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Abstract: Computational analysis of pathways in metabolic networks has numerous
applications in systems biology. While graph theory-based approaches have been pre-
sented that find biotransformation routes from one metabolite to another in these net-
works, most of these approaches suffer from finding too many routes, most of which
are biologically infeasible or meaningless. We present a novel approach for finding rel-
evant routes based on atom mapping rules (describing which educt atoms are mapped
onto which product atoms in a chemical reaction). This leads to a reformulation of the
problem as a lightest path search in a degree-weighted metabolic network. A key com-
ponent of the approach is a new method of computing optimal atom mapping rules.

1 Introduction

Cellular Metabolism consists of a complex network of chemical reactions, connected by
small molecules, and operating together to convert the nutrients into energy and biomass
components essential for life. It has been shown that real metabolic networks are much
more variable compared to the set of pathways defined in biochemical textbooks [Co99].
The existence of alternative pathways enables robustness of the cellular system against
perturbations like mutations. Therefore the knowledge of all feasible routes transforming a
source metabolite into a target metabolite can help the understand the metabolism better or
to decide wether particular enzymes or intermediates are essential in the process. However,
experimental determination of pathways is laborious and time-consuming. So far, there is
no high-throughput method for this task. Hence, computational approaches for detecting
plausible pathways in a metabolic network at genome-scale are needed.

Computational tools for metabolic pathway analysis are becoming more important since
the complete genomic information of the putative genes, alongside the functional anno-
tation, is available for an ever increasing number of organisms. Starting from the gene-
enzyme relations, one can use the enzyme-reaction as well as the reaction-compound re-
lations (extracted from pathway databases like KEGG [Ka96], EcoCyc [Ke05], MetaCyc
[Ca06] and BRENDA [SCS02]) to reconstruct an organism-specific metabolic network.

The recent approaches, described in the literature, can be roughly divided into constraint-
based methods inferring closed or stoichiometrically balanced pathways and graph theory-
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based methods searching for linear biotransformation routes. A stoichiometrically bal-
anced pathway is defined as a metabolic subnetwork in which the net production and
consumption of all compounds is zero. Excepted are the source and target compounds
and a predefined set of pool metabolites. A biotransformation route is simply defined as a
linear sequence of chemical reactions where a source compound is converted into a target
compound step by step. Both terms are related to each other since a stoichiometrically
balanced pathway always contains at least one main biotransformation route.

Each approach has its advantages and disadvantages and differs in its potential range of
applications. Constraint-based methods represent the metabolic network as stoichiometric
matrix [SDF99, SLP00]. The rows and columns represent the metabolites and reactions.
The pathways are inferred using convex analysis [Ro70], a branch of mathematics for an-
alyzing a set of linear equations given a set of constraints. The advantage of the method is
that it is mathematically well-defined and enables biotechnological analysis of pathways
where the focus is to increase the yield of industrial important metabolites. However, the
underlying calculation represents an NP-hard computational problem and it seems to be
impossible to use the method for a network at genome-scale [KS02, KSGG03]. In prac-
tice, the computational complexity is reduced by the extensive use of constraints like the
predefined distinction between internal and external (pool) metabolites and the restriction
on a subset of the reactions available in a given organism.

