
Heinrich C. Mayr, Martin Pinzger (Hrsg.): INFORMATIK 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 1495

Towards Identifying Spurious Paths in Combined

Simulink/Stateflow Models1

Marcus Mikulcak2, Thomas Göthel3, Paula Herber2 and Sabine Glesner2

Abstract:

MATLAB/Simulink and its state machine design toolbox State¯ow are widely-used industrial tools
for the development of complex embedded systems. Due to the dynamic as well as heterogeneous
nature of models that contain both Simulink and State¯ow components, their analysis poses a dif®cult
challenge. This paper outlines an approach to relate the semantics of both Simulink and State¯ow
and how to use it to perform an information ¯ow analysis on a combined Simulink and State¯ow
model. In the ®rst step, we analyze the State¯ow automata and generate timed output traces for
arbitrary inputs. In the second step, we use an existing timed path condition extraction algorithm for
the Simulink components to identify conditions for information ¯ow on paths of interest. Finally,
we analyze whether the compiled sets of timed path conditions are contained in the timed output
traces that we derive by using a novel trace notation for State¯ow automata. This approach makes
it possible to safely rule out the existence of information ¯ow on speci®c paths through a model.
Further, it presents a starting point to reason about non-interference between model parts, compliance
with security policies as well as the generation of feasible, ef®cient test cases.

Keywords: Embedded Systems, MATLAB, Simulink, State¯ow, Path Conditions, Information Flow

1 Introduction

In the area of safety-critical embedded software, such as in the automotive and aerospace

domain, programming errors can lead to disastrous and, if occurring, often fatal accidents.

At the same time, the complexity of such systems has increased dramatically over recent

years. To cope with the steadily increasing complexity, current design processes rely

more and more on models. One of the most widely-used tools for model-based design

is MATLAB/Simulink [Ma15] by MathWorks, which supports the graphical design and

simulation of time-continuous as well as time-discrete systems using block diagrams. To

additionally support the design of state machine-based embedded controllers and model

them in conjunction with these dynamical systems, State¯ow [Ma14], an extension to

Simulink, is widely used in industrial contexts.

However, due to the complexity and the dynamic character of the developed models,

the analysis of a given model is a dif®cult challenge, in particular if timing aspects are

1 Funded by the German Federal Ministry of Education and Research as part of the research project CISMo
2 Technische Universität Berlin, Software and Embedded Systems Engineering Group, Ernst-Reuter-Platz 7,

10587 Berlin, Germany, marcus.mikulcak@tu-berlin.de
3 Service and Software Engineering Group, Universität Potsdam, August-Bebel-Straûe 89, 14482 Potsdam,

thomas.goethel@uni-potsdam.de

1496 Marcus Mikulcak et al.

considered. At the same time, knowledge about the existence of certain paths, the conditions

under which they are executed and how an embedded State¯ow controller in¯uences their

behavior is highly desirable.

Using knowledge about the behavior of State¯ow controllers and their in¯uence on con-

ditionally executed components of the model makes it possible to identify interference

and non-interference between model parts and, thus, to reason about compliance with

security policies. Furthermore, knowledge about the existence of paths provides a basis

for generating feasible, ef®cient test cases for quality assurance and for calculating more

precise Worst Case Execution Time (WCET) bounds for Simulink/State¯ow models.

Additionally, the information gathered using our approach can be used as a ®rst step to

identifying areas of low dynamic coupling in Simulink/State¯ow models and to subse-

quently extract abstract boundaries between these areas. This makes it possible to safely

break down large models into smaller components which in turn can be analyzed using

existing quality assurance methods, such as model checking, thereby avoiding the state

space explosion problem. Together with our industrial partner, Model Engineering Solutions

GmbH (MES) [ME16], we identi®ed a number of models from the automotive sector that

match the modeling style our approach is able to analyze and that therefore bene®t from

such a separation, such as electronic gearbox system controllers and interior and exterior

lighting controllers. These models are developed using one or multiple State¯ow automata

controlling data ¯ow sections designed in Simulink and due to their size and dynamic

complexity, are dif®cult to analyze without prior separation.

In this paper, we illustrate our three-step approach to identify spurious paths in com-

bined Simulink/State¯ow models using a small running example. First, we extract timed

output traces from an embedded State¯ow controller. These extracted traces form an over-

approximation of the automaton behavior as we aim to support arbitrary input signals. We

then use a previously published algorithm to extract timed path conditions from dynamic

data-¯ow components developed in Simulink and prepare them for analysis. Finally, we

present a comparison algorithm for timed output traces and timed path conditions to identify

overlap between them. If there is an overlap, the conditionally executed paths under analysis

exist. If not, they are identi®ed as infeasible and will never be executed in the model.

