentation class

2| public class Foo extends Thread {
static {
Instrumentation.initialize(); // Step 2. Initialize the environment.

i

private static final long srcFileHandle = Instrumentation.
getFileHandleOfThisSourceFile(); // Step 3. Register the source file.

private static final long barRegion = Instrumentation.prepareRegion("Foo.

bar ()", srcFileHandle, 8, 15); // Step 4. Register the region.
public void bar () {
Instrumentation.enterRegion(barRegion); // Step 5. Enter region.
try {
// [...] Original code of method ’bar’ has to be added here.
} finally {
Instrumentation.leaveRegion(barRegion); // Step 6. Leave region.
}
}
@0verride public run() {
bar(); // not instrumented
}
public static void main(Stringl[] args) {
new scorep.Thread(new Foo()).start(); // Step 7. Wrap the thread.
}

List. 2: Application of the Java user instrumentation to the method Foo . bar.

appear during the execution of normal code. Threads can be instrumented by using wrap-
per objects (step 7). Cleanup is automatically done via a shutdown hook thread, which is
registered in method Instrumentation.initialize (not shown).

Once, all code regions have been instrumented, the corresponding source files can be com-
piled and executed as usual. Users only have to ensure that the Score-P instrumentation
library in terms of the JAR file scorepInstrumentation. jar can be found at the class
path, compare List. 3. Compared to the JVMTI-based approach, benefits of the Java user
instrumentation approach can be summarized as follows: Users can add event generation
to an arbitrary collection of statements and are not limited to the method level. Any se-
quence of statements or expressions can be chosen. Only those code regions marked by
the user will be recorded. There is no need to specify filter rules. Additionally, there is no
overhead of runtime filter checking. However, the approach shows the following limita-



javac -cp .:scoreplInstrumentation.jar <sourcefile> # Compilation
java -cp .:scoreplInstrumentation.jar <classname> # Execution

List. 3: Compilation of a Java user source file <sourcefile> and the execution of the corresponding class
<classname>.

tions: Source code line numbers cannot automatically be obtained at runtime. Especially,
aregion has to be defined before it is visited, because Score-P uses region handles to reuse
region definitions with their annotations. A workaround is to allow users to specify the line
numbers manually. However, line numbers can change many times because performance
analysis is mainly done during the software development process. In addition, events from
JVM internal threads like Destroy-Java-VM or Signal-Dispatcher cannot easily be
collected during the measurement. Several metrics, such as garbage collection activity or
object allocations are not included, because they would require adaptation of Java internal
classes. Constructors can also be only instrumented partially as the call to the constructor
of the parent class must be the first statement in a constructor.

4 Overhead estimation of performance measurements

To demonstrate the applicability of the two proposed instrumentation approaches, we in-
vestigated the tracing overhead of a reference application. We have chosen the thread-
parallel, scientific kernel scimark.lu.small of the established open-source benchmark suite
SPECjvm2008 v1.01?? developed by the Standard Performance Evaluation Corporation.
Each thread of the kernel performs a prescribed number of LU decompositions, i. ., a
matrix will be decomposed into the product of a lower triangular matrix and an upper
triangular matrix.

We measured the tracing overhead in terms of wall clock times needed for the execution of
each instrumented program version. According to [MKO7], the tracing overhead is mainly
dependent on the trace buffer size and on the number of recorded events, whereby the
overhead for writing the trace buffer increases with increasing number of processors. Thus,
we have chosen a fixed trace buffer size of 4 GB, such that the buffer was not flushed during
the recording process to avoid additional hard disk writes. For scalability tests, we varied
the number of used threads and with that the number of recorded events.

We compared the tracing overhead wrt. the uninstrumented version (‘“none”) for the fol-
lowing instrumentation types:

1.  JVMTI-based instrumentation implemented in VampirTrace v.5.14.4 (“vt-jvmti”),
2. JVMTI-based instrumentation implemented in Score-P (“scorep-jvmti”),

3. Java user instrumentation implemented in Score-P (“scorep-user”).

2 https://www.spec.org/jvm2008/
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Fig. 3: Screenshots of Vampir displays showing the process summaries of all recorded Java threads (left), the ac-
cumulated exclusive times of all recorded methods (top right), the number of invocations of all recorded methods
(middle right), and the legend of all methods and methods groups (bottom right) for the kernel scimark.lu.small
executed at HPC machine Venus with 16 Java threads and instrumented using “scorep-user” with filter rules set
“compareJvmtiToUser”.

Used set of filter rules: ‘“compareJvmtiToUser”

nr ng nr  “none” “vt-jvmti” “scorep-jvmti” “scorep-user”
- Prof. Trac. Prof. Trac.  Prof. Trac.