In graph theory-based approches, the metabolic network is mapped onto a mathematical
graph [Ar00, Ra05, CCWH06]. An advantage is the availability of already established
graph-algorithms (avoiding NP-hard calculations) which can be used for genome-scale
network analysis [AS06]. An interactive navigation through metabolic networks is possi-
ble, simply by using path finding algorithms between a given source and target, without the
need for user-defined constraints [HWGW02]. But searching without information other
than the connectivity, i.e. two successive reactions are connected if they have a metabo-
lite in common, often delivers meaningless results. Using this type of naive or “blind”
search, approximately 500,000 different routes with at most nine reactions between glu-
cose and pyruvate could be identified in a study [KZL00]. The problem with such a search
is mainly based on the high degree of nodes corresponding to pool metabolites like water,
ATP, NADH and so on. But ignoring these network hubs cannot be a satisfying solution
since their choice is not always obvious. The main problem is that even such a typical
side metabolite as ADP acts as a real intermediate in several pathways. Another exam-
ple is pyruvate where its role as a main or side metabolite is not clear in all reactions
[HWGW02]. A better idea is to incorporate the structural information of the metabolites.
The PathwayHunter tool [Ra05] uses chemical fingerprints to guide a shortest path search
between structurally similar metabolites. Another promising idea is to trace the flow of
atoms in a shortet path search using atom mapping rules [Ar00, Ar03]. Given a chemical
reaction, an atom mapping rule defines which atom of an educt compound is transferred to
which atom of a product compound. This is helpful for detecting biochemically unfeasi-
ble shortest paths in which no atom is transferred from the source to the target. The main
problems are that the shortest path search tend to go through pool metabolites despite the
atom trace. The structural information, necessary for atom mapping calculation, is not
given or incomplete for a fraction of the compounds participating in the reactions stored
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in pathway databases. Those compounds often are described only by a string name or
represent general molecules like ”an alcohol”. Furthermore, the automated and efficient
calculation of atom mapping rules, given thousands of reactions in a database like KEGG,
is not easy.

In a degree-weighted graph representing a metabolic network [CCWH06] each node is as-
signed a weight equal to its degree. Searching for the lightest path significantly reduces the
probability of finding irrelevant routes containing pool metabolites as intermediates. An
advantage is that the structural information of the compounds is not needed but the light-
est path search fails for routes containing network hubs as intermediates or for particularly
long routes.

In this work, we present a novel graph theory-based approach for finding feasible biotrans-
formation routes which integrates atom mapping rules and the lightest path search into a
joint method. We also present a novel method for the fully automated and efficient calcu-
lation of atom mapping rules. Different graph types and search strategies were analyzed
in a genome-scale study.

2 Calculation of atom mapping rules

Representing the compounds of a chemical reaction as molecular graphs 1, atom mapping
rules can be calculated using graph partition and graph isomorphism [Ak04]. The under-
lying idea is that normally in chemical reactions only very few bonds are broken in order
to transform the educts into the products. Hence, we can find the mapping rules by remov-
ing a limited number of edges in the molecular graphs of the compounds and searching
for graph isomorphisms between the remaining connected components. A valid atom map-
ping contains an isomorphic component of the product side for each connected component
of the educt side and vice versa. However, the result of such a search, as presented in a
previous work [Ak04], is not necessarily unique and may contain biochemically meaning-
less mappings alongside the correct one. We can solve this problem by introducing the EC
clustering approach. Now, it is possible to filter out the irrelevant mappings by clustering
them together with all the mappings of the enzymatic reactions which have the first three
digits of their EC number in common. The underlying idea is that only the first three digits
describe the reaction mechanism, and the last digit only enumerates the different chem-
ical structures. This allows us to select the atom mapping rule which describes best the
reaction mechanism of the EC cluster.

The next paragraph briefly describes the theoretical framework of the approach as in-
troduced earlier [Ak04] followed by the details of our practical algorithm for mapping
calculation. The second paragraph presents the EC clustering approach for filtering out
irrelevant mappings.

1with nodes as atoms (ignoring hydrogen atoms) and undirected edges as chemical bonds
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Figure 1: (A) Schematic illustration of chemical cuts and pseudo cuts. (B) The general mapping
problem. The example shows a reaction with two educt (E1, E2) and two product compounds (P1,
P2), and a cut-size C=1. Graph partitions (Ê1,Ê2,P̂1,P̂2) were created by removing at most one
edge in the molecular graph for each compound. A mapping is found if the multisets Ê1 ∪ Ê2 and
P̂1 ∪ P̂2 are equal.

2.1 Problem definition and practical algorithm

Def.: A chemical cut [Ak04] of size C is a partition of a graph G into connected compo-
nents which are obtained by removing at most C edges whereas the nodes of each removed
edge have to belong to different connected components after the removal.

In order to handle reactions modifying ring structures, we must extend the definition of
a cut. A pseudo cut removes edges of a graph G which do not disconnect G. The total
number of removed edges per compound has still to be not larger than C. An example
describing both types of cuts is shown in Fig. 1A.