2 Preliminaries

2.1 Path Conditions

In general, path conditions [Ki76] describe necessary conditions for paths to be executed.

In [HSS08], path conditions are used to capture all paths where information might ¯ow

from a source to a target. Consider the example given in Listing 1. There, a variable CE❝ is

assigned to an element of the array ❛. Inside the ✐❢ statement, the variable A❣A is assigned

with an element of the array. A static analysis of the possible paths of this program would

detect potential information ¯ow from CE❝ to A❣A. However, a more precise computation

of path conditions takes data and control dependencies into account.

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1497

1 ❛✐ ✰ ✸ ❂ 57❝❀
2 ✐❢ ✭✭✐ ❃ ✶✵✮ ✫✫ ✭❥ ❁ ✺✮✮
3 3❣3 ❂ ❛✷ ✯ ❥ ✲ ✹✷❀

Listing 1: Path condition example

When traversing the path of information ¯ow between lines 1 and 3, the necessary conditions

are derived from the array indices and the ✐❢-condition and can be expressed as:

PC(1→3) = ∃ i, j
(

(i > 10)∧ (j < 5)∧ (i+3 = 2 j−42)
)

The result is that there is no assignment to ✐ and ❥ such that the equation holds. In contrast

to the result from a static analysis, this means that no information ¯ow is possible. This

simple example demonstrates that a path condition-based analysis is able to offer more

precise answers about which conditions have to hold for information to ¯ow.

2.2 Information Flow Analysis

The protection of con®dentiality of information inside a software system is a long-standing

and increasingly important problem in the areas of general computing as well as embedded

systems. Protecting not only the data itself but also the integrity of the functionality that

produces and handles data is a goal of software non-interference policies [GM82]. Such

policies, based on the assignment of security levels to data elements, describe rules between

which levels information ¯ow is allowed or forbidden [SM03]. When aiming at assuring

confidentiality, data is prohibited to ¯ow to inappropriate locations, while in the context of

integrity, data is prohibited to ¯ow from inappropriate sources. As non-interference refers

to the absence of information ¯ow, it ensures both con®dentiality and integrity.

2.3 MATLAB/Simulink

MATLAB/Simulink [Ma15] is an add-on to the MATLAB IDE by MathWorks that enables

graphical modeling and simulation of reactive systems. In its data-¯ow oriented notation,

Simulink employs blocks which are connected using signals. Additionally, each block and

signal is assigned a set of parameters.

Simulation of Simulink models is performed using solvers, which compute the output of

each block according to its semantics. Variable step solvers aim at automatically ®nding

a simulation step size for each block in the model to achieve a level of precision set by

the model developer. Fixed step solvers use a ®xed simulation step size at the expense of

precision while increasing performance. The former class of solvers is commonly used for

hybrid or purely time-continuous systems, while the latter is used for time-discrete models.

2.4 Stateflow

State¯ow [Ma14] is a further add-on to the MATLAB IDE, especially to Simulink, and gives

the designer the possibility to integrate decision logic based on state machines and ¯ow

1498 Marcus Mikulcak et al.

charts into a Simulink model. State¯ow provides complex modeling styles incorporating

multiple state, event and transition types as well as an execution semantic not only dependent

on the structure and annotations of the model, but also on its layout. The underlying

semantics resemble that of statecharts [Ha87] as they utilize hierarchical and concurrent

state structures, junctions splitting transitions and actions as part of state de®nitions.

C
entry: a > 1;
during: counter = counter + 1
exit: E();

(a) Example of a ❙*❛*❡ in State¯ow

BA
E [a == 1] {b = 3} / {c = 2}

(b) Example of a ❚-❛♥,✐*✐♦♥ in State¯ow

2.4.1 States

States form the basic building block of the decision logic implemented in State¯ow. An

example of a state is shown in Figure 1a. When the execution enters a state, a set of actions

modeled by the designer takes place. When these actions are performed is determined

by the action type: ❡♥AE②, ❞✉E✐♥❣ and ❡①✐A. While the sets of ❡♥AE② and ❡①✐A actions

occur only once every time the state is active, the ❞✉E✐♥❣ actions are performed with every

simulation step and are therefore dependent on the selected solver of the Simulink and

State¯ow model.

2.4.2 Transitions

To design the state change logic of an automaton, State¯ow states are connected via

transitions. Similar to states, it is possible to add guards, trigger events and actions to

transitions. Figure 1b shows an example transition containing all three mentioned semantical

elements. After receiving event ❊ as the ❡①✐A action of state ❈, it is evaluated if the current

transition is valid, which in turn evaluates the guard condition ❛ ❂❂ ✶ and, if true, perform

the transition. As soon as this guard is evaluated to true, the guard action ❜ ❂ ✸ is executed.

