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Abstract: Motivation: Functionally related genes involved in the same genetic,
biochemical, or physiological process are often regulated co-ordinately by specific
combinations of transcription factors (TFs) that bind to specifically arranged
binding sites on DNA (composite modules (CMs)). Different signal transduction
pathways leading to the activation of these TFs converge at key molecules that
master-regulate cellular processes under study. Results: We developed a novel
computational approach to interpret gene expression data and to propose
complexes of transcription factors and further “upstream” key signaling molecules
that are able to master-regulate the observed gene expression. The approach
utilizes data from two databases (TRANSFAC® and TRANSPATH®) and
consists of two major components: 1) CMFinder analyzes 5upstream regions of
co-expressed genes and applies a genetic algorithm to reveal CMs consisting of co-
occurring single TF binding sites and composite elements; 2) ArrayAnalyzer is a
fast network search engine that analyzes signal transduction networks upstream of
the TFs revealed in the previous step and finds key molecules which can be
responsible for the observed concerted gene activation. The approach was applied
to a set of microarray data on differential gene expression in liver of growth
hormone-deficient mice (Smal). The results obtained in our analysis allow to
confirm the specific role of growth hormone (GH) in altering of gene expression in
liver of the Smal mutant mice. In addition we proposed a number of other highly
relevant key molecules.

1 Introduction
New technologies generate mass data on gene expression patterns and profiles.

However, the available capacities to interpret these data and to filter candidate targets for
drug development are very limited.
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Regulation of gene expression is accomplished through binding of TFs to their DNA
binding sites and transmission of the regulatory signal to the basal transcription complex.
Some of these TFs are specific for a particular tissue, a definite stage of development, or
a given extracellular signal, but most transcription factors are involved in gene
regulation under a rather wide spectrum of cellular conditions. It is clear by now that
combinations of TFs rather than single factors drive gene transcription and define its
specificity. Dynamic function-specific complexes of many different transcription factors,
so called enhanceosomes (Merika and Thanos, 2001) are formed at gene promoters and
enhancers driving gene expression in specific manners. At the level of DNA, the
blueprints for assembling of such variable TF complexes on promoter regions may be
seen as specific combinations of TF binding sites located in close proximity to each
other. We call such structures “composite modules (CMs)”. There may be several
different types of CMs located in the regulatory region of one gene, that can be spaced
(e.g. liver specific and muscle specific enhancers of one gene) or overlapping. CMs
consisting of two/three closely located sites belong to the smallest lowest hierarchical
level of CMs. CMs of a higher level may include more sites as well as CMs of a lower
level such as CEs.

Specific TF binding site combinations were used for an identification of muscle-specific
promoters (Frech et al., 1998; Wasserman and Fickett, 1998), promoters of liver-
enriched genes (Tronche et al., 1997), of yeast genes (Brazma et al., 1997), of immune-
specific genes (Boehlk et al., 2000; Fessele et al., 2001; Kel et al., 1999), and promoters

of genes regulated during cell cycle (Kel et al., 2001). In the database TRANSCompel®
(Kel-Margoulis et al., 2002) known CEs that are specific combinations of pairs or
triplets of TF binding sites located in close proximity to each other are collected.
Recently, a number of approaches identifying composite motifs were described:
BioProspector (Liu et al., 2001), Co-Bind (GuhaThakurta and Stormo, 2001), MITRA

(Eskin and Pevzner, 2002), dyad search (van Helden et al., 2000). These programs help

to discover new regulatory sites for yet unknown transcription factors, but an “ab initio”
motif finding method is limited by the length of sequences and may not be suitable for

the analysis of long regulatory regions of genes of human and other higher eukaryotic
organisms. A valuable source to identify TF binding sites is the TRANSFAC® database
(http://www.biobase.de), (Matys et al., 2003). Novel methods have been developed that

utilise this information (ClusterScan: Kel-Margoulis et al., 2002b, D'Souza et al., 2003;
TOUCAN system - Aerts et al., 2003).

We developed a new method for detecting de novo composite modules using information

from TRANSFAC® about positional weight matrices (PWMs) that characterize DNA
binding signature of many different transcription factor families. This method allows us

to interpret gene expression data and to propose complexes of transcription factors and
further “upstream” key signaling molecules that are able to magia@late the observed

gene expression.
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2 Data and Methods

2.1 Databases and PWM based site recognition method.

Two databases for prediction of gene expression were used (BIOBASE GmbH,
Wolfenbuttel, Germany, www.biobase.de) . TRANSFAC®atys et al., 2003) is a
database that collects information about gene regulation in eukaryotes based on
annotation of experimentally proven binding of transcription factors to their target sites.
TRANSPATH® (Krull et al., 2003) is a database that comprises data about molecules
participating in signal transduction and the reactions they undergo, thus spanning a
complex network of interconnected signalling components. TRANSPATH® focuses on
signalling cascades that aim at transcription factors and thus alter the gene expression
profile of a given cell. We used TRANSFAC® Professional rel.8.1 and TRANSPATH®
Professional rel.5.1.