Def.: Given the chemical reaction equation E1 + ...+Ee ↔ P1 + ...+Pp. E1, ..., Ee and
P1, ..., Pp are molecular graphs representing educt and product compounds. The mapping
problem is now to find a chemical cut of size C for each E1, ..., Ee and P1, ..., Pp such
that the resulting multiset of connected components Ê1 ∪ ... ∪ Êe is equal to the multiset
of connected components P̂1 ∪ ... ∪ P̂p. Elements of the multisets are equal if they are
isomorphic.

For a simple example Fig. 1B illustrates the mapping problem. For fixed values of p, q
and C, the problem can be solved in polynomial time, since the number of combinations
(E1, ..., Ee, P1, ..., Pp) is O(nC(e+p)), where n is the maximum size of a compound in the
reaction [Ak04]. Practical algorithms solving the problem for the special case of C = 1
and e = p = 2 were presented earlier [Ak04]. Here, we introduce a procedure for solving
the general problem.

We distinguish two types of mapping rules. Given a chemical reaction, a fragment map-
ping rule (FMR) defines which connected component (called fragment) of an educt molec-
ular graph is isomorphic to which connected component of a product molecular graph.
Such a rule consists of a list of isomorphic fragment pairs. An atom mapping rule (AMR)
defines which atom of an educt compound is transferred to which atom of a product com-
pound. A rule of this type consists of a list of atom pairs. From the fragment mapping rules,
we can deduce atom mapping rules using the canonical graph representations created by
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Morgan’s algorithm [Mo65]. 2 We use unique SMILES [WWW89] to detect isomorphic
components. The advantage is that this permits the simple incorporation of stereochemical
information and reduces the number of inferred irrelevant atom mapping rules. Further-
more, we define two functions which are necessary for the mapping calculation. The first
function, CSF (X), transforms the multiset X , which contains connected components as
elements, to the multiset Y where the elements of X are replaced by their chemical for-
mulas. Accordingly, the second function, SMILES(X) replaces the elements of X by
their unique SMILES.

Practical algorithm: All valid atom mapping rules corresponding to a minimal cut size C
can be computed as follows:

1. C ← 0

2. For the molecular graphs of the educts E1,...,Ee and products P1,...,Pp create all
possible partitions Ê1i ,...,Êej and P̂1k

,...,P̂pl
using cut size C.

3. Create all possible multisets of connected components Ẽs = Ê1i∪...∪Êej and P̃r =
P̂1k

∪...∪P̂pl
.

4. Select all pairs (Ẽs,P̃r) with CSF (Ẽs) = CSF (P̃r).

5. From all pairs calculated in Step 3 select all pairs (Ẽs,P̃r) with SMILES(Ẽs) =
SMILES(P̃r) and a minimum number of removed edges producing pseudocuts
accumulated for all educts and products. Each pair represents an FMR.

6. If no FMR is found in Step 4: C ← C + 1, repeat from Step 1.

7. Extract the final AMRs from the FMRs using the canonical graph representation
calculated by Morgan’s algorithm.

The third step is introduced to improve the calculation time significantly. It is not neces-
sary to compute the unique SMILES for all partitions. In the first iteration of the algorithm
we simply compute the chemical formulas of the connected components and use them to
collect a set of candidate partitions for the molecular graphs. Step 4 insures that the map-
pings found are based on a minimum number of removed edges. If we would search for
all mappings allowing the maximum possible cut size C as well as the maximum number
of edges producing pseudo cuts, the number of irrelevant mappings per reaction would
be much higher. Note that a mapping found by the cut size C = 0 typically represents
isomerization or oxidoreductive reactions.

2.2 EC clustering

For a significant number of reactions (approximately 40%, data not shown), there is more
than one possible mapping rule. An example is shown in Fig. 2A. Using cut size C =

2The algorithm assigns an unique integer label to each node in a molecular graph, based on the node degree
and the degrees of its neighbours. Topologically equivalent nodes in isomorphic graphs get the same labels.
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1, there are three possible mapping rules for the reaction catalyzed by serine-pyruvate
transaminase (EC 2.6.1.51). But only the first mapping rule describes the underlying re-
action mechanism which exchanges the amino group of L-serine with a keto group of
pyruvate. To filter out biochemically irrelevant mappings, we introduce the EC clustering
approach. The idea is that the mechanism of many chemical reactions consists of shifting
or exchanging small functional groups like amino, keto, methyl, phosphate or carboxyl
groups. All reactions which have the first three digits of their EC number in common also
share the reaction mechanism. The last digit only enumerates the different chemical struc-
tures operating as substrates. Typical examples are reactions transferring a phosphate (EC
2.7.1.-) or a methyl group (EC 2.1.1.-) from one molecule to another.