Before ®nally marking state ❇ as active, however, the transition action ❝ ❂ ✷ is executed.

2.5 Timed Path Conditions in MATLAB/Simulink

We have previously presented our approach to compute timed path conditions in MAT-

LAB/Simulink [Mi15], which we extend upon in this paper. The main idea of timed path

conditions is to transfer the concept of path conditions from sequential programming

languages like ❈ to the Simulink modeling language. The main challenges are to take

both data and control dependencies into account and to cope with timing dependencies.

Data dependencies are simply resolved by following signal lines where each connection

corresponds to a direct dependency. Control dependencies are more dif®cult to compute

as they introduce conditional dependencies which are locally resolved. To overcome this

problem, control ¯ow dependencies are propagated backwards through the model to the

input signals. With that, it is possible to decide whether a certain path actually exists on a

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1499

very ®ne-grained level. For both data and control dependencies, timing dependencies are

taken into account. An output might only depend on an input at certain points of time, and

routing policies might even take advantage of timing delays to make sure that two signals

can never interfere. Timing dependencies are taken into account by introducing time slices

and timed path conditions are expressed with respect to relative time slices.

3 Path Existence in Simulink/Stateflow Models

In the following section, we describe the main contribution of this paper. First, we present an

overview of our approach and an example model to illustrate the problem we aim at solving.

Subsequently, we introduce the assumptions we impose on the models that our approach in

its current proof-of-concept form is able to analyze. Finally, using our running example,

we present our timed trace format and how to extract them from State¯ow automata, the

generation of timed path conditions and the comparison algorithm for both trace sets.

3.1 General Approach

The heterogeneous nature of models containing both Simulink and State¯ow parts makes

their analysis hard. The main challenge is to reconcile the inherently different semantics

of Simulink and State¯ow, and in particular their timing. The semantics of Simulink is

de®ned by the simulation semantics of the solver, where the functionality and timing

depend on the simulation step size. The semantics of State¯ow is de®ned by evaluation

rules that determine which transition ®res in each step, whereby a step is made whenever

one of the input signals changes. The main idea of our approach for identifying spurious

paths in combined Simulink/State¯ow models is to relate a State¯ow Controller with its

surrounding Simulink model using the concept of timed traces. As the identi®cation of

spurious paths in Simulink models [Mi15] is achieved by a backwards analysis through the

model, the incorporation of State¯ow components requires us to analyze the effects of a

State¯ow component on its (signal and variable) outputs for arbitrary inputs. Note that a

❙3❛3❡✢♦✇ ❈♦♥35♦❧❧❡5

❈♦♥35♦❧❧❡❞ ❙✐♠✉❧✐♥❦ ❈♦♠♣♦♥❡♥34

❚✐♠❡❞ ❖✉3♣✉3

❚5❛❝❡4 TSF

❚✐♠❡❞ ,❛3❤

❈♦♥❞✐3✐♦♥4 TPC

TSF ∩TPC

❖✉3♣✉3

❙✐❣♥❛❧4

■♥♣✉3

❙✐❣♥❛❧4

ts
ts

Figure 2: Approach to identify spurious paths in combined Simulink/State¯ow models

1500 Marcus Mikulcak et al.

State¯ow state machine is connected to the surrounding model via Simulink signals that

form the variables used inside guards. Variables modi®ed in state or transition actions inside

State¯ow state machines form their output signals and are routed to the Simulink model.

The evaluation of a State¯ow automaton is performed whenever one of the input signals

to the automaton changes its value. Then, its state is reevaluated and a single possible

transition is taken. We can therefore de®ne a minimal time interval between every change

in the output of a State¯ow automaton. Under the assumption of a uniform sample time

throughout the model, it is equal to the simulation step size ts. This relation between the

discretely-timed solver of the Simulink model and the evaluation of the State¯ow automaton

makes it possible to relate both semantics. As shown in Figure 2, we assume that a State¯ow

Controller is embedded into a Simulink model and has an effect on some of its components.

Our approach to identify spurious paths in combined Simulink /State¯ow is threefold: First,

we analyze the behavior of an embedded State¯ow automaton under functional and timing

aspects. Speci®cally, we extract timed traces for outputs signals in¯uencing the control ¯ow

of the surrounding Simulink model by unrolling the automaton until a stable state is reached.

