
Challenges in Automated Model-Based HMI Testing

Reinhard Stolle, Thomas Benedek, Christian Knuechel, Harald Heinecke

BMW Car IT
Petuelring 116

80809 München
reinhard.stolle@bmw-carit.de

Abstract: We describe our approach to automated model-based HMI testing. The
paper is divided into two parts. In the first part, we summarize the current status of
our work. In the second part, we describe a number of research areas that need to
be worked on in order to achieve true model-based HMI test automation.

1 Test Automation in the HMI Domain

The task of test automation involves two subtasks: (1) automated test case selection,
and (2) automated test case execution. The long-term goal of test automation is to test
against a complete formal specification of the unit under test. To be useful for test
automation, a specification must comprise the static states and the dynamic behavior of
the unit under test. The specification must be formal and sufficiently detailed in order to
allow for automatic processing. We call such a comprehensive and formal specification a
“model.” At present, such models are, in general, not available in the HMI domain. The
design of the syntax and semantics of an appropriate specification language (i.e.,
modeling language) needs to take into account the requirements of automated testing. In
order to be able to state these requirements, we need to start gaining experience with
automated model-based testing, which in turn depends on the availability of models in
the first place. In order to escape this chicken-or-egg situation, we have taken an
intermediate step, in which the tests are performed not against the formal model of the
HMI but against a prototype implementation of the HMI. This intermediate step is the
topic of the next subsection.

1.1 Intermediate step toward test automation

The key to prototype-based test automation is that the prototype implementation is used
as a stand-in for the formal HMI model, which is not yet available. Instead of testing the
HMI embedded control unit (the unit under test, henceforth called the HMI ECU) against
the formal model, we directly compare the states and the behavior of the HMI ECU
against the states and the behavior of the prototype implementation. In the following
paragraphs, we briefly describe our rapid HMI prototyping framework FLUID
(“Flexible User Interface Development”) and its role in the intermediate step toward
model-based test automation. For a more-detailed description of FLUID, see [GES04].

186

FLUID is the result of our effort to close the gap that exists between the specification
stage and the implementation stage in the traditional HMI development process. FLUID
is an object-oriented environment that provides the modeler and the developer with the
appropriate building blocks to quickly assemble prototypes of new HMIs or HMI
fragments. Much of the necessary information (such as graphics, menu structure,
interaction flow logic) is specified in machine-readable specification files. These
declarative specifications can be used to validate the specification itself (e.g., by model
checking [Kis04, BB+99]), and also to semi-automatically derive test automata and test
sequences. However, the declarative specification files do not add up to a complete HMI
model; some key parts of the prototypes are still programmed, which means that we do
not yet have the basis for true model-based testing. However, by more and more
replacing the programmed parts with formal specifications we will eventually be able to
derive the prototype almost completely automatically from the specification. We will
then have achieved our goal, which is to use a formal HMI specification that serves as a
common basis for all phases of the development process, including automated testing.

Using FLUID in our work
on test automation has
several advantages. First,
it allows us to have HMI
prototypes stand in for
formal models until such
models are available.
Second, by integrating
tests into the prototyping
environment we
effectively design an
appropriate test
architecture, and third, we
learn the requirements
concerning the associated
test interfaces.

an event that is observed by the test automation tool. A
screenshot would represent a certain state but a bus message is considered an event. For
example, such a message could be a “Play” command to the CD player. The test
automation tool uses a scripting mechanism to perform triggers and to log the
observations of states and events. For example, a script may contain a sequence of
triggers that simulate the user’s pressing of buttons. E.g., to simulate that the user shifts
the I-Drive controller (“Ergo Commander”) down one adds the step “ergo-
Commander.moveDown();” to the script. Moreover, the script may contain steps to

Fig. 1: long-term goal of test automation

Automated testing is based on triggers and observations. In our approach, a trigger is an
action that is normally performed by the user of the HMI, but in the test scenario is
automated by sending the bus message that corresponds to that user action. An
observation is a state or

187

observe which bus messages are sent as a reaction by the HMI and it may take a
screenshot after performing the button pressing sequence.

important simplification. In order to perform a test procedure, we only have to execute
the same script twice: one execution operates on the prototype and the other execution
operates on the ECU. After these two runs have been completed, the test automation tool
compares the two data sets that were obtained through observation and determines if the
ECU complies with the reference implemented by the prototype.

1.2 Transition to model-based test automation

In our test scenario, the
HMI ECU’s test interface
consists of the automotive
bus systems the ECU is
connected to and the
screen interface. The
same interfaces are also
provided by the prototype
built in FLUID. The
availability of the same
interfaces on the ECU
side and on the prototype
side lead to a symmetric
architecture, which allows
for the following

d the test automaton.

specification side and the test side.

Fig. 2: Intermediate Step

Prototype-based test automation is only an intermediate step on the way to model-based
test automation. The prototype fills in for the model; it thereby acts as a mediator
between the specification (which is incomplete for now) an

Our strategy to achieve true
model-based test automation is to
successively make inroads into the
prototype from both sides: the

Eventually, the hand-coded parts
of the prototype will disappear.