At first, we define an EC cluster (ECC) as a set of enzymatic reactions which have the first
three digits of their EC number in common. Given an EC cluster, a reaction mechanism
rule (RMR) generally describes, for the reactions in the cluster, how the educts are trans-
formed into the products. Our aim is now to automatically infer the RMR by identifying
the relevant functional groups or parts of the substrates. The next step is to select the FMR
and appendant AMR which correspond to the inferred reaction mechanism rule and to
discard all the other FMRs.

Reaction mechanism rules are represented as strings and constructed from FMRs. The
following syntax is used to describe them. The two sides of a reaction are separated by
‘=’. The fragments of each compound are separated by ‘,’ and enclosed by ‘<’ and
‘>’. The first fragment representing a non-relevant structure, is designated with ‘X1’, the
second with ‘X2’ and so on. Relevant fragments like the mentioned functional groups are
represented using their SMILES (e.g. N, O, C, OP(O)O, C(O)O). 3 An empty fragment
is represented by ‘$’ and is used in graph partitions for compounds in which no edge is
removed. The strings representing both the fragments and the whole reaction sides are
alphabetically ordered to ensure uniqueness in the comparison with RMRs from different
reactions. Fig. 2B shows an RMR for each FMR shown in Fig. 2A.

Note that there is no predefined list of relevant fragments. We generate all combinatorial
possible RMRs from the FMRs of a given reaction by allowing each fragment to be rele-
vant or not. Given an EC cluster and a reaction mechanism rule, the occurrence frequency
of this rule accumulated over all reactions in the cluster is called the EC cluster score
(ECCS). An RMR occurs in a reaction if it can be constructed from at least one FMR of
the reaction. From all generated RMRs we select that to be relevant which has the highest
score. The EC clustering procedure performs the following steps:

1. For each given FMR containing n educt as well as product fragments, construct for
all

�
n
k

�
combinations with k = 0, ..., n− 1, RMRs in which k fragments are marked

as non-relevant (represented as ‘X1’, ‘X2’, and so on).

2. For all RMRs deduced from an FMR of a reaction in an EC cluster, calculate the EC
cluster scores.

3. Assign each FMR of a reaction in a EC cluster the maximum ECCS of the RMRs

3Note that the SMILES shown lack double bonds since bond types (parallel edges) are ignored in our molec-
ular graphs for simplicity.
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Figure 2: (A) A reaction with multiple mapping rules. The atom transfer between both sides of
the reaction is represented by equal geometric shapes. The different shapes within a compound
also represent the connected components in the corresponding molecular graphs. Only the first
rule is biochemically relevant. (B) Each mapping rule is assigned the maximum score (ECCS) of
all reaction mechanism rules (RMRs) which were derived from the mapping. The mapping with
the highest score is detected as the relevant mapping. For each mapping rule, the best RMR with
corresponding score is shown.

which were constructed from the FMR.

4. For each reaction select the FMR (and its corresponding AMR) with the highest
score as the relevant mapping.

Considering the example shown in Figure 2, it becomes possible to detect the first mapping
rule as biochemically relevant, since the assigned score is significantly larger than the
scores of the other two mapping rules. The score of 0.96 for the first RMR indicates that
for 96% of the reactions in the EC cluster 2.6.1.- (overall 90 reactions using data from
KEGG), the mechanism can be described as exchange of an amino group with a keto
group. If there is more than one fragment mapping with the highest score or there is a
reaction with no EC number, then we select the mapping as relevant with the minimum
number of transferred atoms (the number of atoms of the relevant chemical groups).