The output of this step is a set of possible traces TSF for an output signal of interest that

forms the basis for analysis of path existence in the combined model. Second, we utilize an

existing algorithm Section 2.5 to extract timed path conditions for paths of interest from

the Simulink model. Along these paths that carry, e.g., safety-critical information whose

¯ow needs to be analyzed, the conditions for information ¯ow as well as their timing are

gathered and expressed as traces TPC. Third, we compare the traces derived from Simulink

path conditions with the extracted timed output traces of the State¯ow automaton. In this

®nal step, we analyze whether the sets of timed path conditions can be generated by the

State¯ow automaton, i. e., if they overlap with the timed output traces (TSF ∩TPC). We

explain these three steps using a running example, presented in the following section.

Running Example To illustrate our approach, we use a model of a shared buffer originally

presented in [WHW10], shown in Figure 3. There, information of the security levels public

and confidential is fed into a shared buffer, implemented as a ▼❡♠ block. According to the

operation mode, con®dential (mode 1) or public (mode 2), information is saved in the buffer

and passed to the corresponding output. The mode of operation to access the buffer is deter-

mined by the State¯ow model in Figure 4. Write access to the buffer on the corresponding

security level is requested using the ✇E✐A❡E❡G✉❡CA signal if the state machine is in its

✇❛✐A✐♥❣ state. To return to the initial state, a read request with the corresponding level is

used. Data output from the automaton to the surrounding Simulink components is realized

using the entry actions inside the states. Whenever the automaton enters a state, the action

is performed. In our running example, the output signal ❝✉EE❡♥ACA❛A❡ is written. While

the automaton is in the ♣✉❜❧✐❝ or ❝♦♥❢✐❞❡♥A✐❛❧ mode, the Simulink switches are set to

only allow for input and output of public or con®dential data, respectively.

Figures 5a to 5c illustrate that due to the timing behavior of the Simulink components in the

system, information ¯ow from the con®dential input to the public output is indeed possible.

Shown there, a change in operation mode from ❝♦♥❢✐❞❡♥A✐❛❧ to ♣✉❜❧✐❝ at time t = 5

results in a leak of con®dential information stored in the buffer to the public data output.

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1501

confidential_write_request

confidential_read_request

public_write_request

public_read_request

current_state

buffer_scheduler

1

2

*, 3

Multiport
Switch

0

Constant

Memory

1

confidential_write_request

2

confidential_read_request

3

confidential_data

4

public_write_request

5

public_read_request

6

public_data

1

confidential_data_output

2

public_data_output

== 1

compare_confidential

== 2

compare_public

T

F

public_output_switch

T

F

confidential_output_switch

Figure 3: Model of a shared buffer in Simulink

public

entry: current_state = 2;

confidential

entry: current_state = 1

waiting

entry: current_state = 3;
[public_write_request == 1]

2

[confidential_read_request == 1]

[confidential_write_request ==1]

1

[public_read_request == 1]

Figure 4: The State¯ow automaton of our running example

Timed Traces As a basis for comparison of the outputs of a State¯ow automaton and the

sets of timed path conditions extracted using the algorithm described in Section 2.5, we

de®ne a data format to capture all required information. We call this a timed trace. For a

given signal s1 we capture its valuations v1,v2, . . . ,vn and the number of simulation steps

that pass between the occurrences of these valuations. The general formats of the traces are:

s1 = {v1
nts−→ v2

kts−→ . . .}, s2 = {v1

⌊nts⌋
−−−→ v2

⌊kts⌋
−−−→ . . .}

There, s1 and s2 denote signals in the Simulink model or outputs of the Simulink automaton

while n and k are factors of the simulation step size ts. Shown in s2 is the notation of at

least n and k simulation steps passing between the two valuations of s2.

Assumptions As we present a proof-of-concept implementation for the evaluation of path

existence in combined Simulink/State¯ow models, both the State¯ow as well as Simulink

components have to ful®ll certain requirements. For the latter, the requirements are listed

in [Mi15]. For the former, we as of now assume a basic form of State¯ow automaton

consisting of only states and transitions without any hierarchical grouping or the use of

1502 Marcus Mikulcak et al.

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽

✶

✷

✸

✵

❝♦♥✜❞❡♥2✐❛❧

♣✉❜❧✐❝

(a) Operation mode

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽

✶

✷

✸

✵

(b) Con®dential data output

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽

✶

✷

✸

✵

(c) Public data output

Figure 5: Timing of the shared buffer signals

junctions. However, we are con®dent that the presented approach can be extended to support

a wide range of State¯ow modeling features and styles which we describe in Section 6.