For predicting potential TF binding sites in nucleotide sequences we used the most
widely used method which is the application of positional weight matrices (PWMs)
(Quandt et al., 1995). TRANSFAC®pvides the largest collection of weight matrices
for eukaryotic transcription factors (www.biobase.de; www.gene-regulation.com). We
use Match program (Kel et al., 2003) to search for potential TF binding sites using
PWMs. This program requires two parameters for each matrix: core cut-off and matrix
cut-off (for the 5 nucleotide most conserved core of the matrix and for the whole matrix
respectively). These two cut-off can vary from 0.0 to 1.0 and they define how specific
and how sensitive is the method. The higher the cut-offs the more specific and less
sensitive is the search. We uses a set of 522 matrices that correspond to different TFs of
vertebrate organisms. The cut-offs were set to guarantee for each matrix at least 90% of
sensitivity for recognition of the corresponding TF binding sites.

2.2 A genetic algorithm to determine composite regulatory modules (CM).

Composite module (CM) is a particular combination of PWMSs for different TFs, which
is associated with a specific functional type of gene regulatory regions. In this paper we
use the following model of CMs. We define a CM as a relatively small set of individual
PWMs and pairs of PWMs, with given cut-offs for matrices and relative distances
between site matches in the pairs. CM analysis was performed using the CMFinder tool,
an advanced version of a promoter analysis tool ClusterScan based on a genetic
algorithm as recently described (Kel-Margoulis et al., 2002b). CMs are characterized by
the following parameters: K, the number of individual PWMs in the module, R, the
(k)

. . Kk
ot » Felative impact values qd )

number of pairs of PWMSs, matrix cut-off values (
maximal number of best matches K ) that were assigned to every weight matrix &
(k=1,K), as well as matrix cut-off values qgn)_oﬁ , relative impact values (0(” and

maximal distances d,(TQX that were assigned to every matrix pair » (r=1,R) in the CM.
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Matrices are selected to be included into the CM by the program from a given library of
PWMs. A composite module score (CM score) is calculated for a DNA sequences X
(promoter of a gene) according to the following equation:

x ()
Fow (X) = Z qo‘k)XZqi(”(XH " x (g7 (X )+ (X))
K=T.K = r<T

R

where g (X) < gl and g} (X) < q{,_y : and distance between site matches of

two matrices of a pair () : d{") < dr(r:;x .

The CMFinder program takes as an input two sets of sequences (the set to be analyzed,
we call it set ¥, and a control set /V) and a library of PWMs for transcription factors. In
the case of analysis of microarray data, set ¥ consists of promoters of up- or down-
regulated genes or genes that are belong to one expression cluster, and the set NV
consists of background sequences (e.g. promoters of genes that did not change their
expression). For defined parameters K and R and over a number of iterations, the
program optimizes the CM by searching for a “best” combination of matrices, thei
cut-offs and their relative impacts that discriminates sets ¥ and N. The output of the
program is the best discriminative CM with the optimized parameters. We define the
goal function of the genetic algorithm as a weighted sum of false negative, false
positive errors and the statistical significance (t-test) over several random iterations of
bootstrap procedure by splitting the initial ¥ and N sets into the training and testing
subsets. In addition, we tested the normal distribution of the F function in the ¥ and N
sets. Calculating the goal function allows to assess the usability of the obtained
solutions for classification of individual sequences.

23 ArrayAnalyzerm — a fast search engine that analyses signal transduction
network.

To understand the mechanisms of gene expression, microarray data should be analyzed
in the context of complex regulatory networks of a cell. Through such networks, few
regulators can control expression of large sets of genes. We have developed a tool
ArrayAnalyzer” integrated in the TRANSPATH® signal transduction database that
allows fast search for key upstream regulators in the networks of signal trunsduction that
is composed of known experimentally verified signal trunsduction reactions annotated in
TRANSPATH®. ArrayAnalyzer” starts its upstream search from a list of so called target
molecules which are considered as targets of a cascade of signal transduction. These
target molecules include products of those genes that are differentially expressed in the
considered gene expression experiment. A list of TFs that are proposed on the previous
step of analysis are used as input for ArrayAnalyzer .
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The program searches for so called “key nodes” (or key molecules) in the signal
transduction network upstream from the target molecules in such a way that a signal

from these key molecules can reach the maximal number of target molecules through a
minimal number of steps. By this way the program can find molecules providing
coordinated signal transduction and, in the case of transcription factors, it can suggest a
“masterregulator” of differentially expressed genes.