3 Finding feasible biotransformation routes

3.1 Degree-weighted metabolic networks

In the degree-weighted metabolic networks approach [CCWH06], the metabolic network
of an organism is mapped on a bipartite graph including all compounds and reactions
as nodes. Directed edges connect the compound nodes (educts and products) with the
reaction nodes. Both directions of a reaction were represented by two independent nodes
per reaction. The key idea of a weighted metabolic network is to assign each compound
node a weight equal to its degree (e.g. the number of in- and outgoing edges) and each
reaction node the weight 1 by default. The weight of a pathway in the graph is then defined
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Figure 3: Transformation of 3-phosphoglycerate into L-alanine. The dashed arrows represent a valid
pathway which conserves the structural moiety (shown using rectangles). No atom is transferred
from 3-phosphoglycerate to L-alanine via L-serine in the reaction shown in the light grey box.

as the sum of the weights of its nodes. This implies that the overall weight of a path is
much larger if it contains highly connected compounds like typical pool metabolites or
co-factors (e.g. NADP, ATP, water, etc.). Searching for paths with the lowest weight
reduces the probability of finding unfeasible biotransformation routes which contains pool
metabolites as intermediates between two successive reactions.

A fundamental problem of the lightest path search is its inability to handle important
biotransformation routes involving the biosynthesis of pool metabolites (e.g. the purine
biosynthesis in which AMP, ADP, GMP and GDP are intermediates). The method fails
to reconstruct these routes because pool metabolites participate in many reactions of other
transformation processes and, therefore, are assigned very large node weights.

3.2 Combining atom mapping rules with lowest weight paths

The above mentioned problem can be overcome by combining the lightest path search
with atom mapping rules. The key idea is to use atom mapping rules to identify bio-
chemically irrelevant paths of low weight. To this end all relevant paths must satisfy
the structural moiety constraint which can be defined as follows. A path and its corre-
sponding biotransformation route can only be feasible if at least one atom of the source
compound is transferred, via the intermediates, to the target compound. In many cases,
this helps to filter out biochemically irrelevant lowest weight paths. We also show that the
combination of atom mapping rules with lowest weight paths performs better than search-
ing for the shortest path in the unweighted atom mapping graph. The example shown in
Figure 3 illustrates the concept of using the structural moiety constraint for path valida-
tion. 3-phosphoglycerate, also known as an intermediate in the degradation of glycose
in glycolysis, is used as source metabolite and the amino acid L-alanine as target. The
dashed arrows describe a path which consists of six enzymatic steps for transforming 3-
phosphoglycerate into L-alanine. Five intermediates are required. The rectangles mark the
conserved substructures. In this example 3-phosphoglycerate serves as carbon source for
L-alanine. The sequential application of atom mapping rules, linking the educts and prod-
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ucts in each reaction, enables a tracing of the conserved structure. Now, it is clear that this
path fulfills the structural moiety constraint. The light grey box in the middle complements
L-serine to the enzymatic reaction with EC number 2.6.1.51. A path using this reaction
as final conversion step would require only four steps in total. However, the application
of the atom mapping rule of the reaction implies that no atom could be transferred from
3-phosphoglycerate to L-alanine via L-serine. Hence, this path fails the structural moiety
constraint.

We performed several experiments for testing our approach. For this purpose, a bipartite
graph was constructed from the EcoCyc database. All reactions from the small molecule
metabolism were included representing the E. coli metabolic network at genome-scale.
We investigated the search performances based on four different network types. The
blind search graph (bsg) contains only the connectivity information extracted from the
metabolic network. Using the atom mapping graph (amg), atom mapping rules are avail-
able via the educt-reaction-product node relations. In the weighted graph (wg) each edge
representing a compound-reaction relation is assigned a weight equal to the degree of the
compound in the whole metabolic network. Finally, the weighted atom mapping graph
(wamg) contains all of the available information as described for the other three network
types.