3.2 Generating Timed Traces from Timed Path Conditions

In the ®rst step of our approach, we use the algorithm summarized in Section 2.5 to generate

timed path conditions from the dynamic data-¯ow components. The solved constraints in

our example model result in the following path conditions:

C
(

p(ot
2, i

t−1
3)

)

=
{

(st
control == 2),st−1

control == 1
}

This set shows the conditions for information to ¯ow through the path starting at data

inport i3 for con®dential data and leading to the data output port i2 for public data. As can

be seen there, two conditions are imposed on the signal denoting the current state of the

system (either ❝♦♥❢✐❞❡♥A✐❛❧ or ♣✉❜❧✐❝). The conditions denote that information ¯ows

from the public inport to the con®dential output whenever scontrol is ®rst set to 1 (at an

arbitrary time t −1) and then set to 2 in the next time step (at time t). Note that t −1 in the

algorithm denotes a time that is a single simulation step earlier than t, i. e., time t − ts. We

can therefore rearrange the condition set into a timed trace τ ∈ TPC as follows:

τ(scontrol) = {1
ts−→ 2}

In our example, the trace τ(scontrol) de®nes the conditions for a security policy violation

to occur in the Simulink components, i. e., con®dential data is led to the public data

outport. Therefore, if we are able to identify τ(scontrol) in the output traces of the State¯ow

automaton, the security violation occurs in the combined system and vice versa.

3.3 Establishing a Control Relation

To elevate the timed path conditions and to generate a global statement about the existence

of traces, a connection between the signals controlling the execution of the path and the

output signals A of the State¯ow automaton needs to be identi®ed. The timed path condition

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1503

extraction algorithm aims to unify the signals controlling all control ¯ow elements such as

❙✇✐A❝❤ and ■❢✲❆❝A✐♦♥✲❙✉❜C②CA❡♠. Using this information, our approach follows these

signals backwards through the Simulink model until it encounters a State¯ow automaton.

Running Example In our example, this relation is established by following the signal

path such that:

scontrol = ocurrent_state, with ocurrent_state ∈ O

If a connection is found, we extract output traces from the State¯ow automaton, speci®cally

for the control signals of the paths. This process is illustrated in the following section.

3.4 Extracting Timed Stateflow Automata Traces

In this section, we present our approach to extract timed output traces from State¯ow

automata. As explained above, a prerequisite to this analysis is an established connection

between the control signals of the path through the Simulink components, i. e., the path

under analysis, and the State¯ow controller setting these signals. The inputs to this step are

the traces generated from the timed path conditions and their connection to the automaton.

In this step, we especially consider the possibilities of modeling states and transitions in

State¯ow. When a state is entered, a set of actions takes place, such as the modi®cation

of output signals of the automaton or the triggering of events. When these actions are

performed is determined by the action type: ❡♥AE②, ❞✉E✐♥❣ and ❡①✐A. Depending on this

choice by the programmer, the timing behavior and the frequency of the modi®cations

and triggers changes. While the sets of ❡♥AE② and ❡①✐A actions occur only once every

time the state is active, the ❞✉E✐♥❣ actions are performed with every simulation step and

are therefore dependent on the selected solver of the Simulink and State¯ow model. To

design the state change logic of an automaton, State¯ow states are connected via transitions.

Similar to states, it is possible to add guards, trigger events and actions to transitions.

Our analysis, seen in Algorithm 1, computes an over-approximation of all traces that can be

produced by a given State¯ow model by performing a depth-®rst search on its state space. It

starts with the initial node of a system and a set of empty traces T (o) for all output signals

of the State¯ow automaton. When processing a node, the function ♥♦❞❡❆♥❛❧②C✐C ®rst

analyzes the set of actions assigned to the current state. If any of the actions contains an

assignment to ocontrol, the value of this assignment is appended to τ(ocontrol). Additionally,

our algorithm internally saves the origin of the assignment, i. e., the state and the action type

containing the assignment. If the trace was not previously empty, the time step calculation,

which we present below, is initiated. After the time interval to the previously appended

value is calculated and added to the timed trace, or if the trace was previously empty, the

algorithm continues by adding all outgoing transitions to a work list. For every transition on

the work list, a similar analysis is performed by the function AE❛♥C✐A✐♦♥❆♥❛❧②C✐C. As

we assume arbitrary inputs to the system, we do not need to include guards into our analysis

and consider them to be true in all cases. Similarly, we assume that transition trigger events

are always active. When taking a transition from the worklist, its condition and transition

1504 Marcus Mikulcak et al.

Function ❡①*-❛❝*❚-❛❝❡,
Input : output signal of interest ocontrol

worklist of transitions twork

visited transitions tvisited

state v

✴✴ ❉♦❡4 ❝✉66❡♥2 42❛2❡ ❝♦♥2❛✐♥ ❛44✐❣♥♠❡♥2 2♦ ❝♦♥26♦❧ 4✐❣♥❛❧❄

✴✴ ■❢ 4♦✱ ✇6✐2❡ 2❤❡♠ ✐♥2♦ τ(o❝♦♥#!♦❧)