The algorithm of ArrayAnalyzer” uses compressed shortest-distance matrices (D), which
are calculated by, e.g., Floyd's algorithm. The compression is performed by a delta-like
algorithm. The identification of key nodes is done by assigning a score to every node
(molecule or gene) in TRANSPATH, depending on a given maximal distance dmax
(“search radius”). The scor® of each node represents the number N of genes from a
certain given array experiment, which can be reached from this node (true positives), in
relation to the number of all other nodes M in the whole network that can be reached as
well (false positives), according to the chosen distance matrix D, radius dmax and a
value of “penalty on false positives” (P).

ArrayAnalyzer” performs a search of the potential key nodes in the TRANSPATH
network taking the TFs that are linked to the PWMs of the best discriminating CMs
revealed on the previous step (see para. 2.2) as a starting set of target molecules. The
found potential key nodes are ranked according to the calculated score S.

3 Results

3.1 Testing of the CMFinder on simulated data.

We generated a number of sets of random sequences. The nucleotide composition of
these random sequences was adjusted to that of known genomic promoters. We
implanted into the random sequences several binding sites of certain TFs by placing
them in random positions. We used the CMFinder program to compare the random
sequence set with and without implanted sites. We varied the minimal scores of the sites
and their frequencies to find limitations of the method.

Table 1. Results of testing CMFinder on simulated data.

# of [ Implanted sites™ % of sequences with implanted sites?
matr 50 70 100
ices
2 AhR, AP-1 +/- (AhR, GATA) | 43 +
4 AhR, OCT, C/EBP, +/- (AhR, C/EBP, | + +
AP-1 OCT, HNF3)
6 AhR, OCT, C/EBP, -/+ (AhR, C/EBP, | +/- (AhR, C/EBP, +/- (AhR, OCT, C/EBP,
AP-1, NF1, HNF1 HNF4, HNF3A, AP-1, GATA, ROR, ROR, NF1, HNF1)
ROR) HNF1, COUP)
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“here the names of TFs are given whose matrices were used for implantation into the

random sequences. We did three tests by implanting 2,4 and 6 matrices in the sets of 100
random sequences of the length 600bp each;

Zthe corresponding percent of sequences in the set was used for implantation, other
sequences in the set were left unchanged;

9+ means that all implanted matrices were revealed correctly by the algorithm. +/-

means that not all matrices were revealed correctly, the “correct” factors are shown in
bold.

The result of this simulation (see Table 1) shows that the CMFinder program was able to
determine correctly all TF matrices used for site implantation. However, the more
matrices were used for implantation the more difficult it became for the program to
reveal the sites correctly. Importantly, matrices were found to behave differently in the
test. For instance, the matrices for C/EBP and AhR were easily identified whereas
recognition of the matrix for OCT factors was more difficult, and the AP-1 matrix was
most difficult to identify.

3.2 Testing of ArrayAnalyzerTM on the simulated sets of transcription factors.

To test the ability of ArrayAnalyzer™ to identify key molecules for different sets of TFs
we ran an extensive random simulation. During simulations we were selecting randomly
a certain set of TFs (2 to 10) from all factors that are currently present in
TRANSPATH® (590 TF family nodes in total). For each selected set we performed an
upstream ArrayAnalyzer” search in order to find all possible key molecules that can
reach all target molecules in the set. Each time, we select from all found key molecules
the one that has the closest distance to the set of target molecules. The distance is
calculated by adding up the number of steps from the key molecule to each target
molecule. We assume that the closest key molecule is the most probable one in
transducing the signal to the target molecules. The results of these simulations show that
the total chances to find a key molecule in this random simulations is about 6%. It is
possible to find it for pairs or even triples of factors, but rather unlikely for higher
number of factors in the set (0.4% for four targets). The most frequent families of
molecules that were found as key molecules in these simulations were: Jak, PKA, PKC,
Rad23 and AKT.
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3.3 Analysis of microarray data on a mouse model of the complex disease: growth
hormone (GH) deficiency. Blind validation of the method.

Microarray analysis of 4200 murine genes expressed in the liver was performed to
compare growth hormone-deficient Smal and wild type mice (Wabnitz et al., 2004, in
preparation). This study aimed at elucidating molecular mechanisms and suggested
potential new players responsible for the differences in growth control, body
composition, lipid- and steroid metabolism between Smal and wild type mice.
Importantly, the search for potential composite modules and following pathway analysis
were done without any knowledge that mice under study are growth hormone deficient.