We always search for feasible biotransformation routes between two given nodes (source
and target). Using the blind search graph, feasible routes are found by searching for the
shortest path. In the atom mapping graph, we search for the shortest path which fulfills
the structural moiety constraint. The lightest path is searched in the weighted graph and in
the weighted atom mapping graph, we search for the lightest path fulfilling the structural
moiety constraint. Paths between two given nodes were calculated using Eppstein’s k-
shortest path algorithm [Ep98] which efficiently computes the first k-shortest or lightest
paths in a directed graph. 4 The algorithm was adopted to incorporate the atom mapping
rules. For this purpose, we used an analogous approach for path validation which was
proposed by Arita [Ar03]. Each extracted path is validated by an sequential application of
the atom mapping rules. In the beginning, all atoms of the source metabolite are available
for the mapping. After this, for each step, only those atoms of an educt are available for
mapping to the next compound which could be reached by a mapping in the step before.
If no atom reaches the target metabolite, the path is rejected as not valid. Atom mapping
rules are available for only 63% of the reactions (explained in Section 4.1). This fact
is considered in the procedure. If such a reaction is reached, the validation process is
restarted with the next reaction which has an atom mapping rule. Hence, both the atom
mapping graph and the weighted atom mapping graph can also find paths violating the
structural moiety constraint. It should also be mentioned that oxygen and hydrogen atoms
are ignored in the process. 5

4The algorithm creates an implicit representation of the k-lightest paths in a directed graph with n vertices
and m edges in O(m + n log n + kn) which can be traversed using breadth-first-search.

5Hydrogen atoms are implicitly represented in the molecular graphs and not considered in the mapping cal-
culation. Although oxygen atoms were considered in the mapping calculation, these atoms are ignored in the
path validation process. The problem is that the water molecule is the most frequent pool metabolite and it is
often impossible to detect a correct and unique mapping.
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Table 1: The results of the atom mapping calculation using the EcoCyc and KEGG data sets.
EcoCyc KEGG

reactions overall 1348 6811
selected 850 (63.1%) 4621 (67.9%)
successful 833 (98.0%) 4516 (97.7%)

mappings overall 1236 5913
per reaction 1.51 1.31

cut size C = 0 197 (24.0%) 807 (17.8%)
C = 1 553 (67.4%) 3272 (72.5%)
C = 2 71 (8.6%) 437 (9.7%)

4 Results

4.1 Inferring atom mapping rules

Atom mapping rules were inferred from chemical reactions extracted from the KEGG and
the EcoCyc databases. The maximum cut-size was restricted to C = 2 and the maxi-
mum number of compounds permitted per reaction was set to 10. This ensures an efficient
calculation. Reactions containing compounds for which the structural information was
incomplete or non-existent, and reactions with an unbalanced reaction equation were not
considered. This reduces the number of reactions from 6811 to 4621 for KEGG, and from
1348 to 850 for EcoCyc. Tab. 1 summarizes the results of the calculation. For 833 (98%)
of the reactions selected from EcoCyc and 4516 (97.7%) from KEGG, at least one atom
mapping rule could be found. The overall number of mappings per reaction was 1.51
(EcoCyc) as well as 1.31 (KEGG). The number of reactions with mapping rules using cut
size C = 0 was 197 (23.6%) for EcoCyc and 807 (17.8%) for KEGG. These are typically
stereoisomerization or oxidoreductive reactions in which the transfer of substructures be-
tween molecules is not necessary (e.g. EC 1.1.1.-). The majority of the reactions - 563
(67.6%) for EcoCyc and 3272 (72.5%) for KEGG - require atom mapping rules with cut
size C = 1. Typical representatives are reactions transferring phosphate or methyl groups
(e.g. EC 2.7.1.- or EC 2.1.1.-). Seventy-three (8.8%) of the EcoCyc and 437 (9.7%) of the
KEGG reactions require atom mapping rules with the cut size C = 2. Examples are reac-
tions belonging to EC 1.13.11.- in which two oxygen atoms, originating from molecular
oxygen, are transferred. We manually inspected 17 reactions (2%) from EcoCyc and 105
(2.3%) from KEGG for which no atom mapping rule could be inferred. These reactions
require mapping rules with a cut size greater than C = 2. The hydrolysis of allophanate
resulting in two carbon dioxide molecules and two ammonia molecules (EC 3.5.1.54) is
an example of a reaction requiring cut size C = 3. Another example is the uroporphyrino-
gen carboxy-lyase reaction (EC 4.1.1.37), in which four molecules of carbon dioxide are
cleaved off from uroporphyrinogen (C = 4).