♥♦❞❡❆♥❛❧②,✐, (v,ocontrol,τ(ocontrol));
✴✴ ■❢ 42❛2❡ ❞♦❡4 ♥♦2 ❤❛✈❡ ♦✉2❣♦✐♥❣ 26❛♥4✐2✐♦♥4✱ ❡♥❞ 6❡❝✉64✐♦♥

if |tout(v)|== 0 then return;

for t : tout(v) do
✴✴ 6❡2✉6♥ ✇❤❡♥ ❡♥❝♦✉♥2❡6✐♥❣ ♣6❡✈✐♦✉4❧② ✈✐4✐2❡❞ 26❛♥4✐2✐♦♥4

if t ∈ tvisited then return;

else twork.add(t);

end

tnext =pop(twork);
✴✴ ❙❡❛6❝❤ ♥❡①2 26❛♥4✐2✐♦♥ ❢♦6 ♦❝❝✉66❡♥❝❡ ♦❢ ❝♦♥26♦❧ 4✐❣♥❛❧ ❛44✐❣♥♠❡♥2

-❛♥,✐✐♦♥❆♥❛❧②,✐, (tnext,ocontrol,τ(ocontrol));
vnext =dst(tnext);
✴✴ ✇♦6❦ ♦♥ ♥❡①2 42❛2❡

❡①*-❛❝*❚-❛❝❡, (ocontrol, twork, tvisited, vnext);

Algorithm 1: Extracting traces from State¯ow automata

actions are searched for assignments to ocontrol. If none is found, the algorithm continues

by visiting the next state and performing the analyses explained above. For every outgoing

transition on the initial node, the algorithm is run recursively while maintaining the worklist

of unvisited transitions, possibly creating an over-approximation for states included in

loops. However, this behavior is deliberate to facilitate a trace comparison across loops.

Whenever a previously visited transition is encountered or when a state does not have any

outgoing transitions, the base case of the recursion is reached and a set of traces for outputs

of interest is returned. Internally, an ordered list of visited states is maintained to facilitate

the time step calculation. This way, starting with the initial state, all states are visited and

all transitions are taken while traces for all variables of interest are constructed.

Time Step Calculation As explained above, we aim at relating the timing of changes

to the outputs of a State¯ow automaton to each other. We are interested in the minimal

time interval between such changes, as these de®ne the in¯uence of the automaton on the

surrounding model when analyzing information ¯ow. This calculation is triggered whenever

an assignment to the control signals under analysis is recognized in the actions of a state or

a transition. In this case, the current state and the list of visited states, i. e., the path of the

current recursion are used to perform a backwards analysis of the minimal time interval tdiff

between the control signal assignments. The calculation is performed by iterating back-

wards over the path of visited states and transitions while observing the transition guards.

If a guard does not use temporal operators, tdiff is increased by 1 ts as the reevaluation of

State¯ow automata is triggered every simulation step of the surrounding Simulink model

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1505

with an interval of ts. If it does use temporal condition operators, further analyses are neces-

sary. These operators take one of two forms: event-based and absolute-time. Event-based

operators, such as ❛❢A❡E, ❛A, ❡✈❡E② and ❜❡❢♦E❡ appear in the form of, e. g., ❛❢A❡E✭✺✱

❊✮. In this example, the operator evaluates to true after at least 5 occurrences of event ❊

have taken place since activation of the State¯ow chart. Absolute-time operators work

in a similar fashion. However, they do not count the number of occurrences of an event

but evaluate the simulation time of the model. For our implementation, we currently only

support the extraction of the event-based notation ❛❢A❡E✭♥✱ ❊✮ from which the number

of event occurrences n is extracted and added to tdiff. As we are extracting a minimal time

interval, we do not need to evaluate the precise timing of event occurrences. Therefore, due

to the State¯ow automaton evaluation interval, n occurrences of an event take at least nts.