A data set contains 82 genes whose relative expression values differ 2 times and more
between Smal and wild type mouse samples. To retrieve the promoter sequences of the
genes we use Ensembl and DBTSS databases (Suzuki et al., 2002). The beginning of the
annotated first exon was considered as a tentative transcription start site (TSS).
However, for some genes several possible TSS positions were annotated due to possible
alternative transcription starts. In these cases several possibtgidns were
considered. In total we extracted 40 5’ regions for-tggulated genes and 43 for down-
regulated genes. For the analysis we selected the 600bp regions around TSS (-500 +100).
A set of 788 promoters for vertebrate genes from EPD database (Praz et al., 2002) was
used as a background set.

One of the best discriminative composite modules includes matrices for C/EBP, GR,
SMAD3, Stat and Fox factors (Fig. 1). Combination of these matrices allows to
differentiate promoters of Smel specific genes from other promoters.

a) b)

0.0983*VSTCF11MAFG _01(0.821)
0.0471*V$FOXO04_01(0.961)
0.0301*VSIPF1_Q4(0.852)

0.0410*VSAR_01(0.851)

0.0766*V$GR_Q6(0.971)
0.0482*VSSTATI_02(0.995)
0.0508*V$CEBPB_01(0.98)
0.0281*VSSTATSA_02(0.826)
0.1040*VSCETS1P54_02(0.949)-50-VSTCF4_Q5(0.908)
0.0751*VSTCF1P_Q6(0.726)-50-VSSTAT6_01(0.861)
0.0728*V$SF1_Q6(0.684)-50-V$SMAD3_Q6(0.833)
0.0419*VSELK1_02(0.862)-50-VSGRE_C(0.842)

Fig. 1 Composite module found in promoters of differentially expressed genes in liver of growth
hormone-deficient mice (Smal). a) A list of position weight matrices and matrix pairs consisting

the CM. It includes the impact values (first value in each row), the weight matrix identifier (ID),
corresponding cut-offs (in parenthesis after the matrix ID) and the maximal distances between sites

in the matrix pairs (shown as50-). b) Distributions of composite module scores. The plot shows
discrimination between differentially expressed promoters (black bars) and non changed promoters
(white bars). The CM score is given on the abscissa. The significance of discrimination by T-test
p=5.6E-18.
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At the next step, we have analysed the signal transduction pathways upstream of all
found TFs using ArrayAnalyzer" . The goal of the pathway analysis was to reveal key
molecules that could provide coordinate regulation of several transcription factors and
thus can be considered as potential drug target molecules.

Growth hormone (GH) was identified by ArrayAnalyzer”™ as one of the most weighted

key molecules (among first 10 molecules with the maximal score S). Pathways upstream

of transcription factors GR, STAT1, STATS, C/EBP and others were crossing at this
molecule (see Fig 2 as output of ArrayAnalyzer”). According to the data collected in
TRANSPATH®, growth hormone can act through its cognate receptor (GHR) or
prolactin receptor (PRLR). Downstream of these receptors, Jak kinases could be
activated on one hand, and Src and PI3K kinases on the other hand.

Receptor Tyrosine Kinases (RTK) is another family of molecules that was found by the
ArrayAnalyzer” as a key molecule. Nck adaptor protein is recruited by Receptor
Tyrosine Kinases (RTK) (for example Insulin receptor, IGF-I receptor and others) as
well as by immune receptors (T-cell receptors, B-cell receptors) and serves to provide
signal flow further downstream. PAK1 is a protein serine/threonine kinase downstream
of Racl. PAKI1 is known to be activated in response to several growth factors, and is
involved in cytoskeletal reorganization in activated immune cells.
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Fig. 2. Results of the ArmyAnalyzerTM search upstream from TFs resulting in identifying: growth
hormone (GH) and receptor tyrosine kinases (RTK) as potential key molecules involved in
differential expression of the genes in liver of growth hormone-deficient mice (Smal).
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Any of these two cascades or both can be responsible for coordinated
activation/repression of the found TFs: GR, STAT, C/EBP, SMAD, Ets and therefore for
the regulation of genes that are differentially expressed in the liver of Smal versus wild
type mice.

4 Conclusion

In this paper we describe a novel computational approach to interpret gene expression

data. In this approach we analyse promoters of differentially regulated genes and are able

to propose complexes of transcription factors that provide the observed concerted
regulation of these genes. Further analysis of the signalling networks in the cell leading

to activation of these transcription factors allow us to propose “key signaling molecules”
that are able to master-regulate the observed gene expression. The approach was applied

to a set of microarray data on differential gene expression in liver of growth hormone-
deficient mice (Smal). The results obtained in our analysis allow to confirm the specific

role of growth hormone (GH) in altering of gene expression in liver of the Sma/ mutant

mice.
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