4.2 Inferring relevant biotransformation routes

The search performances of the presented network types and search strategies were eval-
uated by trying to find experimental verified biotransformation routes in the metabolic
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network of E. coli. For this purpose, all annotated biotransformation routes of the small
molecule metabolism with at least three reactions were extracted from EcoCyc (137 over-
all). Given the main source and target metabolites of the annotated routes as start and
end nodes, we calculated the shortest (lightest) path constrained to use the first as well
as the last reaction of the annotated route. If n annotated routes share the same main
source as well as target metabolites and start as well as end reaction, we computed the n
shortest (lightest) paths. The quality of the routes found was measured by comparing the
intermediate compounds and reactions with the annotated routes, and is expressed using
sensitivity, specificity and relevancy score, which are defined as follows:

sensitivity = tp
tp+fn

; specificity = tp
tp+fp

;

relevancy = sensitivity+specificity
2

∗ smc

where:

• tp (true positives): The number of compounds and reactions of the route found
which are also present in the annotated route. The first and last compounds and
reactions are not considered.

• fp (false positives): The number of compounds and reactions of the route found
which are not present in the annotated route.

• fn (false negatives): The number of compounds and reactions of the annotated route
which are not present in the route found.

• smc (structural moiety constraint): This value is set to 1 if the route found satisfies
the structural moiety constraint, and set to 0 otherwise.

If an extracted route was not identical to an annotated one and contains reactions without
atom mapping rules, we manually checked the structural moiety constraint.

The search results are shown in Tab. 2. Searching for the shortest path in the blind search
graph delivers poor search results. The average relevancy score is only 0.31. Incorporating
atom mapping rules for about two-thirds of the reactions in the graph doubles the search
performance up to an relevancy score of 0.61. A further improvement can be achieved by
searching for the lightest path in the weighted graph. This approach produces significantly
more relevant routes. The relevancy score is 0.77. But only 80% of the routes found fulfill
the structural moiety constraint which is clearly better in the atom mapping graph (+ 8%).
The search for the lightest path in the weighted atom mapping graph produces the best
search performance results. The relevancy score reaches 0.86. Although atom mapping
rules are available for only two-thirds of the reactions, 91% of the routes found fulfill the
structural moiety constraint, 11% more as for the weighted graph. In the next paragraph,
we will demonstrate the search results of the two best approaches using glycolysis as an
example. Another example based on tetrahydrofolate biosynthesis, useful for comparing
the search results of all approaches, is available in the supplementary material. 6

6http://www-bs2.informatik.uni-tuebingen.de/services/blum/GCB2007/supplementary material.pdf
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Table 2: The search results for 137 experimentally verified biotransformation routes extracted from
EcoCyc are shown here. Each row represents one search approach: the blind search graph (bsg), the
atom mapping graph (amg), the weighted graph (wg) and the weighted atom mapping graph (wamg).
The columns show the average sensitivity (sens), specificity (spec), structural moiety constraint
(smc) and relevancy score (rel).

approach sens spec smc rel
bsg 0.34 0.41 0.47 0.31
amg 0.61 0.66 0.88 0.61
wg 0.82 0.87 0.80 0.77
wamg 0.86 0.87 0.91 0.86