Running Example In the case of our motivating example, the (over-approximated) set

of traces TSF extracted by our algorithm is the following:

T (ocurrent_state) =

{

{3
⌊ts⌋
−−→ 1

⌊ts⌋
−−→ 3

⌊ts⌋
−−→ 2

⌊ts⌋
−−→ 3},{3

⌊ts⌋
−−→ 2

⌊ts⌋
−−→ 3

⌊ts⌋
−−→ 1

⌊ts⌋
−−→ 3}

}

3.5 Comparing Trace Sets

In the last step, we aim to establish a relation between the two sets of traces, i. e., the set

of path conditions expressed as timed traces and the set of possible output traces of the

State¯ow automaton. In order to show that information ¯ow on the path under analysis can

never occur, the relation TSF ∩TPC = /0 has to hold. If it does not, then at least one of the

path condition traces is contained in the set of possible output traces and information ¯ow

can therefore occur. Note that the contains relation does not only look for matching values

in traces but also analyzes timing similarities. The comparison analyzes each pair of the

cross product of both trace sets. In the ®rst step, the values of τPC are compared in order

with the values of its corresponding pair element τSF. Note that the values of τPC only need

to appear in τSF in their correct order. The latter can contain additional assignments. If all

values in the correct order are found, the second step identi®es the timing relation of both

traces. Starting with the initial value in τPC (1⋄) and its corresponding value in τSF (1∗) ,

all time steps in τSF are added until the next value of τPC (2∓) is encountered (2⋆) If this

number is smaller or equal than the time step in τPC, the timing of the value update matches

and the analysis continues until each time step is matched. If the values in their correct order

cannot be found or their respective timing relations do not match, τSF does not contain τPC.

Running Example For our running example, our approach identi®es the following sets:

TSF = {τ(ocurrent_state)1,τ(ocurrent_state)2}

=

{

{3
⌊ts⌋
−−→ 1∗

⌊ts⌋
−−→ 3

⌊ts⌋
−−→ 2⋆

⌊ts⌋
−−→ 3},{3

⌊ts⌋
−−→ 2

⌊ts⌋
−−→ 3

⌊ts⌋
−−→ 1

⌊ts⌋
−−→ 3}

}

TPC = τPC =
{

{1⋄
ts−→ 2∓}

}

1506 Marcus Mikulcak et al.

When analyzing the value and timing relation of these sets TSF∩TPC using our algorithm, the

result is that their intersection is empty. This is due to the fact that although the values of τPC

appear in order in τ(ocurrent_state)1, their timing does not match. In the controller, a change

of its output ❝✉EE❡♥ACA❛A❡ from 1 to 2 takes place only with tdiff = 2. The violation of

the security policy that is present in the timing behavior of the Simulink components of the

model can therefore never occur in the combined Simulink/State¯ow model.

4 Evaluation

To evaluate our approach, we have implemented it in ❏❛✈❛. It uses a modi®ed version

of the path condition extraction architecture described in [Mi15]. We use the ❏❛✈❛-based

constraint solving system ❏❛❈♦; [KS13] instead of the external ●❡❝♦❞❡ solver to increase

performance and to facilitate its integration into our tool. We have extended it with a parser

for State¯ow automata and the analysis algorithms described above. Our implementation is

accessible via an ❊❝❧✐♣C❡ plug-in. Table 1 shows the results of our analysis of the running

Automaton Size
Time

Extraction TPC Extraction TSF Comparison

3

58ms

14ms 4ms

10 39ms 12ms

100 258ms 113ms

1,000 2,183ms 946ms

Table 1: Evaluation results

example as well as of generated State¯ow automata. Note that we only adapted the size

of the controller by randomly adding states and unguarded transitions while maintaining

the size of the Simulink components of the system as well as the size of TPC. In the ®rst

row, the results of with an automaton size of 3 states can be seen. The following rows show

the performance of our algorithm for automaton sizes of 10, 100 and 1,000 as well as the

algorithm run times necessary for a complete analysis. The extraction of TPC includes both

the extraction of sets of timed path conditions as well as the constraint solving process

by ❏❛❈♦;. As can be seen in the table, the extraction of both sets as well as the comparison

in the case of our motivating example is performed in under 100ms. For the generated

State¯ow automata, the extraction and the comparison scale linearly.

5 Related Work

Extensive work has been done in the area of translating subsets of Simulink/State¯ow

models into formals language with well-de®ned semantics, especially Lustre and the

graphical modeling suite SCADE, in order to perform model checking on the translated

systems [Sc04, Mi05, WHW10]. However, as these approaches rely on a translation of

models into a target language using functional and timing semantics different to those of

Simulink and State¯ow, properties of the original systems are lost and the timing of models

Towards Identifying Spurious Paths in Combined Simulink/State¯ow Models 1507

cannot be analyzed precisely. Further, the translation process for industrial-sized models

poses strong restrictions on their design and is therefore often not applicable [WL15].

Only few authors have addressed the problem of formalizing the behavior of State¯ow

automata. Although we also do not provide a complete formal semantics, timed traces

partially formalize some of the State¯ow semantics. In [HR04] and [Ha05], operational

and denotational semantics for a subset of State¯ow are presented. While they represent

a wide range of speci®c functionality of the controller semantics, they do not consider

the timing of automata and the connection with surrounding Simulink models. Due to the

similarities between State¯ow and Statecharts, we analyze previous formalization efforts

for such models, most notably [Ha87]. However, these similarities are merely super®cial,

as the underlying solver for State¯ow automata works in a purely sequential fashion, and

their semantic differences make an elevation of the this approach infeasible.

