A Conceptual Architecture for Pragmatic Web Services

Hans Weigand and Willem-Jan van den Heuvel
Infolab, Tilburg University
P.0.Box 90153
5000 LE Tilburg, The Netherlands
H.Weigand @uvt.nl, W.J.A.M.vdnHeuvel @uvt.nl

Abstract: In the current literature on service-oriented computing, the relation-
ship between services and web-services is not always clear. Much research,
notably in the area of service representation, discovery and composition, claims
to address services whereas they actually apply to web-services. In this paper,
we use insights from Language/Action Perspective and from value modeling to
define services at an abstract (business) level. On that basis, we explore a prag-
matic approach to service discovery, the cornerstone of the Service Oriented
Architecture, and show how it differs from web service discovery. In the course
of the discussion, some differences between a Semantic Web approach and a
Pragmatic Web approach become apparant.

1 Introduction

Service-Oriented Architectures provide major advantages for today’s enterprise in-
formation systems by presenting the interfaces that loosely coupled connections re-
quire [Pa05]. Web services [W304] seem to become the preferred implementation
technology for realizing the SOA promise of service sharing and interoperability. Se-
mantic descriptions of web services using ontologies can be exploited to improve the
process of locating services that achieve a given customer goal. Much research has
been devoted to the development of proper web service description languages and to
the optimization of the matching process. In this context, Chris Preist has presented
a useful conceptual architecture for semantic web services [Pr04]. Preist suggests a
clear distinction between a service and a web service. A service is a provision of
value to a client, such as a train ticket Innsbruck to Stuttgart, whereas a web service
is a computational entity accessible over the Internet. A web service can be sent a
SOAP message and will return a result.

The suggestion of Preist has been taken up by several researchers. According to
[Fe05], the need for the distinction service/web service becomes evident if we think
about a prototypical e-business scenario: a user wants to get a specific service that
provides some real-value for him. Web services are technological means for ac-
cessing or specifying services offered by some specific provider. Typically, business
users are not specifically interested in Web services but rather in the services. On
this basis, [Fe05] argues that much work on automatic discovery of services fails to
provide a viable solution as it mixes up the two concepts, and assumes wrongly that
complete and correct descriptions of services are available. A proposal is elaborated
for a conceptual model of service discovery in which an explicit distinction is made

53

between web service discovery and service discovery.

Lara and Olmedilla [LOO0S5] also adopt the distinction of Preist. They make a dis-
tinction between web service discovery and service contracting, where web service
discovery consists of two steps: first, matching client goals with an abstract service
description (e.g. in description logic, [LHO3]), and secondly, to check whether a
concrete service can be provided by this provider. In the service contracting phase,
the requester and the provider will establish a conversation in which relevant infor-
mation will be exchanged (e.g. credit card data). Although the distinction between
service and web service is a valid one and we subscribe to it, we observe that in
many current publications both notions are still used intertwiningly. Apparently, the
distinction needs to be analyzed in more detail and a more explicit theoretical basis
of both concepts and their relationships is needed.

For example, is it true, as [Fe05] states, that a web service is (nothing but) a means
to request a service over the Internet? And how to understand that in the proposals of
[Fe05] and [LOO05] web service discovery is the first and major step, whereas Preist
does not talk about it at all and only talks about service discovery?

One objective of this paper is to clarify the service/web service distinction and the
way in which they are connected. In particular, we will develop a theoretical ba-
sis for both concepts based on two bodies of knowledge. Firstly, we will use the
Language/Action Perspective, and particularly the work of Dietz [Di06] that distin-
guishes between business level transactions and information-level interactions for
clarifying how services and web-services are linked. Secondly, for a more precise
characterization of services at the business level, we draw on recent research results
in value modelling [GAV00, We06]. On the basis of this, a conceptual architecture
of pragmatic web services is proposed. Some consequences for service discovery
and for web service design are discussed in section 3. In the context of this paper,
these issues are not worked out in depth, but only in so far they also serve the sec-
ond objective of this paper: to explore what a pragmatic approach towards service
discovery would mean as opposed to (or complementing) a Semantic Web approach.

2 Service versus web service

In this section we ground the difference between service and web service in two
theories: the Language/Action Perspective (DEMO), and the e3-value approach. On
the basis of that, we propose a conceptual architecture of pragmatic web services.

