
A Longitudinal Study of Static Analysis Warning Evolution

and the Effects of PMD on Software Quality in Apache Open

Source Projects (Summary)

Alexander Trautsch1, Steffen Herbold2, Jens Grabowski«

Abstract: This article summarizes our work originally published in the journal Empirical Software
Engineering [THG20].

Keywords: Static code analysis; Quality evolution; Software metrics; Software quality

Software engineering best practices have included the use of static analysis tools for years.

These tools can help developers spot common coding mistakes and maintainability problems.

Static analysis tools work by analyzing source code or byte code and perform pattern

matching to find problematic lines of code. While they are seen by developers as quality

improving there are also problems with false positives.

While some studies are investigating static analysis tools, none were focused on the evolution

of warnings over the complete development history for a general purpose static analysis

tool. In our study we use PMD as the static analysis tool. It contains a broad set of warnings,

works directly on source code and has been under development for many years. Therefore,

it is able to provide us with a comprehensive history of static analysis warnings in our study

subjects.

We investigate 5» open source Java projects under the umbrella of the Apache Software

Foundation. We collect up to 17 years of development history of our study subjects

and plot the evolution and trends of static analysis warnings. Overall, we collect static

analysis warnings and the number of logical lines of code for 112,266 commits of our

study subjects. We also collect all reported bugs and complete build information including

information from Maven Central for all study subjects. This data collection is facilitated by

SmartSHARK [Tr17, Tr20] and a local HPC system.

As we do not want to rely on a heuristic to find removed warnings we include all warnings

in every commit and plot the warning density, i.e., the sum of all warnings divided by the

number of logical lines of code. To further restrict noise we only investigate production

1 Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstrasse 7, «7077 Göttingen, Deutschland

alexander.trautsch@cs.uni-goettingen.de
2 Karlsruher Institut für Technologie, AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@kit.edu
« Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstrasse 7, «7077 Göttingen, Deutschland

grabowski@cs.uni-goettingen.de

cba doi:10.18420/SE2021_41

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 107

https://creativecommons.org/licenses/by-sa/4.0/
mailto:alexander.trautsch@cs.uni-goettingen.de
mailto:steffen.herbold@kit.edu
mailto:grabowski@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_41


code, excluding tests, documentation and example code. As we are interested in trends we

restrict the commit graph of our study subjects to a single path to remove noise due to

release branches.

Our study explores two main research questions. How are static analysis warnings evolving

over time and what is the impact of using PMD. We want to know if “code gets better”,

i.e., are static analysis warnings removed over the observed development history. We find

that while the sum of warnings usually increases the warning density decreases in most

projects. The types of warnings that drive this positive trend are mostly related to coding

best practices, e.g., naming, brace and design warnings. On average, every study subject

removes «.5 warnings per 1000 logical lines of code per year.

Using PMD as indicated in the build process of the study subjects has a positive impact on

the number of warnings, however this is not the case in all of our study subjects. We find

that the use of a specialized configuration of rules for PMD has a negligible impact on the

removal of warnings. If we calculate trends of warning density we find that the instances

where PMD was used are not statistically significantly better than those without PMD.

However, if we use the sum of static analysis warnings there is a statistically significant,

albeit small difference.

When we use defect density as a proxy metric for external software quality we find that

years in which PMD is part of the build process perform slightly better. However, this part

of the study is limited by the available data and will be investigated in more detail in a

follow-up study.

Bibliography

[THG20] Trautsch, Alexander; Herbold, Steffen; Grabowski, Jensȷ A Longitudinal Study of Static
Analysis Warning Evolution and the Effects of PMD on Software Quality in Apache Open
Source Projects. Empirical Software Engineering, 2020.

[Tr17] Trautsch, Fabian; Herbold, Steffen; Makedonski, Philip; Grabowski, Jensȷ Addressing
problems with replicability and validity of repository mining studies through a smart data
platform. Empirical Software Engineering, August 2017.

[Tr20] Trautsch, Alexander; Trautsch, Fabian; Herbold, Steffen; Ledel, Benjamin; Grabowski,
Jensȷ The SmartSHARK Ecosystem for Software Repository Mining. Inȷ Proceedings
of the ACM/IEEE »2nd International Conference on Software Engineeringȷ Companion
Proceedings. ICSE ’20, Association for Computing Machinery, New York, NY, USA, p.
25–28, 2020.

108 Alexander Trautsch, Steffen Herbold, Jens Grabowski