Prototype

Specification Test
Automation

Fig. 3: Testing against the prototype

188

On the test side, an extended interface of the prototype will allow for more useful
observations than just screen shots and bus messages. This extended interface will

ototype

 on progressively increased code
ion. Currently, the prototype is a combination of declarative specifications and

and-programmed code. Our goal is to generate large parts of the prototype

 words, in that ideal
world, the prototype executes the specification. The prototype is both prototype and test
automaton. Consequently the gap between specification and test has been closed.

The following table illustrates the progression from pure prototype-based testing to
model-based testing. In this example, the task is to compare the text displayed in a
screen segment against the corresponding text in the specification. As the specification
becomes more structured and more complete, the test can pull the necessary information
more and more directly out of the specification. An open issue that is shown in the “test
strategy” column is the lack of appropriate test interfaces in traditional HMI ECUs.
Since one cannot query the ECU for the contents that is currently being displayed on the
screen, we need to perform OCR on the corresponding segment of the screen shot.

St
ep

Information basis (specification) Test strategy

provide structured information such as the currently focused widget, the currently
displayed menu items, the current position in the menu hierarchy, the currently displayed
graphics, and so on. As explained below, these structured pieces of data in the pr
will be more and more derived from the specification directly, thereby establishing a
direct connection between the test automaton and the specification.

On the specification side of the prototype, we rely
generat
h
automatically from a formal specification that includes not only graphics, texts and menu
structure, but also the flow logic, non-local state transitions, synchronization of various
modalities (e.g., graphics and speech interfaces), and so on. (An example of a formalism
that allows parts of such specifications is IML [WEA04].) In an ideal world, the
prototype would be derived entirely automatically from the specification. If this were the
case, a comparison of the ECU with the prototype would amount to a comparison of the
ECU with the specification because the information contained in the prototype is
equivalent to the information contained in the specification. In other

1. No information available that the screenshot
contains a text label. Only pixel data available.

Text label compared as a
screenshot byte-for-byte.

2. Information that screen segment contains text label
is obtained from internal prototype state (widget
tree). The shown text itself is also obtained.

OCR performed on screen
segment showing text label.

3. Prototype screen is generated from a specification.
The composition of the screen segment and the
sho ecification.

OCR performed on screen
segment showing text label.

wn text itself is contained in the sp

4. Automated test obtains text directly and
automatically from the screen specification.

OCR performed on screen
segment showing text label.

189

2 Hot Topics in Model-Based HMI Test Automation

One of the goals of the GI Automotive Software Engineering workshop is to exchange
research areas, ideas and results. In this spirit, we use this space to recommend a number
of focus areas to be worked on. As described in Section 1, we are moving toward true
model-based test automation. This will open up a set of new questions and opportunities.

1. Automatic selection of test cases. An obvious starting point are random walks
through the space spanned by the specification. Preference can be given to paths on
which errors have been discovered in previous runs (“machine learning”) and to paths
that have been marked by human experts as promising (“expert teaching”).

2. Automatic analysis of test coverage. It is clear that the traditional notion of coverage
of code branches is inappropriate here. Rather, it is necessary to consider paths through

ger –
unless one suspects an interaction between the climate control and the CD changer.

on testing will be enabled by the formal link between specification and test:
changes to the specification will trigger re-runs of exactly those tests that depend on the

This research agenda requires a representation that supports (1) the factorization of the
e

corre is
comp scriptions of both states and behavior.

Bib

+

 1999.
[GES04] Gentner, H.; Ehrmann, M.; Salzmann, C.: Model Based Development of Automotive

Human Machine Interfaces. Convergence, SAE, Detroit, Michigan, October 2004.
[Kis04] Kistler, G.: Ein model-checking-basierter Ansatz zur Prüfung von Nutzungsschnittstellen.

matik, 2004.
hrzeug. Tagungsband.

the space of user events and internal and external ECU events. One challenge here is the
appropriate choice of abstraction in order to link model paths with test paths. The former
are sequences of partial (i.e., abstract) states. The latter are more like traces (even though
they are not completely instantiated traces). For example, a test case abstracts away the
exact time behavior and, instead, specifies time intervals only (if at all).

3. Compositionality of models, compositionality of tests. E.g., a test of the climate
control unit is typically oblivious to the CD that is currently playing in the CD chan

4. Regressi

changed parts of the specification. Independent tests need not (but may) be re-run.

mod l into mutually independent (or loosely couple
sponding factorization of test sequences into ind
ositionality property is also required of the de

d) components, and (2) the
ependent subsequences. Th

liography

[BB 99] Bienmüller, T.; Bohn, J.; Brinkmann, H.; Brockmey
Jansen, P.: Verification of automotive control units. In
Correct System Design, LNCS 1710. Springer

er, U.; Damm, W.; Hungar, H.;
(Olderog, E.; Steffen, B., eds.)

Diplomarbeit, Technische Universität München, Fakultät für Infor
[ME04] Müller-Bagehl, C., Endt, P., eds.: Infotainment/Telematik im Fa

Expert-Verlag, Renningen, Germany, 2004.
[UHD04]Unruh, C.; Hepp, H.; Danz, D.: Testautomatisierung f. Infotainmentsysteme. In [ME04].
[WEA04] Wegner, G.; Endt, P.; Angelski, C.: Das elektronische Lastenheft als Mittel zur

Kostenreduktion bei der Entwicklung der Mensch-Maschine-Schnittstelle von
Infotainment-Systemen im Fahrzeug. In [ME04].

190