2.1 DEMO

The difference made by Preist between a web service as a computational entity, that
is, as part of the Information System, and a service as a provision of value in the
business domain, reflects the essential difference made in the Language/Action Per-
spective field between messages and what actors do with messages (speech acts)
in the social or business domain. Dietz [Di06] has formalized this difference in a

54

“distinction axiom” that says that there are three distinct human abilities playing a
role in the operation of actors: performa, informa and forma. The forma ability con-
cerns the form aspects of communication and information. We are talking here about
such things as uttering a sentence, or storing and retrieving documents. The informa
ability concerns the content aspects of communication and information, where we
abstract from the form aspect, as in the analysis of information needs. When we
abstract from the information exchanges as well and focus on what is achieved — e.g.
the creation of a commitment — then we talk about the performa ability. Drawing
on the distinction axiom, system analysts have a way of abstracting from the how of
communication in order to have a clear picture of the essence of the communication,
that is the coordination of business activities (production acts, in DEMO terminol-
ogy). From there, they can go down and find out the best way to implement the coor-
dination acts by means of messages and documents, and during this step, Information
Technology can be useful. Information systems do not perform business activities,
they support them by messaging systems (implementing coordination acts) or by
information processing systems (supporting production acts). Web services are soft-
ware components exchanging messages and performing certain computations and
inferences. They do not have performa capabilities themselves, but with their in-
forma capabilities, they can support humans in their performa activities. Figure 1
illustrates the major distinction between the social level of human action (performa)
and the information level (informa/forma) level. Agreements are made, business is
done, and customers are satisfied at the social level. Information messages are ex-
changed at the information level, that is, by means of Information Technology or
traditional media. Services have a life cycle, and the various phases of services can
be supported by one or more web services. Each web service performance, irre-
spective of which service phase it supports, has also a life cycle, commonly called
publish — find — bind [Pa05].

Let us consider a few examples. One of the services offered by a library is the loan
of books. A loan is a social action: it includes the right of keeping the book for
some time and reading it, and, as the right is temporary, the obligation to return the
book in due time. Each party has a certain responsibility towards the other party.
Essential in the coordination of their activities is coordination of the start of the loan
and the ending of the loan: something changes in the social world when the book
is borrowed and something changes again when the book is returned. Information
systems can be used for performing a coordination act — e.g. the request to borrow
book X — or for recording a fact — ’book X is now borrowed”, or ’the book has been
returned”, or for supporting a coordination indirectly — e.g. a reminder to return the
book. We can use a web service for that, but strictly speaking, this web service is not
a loan service: the loan is a transaction between the library and the client. The web
service only supports certain parts of the messaging and data processing.

Now what about a much simpler example such as a currency conversion quotation?
In this case, it looks as if service and web service coincide. It is true that the service

55

Social level

customer
coordination act, production act

e : B

service

web service web service

browser, service bus
traditional media
messages

Information level

Figure 1: Social level versus information level of human action.

offered here (a production act) is highly automated. Nevertheless, it is not the web
service that offers the conversion quotation service. A simple test question is: who
may be held responsible by the client when a mistake is made, e.g. because of an
out-dated conversion rate? Not the web service, but its provider. And what if there
is no provider, if it is just a program hanging somewhere on the Internet? In that
case, anybody can use it for what it is worth, but this use cannot be characterized as
service provision.

Confusion between service and web service arises when the service is equated with
agreement about a (future) service. For example, consider a train ticket, or a theater
ticket. From a business point of view, the ticket is only instrumental: the real service
offered is the travel or the theater show. The ticket represents a right and a commit-
ment of the service provider. Information technology can be used for the customer
to request such a ticket, and sometimes for the service provider to deliver the ticket
in digital form. It does not provide the service as such.

Figure 2 renders a DEMO ATD (Actor Transaction Diagram) of a library (taken from
[Di06]). One of the production acts offered by the library is the loan creation: this
is done by the role “Loan Creator”. There are two transactions between Member
and Loan Creator: “loan start” and “book return”. The former is aimed at producing
the fact "Loan L has been started”, and the latter at producing the fact ”book copy
C has been returned”. Each transaction consists of a workflow loop with a initating
phase (request, promise) and a completion phase (state, accept), and between these

56

LIBRARY

reduced
fesapproval loan start
A0 AD4
_ mambe?h%l\lg'shamn cr::h"ur
To1 annual To5
V registra feecontrol
A10 book fetumn
nnual & T0
To2 ontroller AT loarfiend
i L T06
fe=payment
foan
m ADG T07
T08 T09
v Toller retum
bookship stocke finepayms
ment ontrol

Figure 2: DEMO example library, extracted from [Di06].

two coordination acts, a production act is performed — the starting of the loan, or the
return of the book. It is important to realize that these are essential actions that will
always occur in the library, irrespective of how they are supported at the information
level (by web services, or loan machines, etc).