1 8,197 4 10.65 382.61 381.30 406.11 40520 10.72  10.92

8 65,555 11 11.20 1,478.57 1,482.81 1,579.06 143646 11.71 11.75
16 131,107 19 11.37 — — — 1142 11.73
32 252,211 35 12.11 — — — — 1228 1251
64 524419 67 13.75 — — — — 1412 1530
128 1,048,835 131 19.24 — — — — 1947 2095
256 2,097,667 259 24.61 — — — — 2521 2692

Tab. 2: Wall clock times in seconds for profiling (“Prof.”) and tracing (“Trac.”) the kernel scimark.lu.small exe-

LTS o« »

cuted on Venus using the instrumentations “none”, “vt-jvmti”, “scorep-jvmti”, “scorep-user”, using the filter rules
set “compareJvmtiToUser”, and specifying different numbers of used threads nr for the kernel. ng indicates the
number of recorded events, n;, the number of actually recorded threads.

All tests were executed on the HPC machine Venus?*, a shared-memory system of the
ZIH. The machine contains of 512 Sandy Bridge cores and has a total of 8 TiB shared
memory. The OpenJDK 8 Runtime Environment> was used for compiling and executing
the kernel. For the comparison of all three instrumentation types, the set of filter rules
for the JVMTI instrumentations had to be adapted such that these instrumentations record
the same events as the Score-P Java user instrumentation. The adapted set of filter rules
is named “compareJvmtiToUser”. Fig. 3 shows a screenshot of the performance analysis
and visualization tool Vampir displaying recorded performance data of the instrumenta-
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tion type “scorep-user”. Tab. 2 compares the instrumentation types for different thread
teams. As expected, the Java user instrumentation performs better than the JVMTI-based
instrumentations “vt-jvmti” and “scorep-jvmti”, and these instrumentations show similar
profiling and tracing overheads. This can be explained by the checks of the specified set of
filter rules at runtime which are not needed for the Java user instrumentation. These checks
have to be done for each method, including the method calls of the Java core classes. Since
the overhead is already large for a small number of threads, we did not measure the run-
times of the instrumented program versions for more than 8 threads. In contrast, the Java
user instrumentation does not require filter checking and introduces a comparably low
runtime overhead, even for large numbers of threads. The runtime overhead for profiling
is less than 5 percent, for tracing less than 15 percent. In particular, the profiling over-
head is smaller than the tracing overhead. Fig. 4 visualizes of the overall runtimes of the
uninstrumented version (“none”) and the Java user instrumented code (“scorep-user’’) with
profiling or tracing enabled.

| |

[ 0 Uninstrumented version
[0 User-instrumented version profiling

25 [ 0 User-instrumented version tracing —

Runtime in seconds
— [\
O =)
T T
| |

—
(=)
T
|

0 T T T T T T T
1 8 16 32 64 128 256

Number of used threads ny
Fig.4: Visualization of the overall runtimes of the uninstrumented version (blue boxes) and the Java user in-

strumented code with profiling (red boxes) or tracing (yellow boxes) enabled for different numbers of used
threads nr.



5 Conclusions and future work

We presented two instrumentation approaches for performance evaluation of Java appli-
cations and successfully applied our implementation to a thread-parallel benchmark. Gen-
erated trace files include thread, method, object allocation, and garbage collection events
forming an integrated view of the runtime behavior of a thread-parallel Java application.
Besides, the filter mechanism allows users to specify which methods and threads should
be recorded in a trace file. This simplifies choosing the event granularity level: Users can
decide on their own whether they want to see only long but seldom called methods or small
but frequently called methods. The test results related to computed tracing overheads show
that the JVMTI-based instrumentation type can be used to get an first overview over all
methods within a Java application for a small number of threads. Once, hot spots have
been identified, these can be further analyzed at a larger scale using the Java user instru-
mentation.

In the future, we plan to extend our approach with methods to automatically inject calls
from user code to our API, making manual instrumentation unnecessary. This requires
either source-to-source transformations or bytecode manipulations.

The advances made by our work presented here are related to the support of tracing multi-
threaded Java applications and serve as a first step into the direction of analyzing the
performance of Big Data frameworks. Thus, further investigations are required to extend
the Java tracing support towards measuring distributed frameworks such as Flink, Hadoop,
and Spark. Challenges are multi-process event generation and distributed fast event collec-
tion. For example, if an application is distributed over various data centers the time mea-
surements might differ. Therefore, the timestamps for the events might differ also which
complicates trace generations or interpretations.
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