6 Conclusion

In this paper, we have presented an approach to extract timed output traces from State¯ow

automata and compare them to timed path conditions extracted from the Simulink parts of

a combined Simulink/State¯ow model. The resulting conditions can be used to, e.g., reason

about the existence of paths. We have argued that for embedded software models only a

combined analysis of both the behavior of the controller (in State¯ow), and the dynamic

data-¯ow components (in Simulink) can cope with the complex timing behavior. Using the

example of a shared buffer for con®dential and public data using an embedded controller,

we have demonstrated the usability of our approach in an Information Flow Analysis (IFA).

Thereby, we have shown that although timed path conditions alone detect a security policy

violation, it is recognized as spurious when also analyzing the controller component.

To increase the precision of our approach, we aim to extend the support for further State-

¯ow design constructs, such as hierarchical states, events, junctions, further state action

types and temporal condition operators. We plan to incorporate these elements into a

State¯ow formalization to generate timed traces for single State¯ow output signals and

timing relations between multiple output signals to support non-uni®ed control signals as

explained in Section 3.3. Furthermore, we aim at supporting additional design patterns

for the integration of State¯ow controllers into Simulink models, such as scheduling

of individual Simulink components using an automaton or the integration of Simulink

functions into controllers. Finally, an interesting artifact in the quality assurance process of

embedded software is the trace of input data to the State¯ow automaton that leads to the

output of a certain trace, which in turn executes a path in the Simulink components of the

model. We plan to extend our algorithm to support the generation of such traces.

References

[GM82] Goguen, Joseph A; Meseguer, José: Security Policies and Security Models. In: IEEE
Symposium on Security and Privacy. 1982.

1508 Marcus Mikulcak et al.

[Ha87] Harel, David: Statecharts: A Visual Formalism for Complex Systems. In: Science of
Computer Programming. volume 8. Elsevier, 1987.

[Ha05] Hamon, Grégoire: A Denotational Semantics for State¯ow. In: ACM International
Conference on Embedded Software. ACM, 2005.

[HR04] Hamon, Grégoire; Rushby, John: An Operational Semantics for State¯ow. In: Fundamen-
tal Approaches to Software Engineering. Springer, 2004.

[HSS08] Hammer, Christian; Schaade, Rüdiger; Snelting, Gregor: Static Path Conditions for Java.
In: ACM SIGPLAN Workshop on Programming Languages and Analysis for Security.
ACM, 2008.

[Ki76] King, James C: Symbolic Execution and Program Testing. Communications of the ACM,
1976.

[KS13] Kuchcinski, Krzysztof; Szymanek, Radoslaw: Jacop - Java Constraint Programming
Solver. In: International Conference on Principles and Practice of Constraint Program-
ming. unpublished, 2013.

[Ma14] MathWorks State¯ow. www.mathworks.com/products/state¯ow/, Accessed: 06/2016.

[Ma15] MathWorks MATLAB/Simulink. www.mathworks.com/products/simulink, Accessed:
06/2016.

[ME16] Model Engineering Solutions GmbH. www.model-engineers.com, Accessed: 06/2016.

[Mi05] Miller, Steven; Anderson, Elise; Wagner, Lucas; Whalen, Michael; Heimdahl, Matts:
Formal veri®cation of ¯ight critical software. In: Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit. 2005.

[Mi15] Mikulcak, Marcus; Herber, Paula; Göthel, Thomas; Glesner, Sabine: Timed Path Condi-
tions in MATLAB/Simulink. In: International Embedded Systems Symposium. Springer,
2015.

[Sc04] Scaife, Norman; Sofronis, Christos; Caspi, Paul; Tripakis, Stavros; Maraninchi, Florence:
De®ning and Translating a Safe Subset of Simulink/State¯ow into Lustre. In: International
Conference on Embedded Software. ACM, 2004.

[SM03] Sabelfeld, Andrei; Myers, Andrew C: Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 2003.

[WHW10] Whalen, Michael W.; Hardin, David; Wagner, Lucas G.: Model Checking Information
Flow. In: Design and Veri®cation of Microprocessor Systems for High-Assurance
Applications. Springer US, 2010.

[WL15] Walde, Georg; Luckner, Robert: Automatic Translation of Complex Flight Control Sys-
tems from Simulink/State¯ow to SCADE - An Experience Report. Technical report,
Deutsches Zentrum für Luft- und Raumfahrt, 2015.

