
Generating Tests that Cover Input Structure

Nataniel Pereira Borges Jr.1, Nikolas Havrikov2, Andreas Zeller3

Abstract: To systematically test a program, one needs good inputs—inputs that are valid such that
they are not rejected by the program, and inputs that cover as much of the input space as possible in
order to reach a maximum of functionality.

We present recent techniques to systematically cover input structure. Our k-path algorithm for grammar
production [HZ19] systematically covers syntactic elements of the input as well as their combinations.
We show how to learn such input structures from graphical user interfaces, notably their interaction
language [DBJZ19]. Finally, we demonstrate that knowledge bases such as DBPedia can be a reliable
source of semantically coherent inputs [Wa20]. All these techniques result in a significantly higher
code coverage than state of the art.

Keywords: grammar; coverage; automated testing; input generation; knowledge-base; android

1 Achieving Grammar Coverage

Testing programs with randomly generated inputs is a cost-effective means to test programs

for robustness. However, to reach deep layers of a program, the inputs must be syntactically

valid. Using a grammar to specify the language of program inputs lends itself well to solving

this problemȷ A grammar-based test generator uses such a grammar to expand its start

symbol into further symbols repeatedly until only terminal symbols are left, constituting an

input. When generating inputs, intuitively, a high variation in the inputs should lead to a

high variation in program behavior.

We present a notion of grammar coverage called 𝑘-path coverage and an approach for quickly

achieving it. A 𝑘-path consists of 𝑘 consecutive symbols along a valid derivation sequence

in a derivation tree or a grammar. For any given grammar the number of 𝑘-paths is finite

and one can generate a set of inputs exhibiting all of them by greedily deriving towards

yet unvisited 𝑘-paths while keeping track of any 𝑘-paths covered incidentally. Having fully

derived a targeted 𝑘-path, we promptly close off the current tree as quickly as possible and

start generating a new one for the next unvisited 𝑘-path.

1 CISPA Helmholtz Center for Information Security, Saarbrücken nataniel.borges@cispa.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken nikolas.havrikov@cispa.de
3 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_31

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 85

https://creativecommons.org/licenses/by-sa/4.0/
mailto:nataniel.borges@cispa.de
mailto:nikolas.havrikov@cispa.de
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_31


2 UI Element Interactions

In the context of testing a mobile app, automated test generators systematically identify and

interact with its user interface elements. One key challenge hereby is to synthesize inputs

that effectively and efficiently cover app behavior. This is usually approached by having a

model mapping UI elements to actions they usually accept. Such a model can be mined

statically from an app or dynamically from observing its executions. Both these approaches,

however, are biased towards the distribution originally mined. They work well if the app

under test is similar to those used to train the model, but fail if it is dissimilar.

We present a technique that automatically adapts the model to the app at hand by approaching

test generation as an instance of the multi-armed bandit problem, where a finite set of

resources (actions) has to be distributed among competing alternatives (UI elements) to

increase its reward (test quality). We use reinforcement learning to address test generation

from this perspective and to systematically and gradually adjust our test generation strategy

towards the application under test.

3 Using Knowledge Bases

Staying in the context of mobile apps, many take complex data as input, such as travel

booking, map locations, or online banking information. These inputs are, however, expensive

to generate manually and challenging to synthesize automatically. Past research indicated

that knowledge bases could be a reliable source of semantically coherent inputs.

We propose an approach for leveraging knowledge bases for mobile app test generation

comprising four stepsȷ Given a UI state, we start by identifying and matching descriptive

labels with input fields according to a set of metrics based on the Gestalt principles. We

then use natural language processing to extract a concept associated with each label. We

use the extracted concepts, instead of the original labels, to query knowledge bases for input

values. Finally, we fill all input elements with the queried values and randomly interact with

the non-input elements.

Bibliography

[DBJZ19] Degott, Christian; Borges Jr., Nataniel Pereira; Zeller, Andreasȷ Learning User Interface
Element Interactions. Inȷ ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2019). July 2019.

[HZ19] Havrikov, Nikolas; Zeller, Andreasȷ Systematically Covering Input Structure. Inȷ
IEEE/ACM International Conference on Automated Software Engineering (ASE 2019).
November 2019.

[Wa20] Wanwarang, Tanapuch; Borges Jr., Nataniel Pereira; Bettscheider, Leon; Zeller, Andreasȷ
Testing Apps With Real-World Inputs. Inȷ 1st IEEE/ACM International Conference on
Automation of Software Test (AST 2020). May 2020.

86 Nataniel Pereira Borges Jr., Nikolas Havrikov, Andreas Zeller