4.2.1 Glycolysis

The biotransformation routes of the glycolysis were searched given D-glucose-6-phosphate
as a source and pyruvate as a target as well as EC 5.3.1.9 as a start reaction and EC
2.7.1.40 as an end reaction. Fig. 4A represents the two annotated routes extracted from
EcoCyc. The first route (shown as black arrows) contains eight reactions and its weight is
188. Three atoms (ignoring oxygen and hydrogen atoms) are transferred from the source
to the target. An additional three atoms, resulting in a second molecule of pyruvate,
are transferred via the second route (dark grey arrows). This route contains dihydroxy-
acetone-phosphate (DHAP) as a further main intermediate which is transformed to D-
glyceraldahyd-3-phosphate (GAP). All in all the route contains nine reactions and its over-
all weight is 203. The first three routes found by the lightest path search in the weighted
atom mapping graph are shown in Fig. 4B. The first route (black arrows) requires seven
reactions, one resp. two less than the annotated routes. Since the weight is 181, the
route will be found before to the annotated routes. Once again three atoms are trans-
ferred from D-glucose-6-phosphate to pyruvate. The difference is that the route found
needs only one reaction for transforming D-fructose-6-phosphate into GAP. The reaction
with the EcoCyc ID RXN0-313 (EC 4.-.-.-) is very interesting since it is not assigned
to a pathway in EcoCyc. The enzyme catalyzing this reaction is fructose-6-phosphate
aldolase (gene name fsa) and was reported as a novel enzyme activity catalyzing an al-
dol cleavage of D-fructose-6-phosphate [SS01]. The similarity to the standard glycolysis
routes is reflected in the relevancy score: 0.84. The second route (dark grey arrows) also
detours the annotated transformation of D-fructose-6-phosphate into GAP via fructose-6-
phosphate aldolase. The difference is the alternative transformation of 3-phosphoglycerate
into 2-phosphoglycerate via glycerate as an additional main intermediate. Three atoms are
transferred again but nine reactions are required. The weight of the route is 187 and its rel-
evancy is 0.69. The third route found (light grey arrows) is also shown, because it is equal
to the first annotated route. Fig. 4C shows the first two routes found by the lightest path
search in the weighted graph. Both routes contain only five reactions and have both the
weight 170. However, no atom is transferred to pyruvate. The reaction with the EcoCyc
ID 2.7.1.121-RXN is responsible for the failed glycolysis reconstruction. The reaction
transferes a phosphate group from GAP to phophoenolpyruvate. In the final reaction (EC
2.7.1.40), the phosphate group is cleaved off so that no atom from GAP could be trans-
ferred into pyruvate. The failed reconstruction is reflected by an relevancy score of 0.0.
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Figure 4: The annotated and the predicted routes for glycolysis, given D-glucose-6-phosphate as a
source metabolite, pyruvate as a target and EC 5.3.1.9 as a start reaction and EC 2.7.1.40 as an end
reaction. Different colors (black, dark or light grey) represent different routes. For each route, the
number of reaction steps, the overall weight, the number of transferred atoms from source to target,
and the accuracy (acc) are shown. (A) The annotated routes extracted from EcoCyc. (B) The routes
found using the weighted atom mapping graph. (C) The routes found using the weighted graph.

5 Discussion

In this work, we present a novel approach for inferring atom mapping rules from chemi-
cal reactions. Fully automated and efficient calculation is the main target and is achieved
by introducing pseudo cuts, use of unique SMILES, and EC clustering. Based on atom
mapping rules we introduced a novel graph theory-based approach for finding feasible
biotransformation routes in metabolic networks. Constraining the lightest path search to
those paths where atoms are transferred between source and target nodes yields improved
pathway predictions that are more consistent with experimentally verified pathways. Sim-
ply by sequentially checking the atom mapping rules of the transforming reactions, prob-
lematic routes like those present in the glycolysis or the purine synthesis, can be found
quickly. The approach is generally more robust for long pathways or pathways containing
typical pool metabolites as intermediates compared to the ordinary lightest path search.

We believe that our approach could be used as a tool that complements existing ap-
proaches. It can bridge the gap between the raw genome-scale content stored in path-
way databases and well-curated metabolic subnetworks necessary e.g. for applications in
metabolic engineering. Fast and intelligent navigation through the network at genome-
scale enables a goal-oriented refinement of the search by an iterative addition of con-
straints. Such constraints contain the identification of side metabolites and the sets of
allowed, required or forbidden main intermediates as well as reactions. The search re-
sults can help scientists for designing experiments or biotechnologists for defining the
constraints necessary for an effecient calculation of stoichiometrically balanced pathways
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using approaches based on NP-hard convex-analysis [SDF99, SLP00]. Too many con-
straints at the beginning of the analysis bear the risk of missing relevant pathways. An
advanced and iterative graph theory-based search is more robust against the gaps typically
present in the networks of newly sequenced organisms [PK02]. It enables the detection of
the main routes embedded in network-based pathways even if some balancing side reac-
tions are missing cause of incomplete annotation.

In future work, it should be possible to integrate further relevant information for a better
search. Such information could consider the thermodynamic efficiency of the biotransfor-
mations or the phylogenetic profiles, expression data as well as subcellular localization of
the catalyzing enzymes.
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