2.2 E3-value

Another theoretical framework that is considered to assist in clarifying the distinc-
tion between web-services and services constitutes e3-value, which entails another
paradigm for modeling and analyzing business transactions in the abstract.

e3-value [GAVO00] is a modeling approach that is originally aimed at supporting the
explorations of new business networks. For these explorations, process details are
not relevant. What is important is whether a collaboration can be set up that pro-
vides value to all participants. Recently, e3-value is also applied for other purposes,
such as business/IT alignment. We briefly introduce the basic concepts. An actor is
an economically independent entity. An actor is often, but not necessarily, a legal
entity. Examples include enterprises, brokers and end-consumers. A value object is
something that is of economic value for at least one actor. Examples: cars, Internet
access, stream of music. A value transfer represents one or more potential trades of
value objects, whereas a value transaction is a reciprocal combination of value trans-

57

fers. Value transfers are modeled as lines between value ports (incoming, outgoing
triangles), whereas value ports can be bundled in value interfaces (ellipses).

wisitar |
X |Iihrar\j
browsing -
< j} catalogue access maintain
. ‘ ‘

provide
=] book
—
mermbership fee T
[a—"___loanfes" _ ut

reading [: book loan
f J chj_
publisher

member

Figure 3: e3 value example library.

In [We06] the notion of value object is analyzed in more detail. Typically, it is a
combination of an access right to some resource and a transformation enabled by
this resource. For example, a flight as value object is the combination of a right to a
seat in the named airplane and being transported to the destination. The analysis of
the value object is helpful in identifying which coordination acts and production acts
are needed to transfer the value.

Figure 3 presents a possible value model of a library. The library offers a loan service
to members, but it also allows visitors (members or not) to use the book catalogue
for browsing. As these services are independent, they are modeled as separate value
interfaces. Within the value interface for ”book loan”, we see value ports for receiv-
ing the membership fee, for receiving the loan fee per book, and for providing the
loan book.

Although both e3-value models and DEMO ATD’s aim at an abstract enterprise level,
there are interesting differences. DEMO abstracts from information flow, and there-
fore does typically not include informational actions such as catalogue browsing.
e3-value does consider all value objects, including informational ones. However, it
abstracts from process aspects: for example, it typically does not make a difference
between loan start and loan end — it just models “’loan” as a value object, and that this
has a start and an end because of the semantics of ’loan” has to be considered when

58

going from value level to process level. In the following section, we will propose a
conceptual architecture that links DEMO and e3-value. However, a full integration
of the two methods is beyond the scope of this paper.

2.3 The conceptual architecture of services

The WSA [W304] uses the terms service and web service interchangably, although it
does distinguish between a web service and its implementation. In this view, the web
service is not the concrete piece of software, but the functionality provided by this
software. Using Dietz’s distinction axiom, the service is something offered at the
performa or business level, whereas the web service functions at the informa level.
Using e3-value, the provision of value can be made more precise. An important
concept added by e3-value is the value transaction that includes the value transfer
plus its exchange action (typically the payment). The notion of value transaction is
important because there are often dependencies between the two value transfers (e.g.
delivery only after payment). The term “’service” is not used in e3-value, but it can
be defined as the provision of a value object. Note that the value object is a type that
can have multiple instances (’concrete services”, in Preist’s terms).

Figure 4 provides a metamodel relating the main concepts of a pragmatic service ar-
chitecture that may be perceived as the first step in a unification of the Language/Ac-
tion Perspective-, value modeling-, and the web service domain. A value transaction
(e3-value) consists of at least two value transfers, here typified as a DEMO transac-
tion that encompasses 3 phases. As such, a transaction realizes a certain service, that
is, the provision of a value object by a provider to a requester.

Web services are organized in three groups: infrastructure web services, informa-
tional and domain web services. Infrastructure web services provide support fa-
cilities to domain services, e.g., persistency and lifecycle management, and may
be packaged in middleware technologies such as the enterprise service bus. They
function at the forma (documentary) level, whereas domain services in the service
architecture operate at the informa level. Informational web services may automate
information acts, whereas domain services may automate coordination acts or pro-
duction acts. Hence, the latter may facilitate communication between a service re-
quester and service provider to negotiate or comply to commitments using coordina-
tion web services, or, they may implement the actual value creation during the exe-
cution phase. Several web services for coordination can be distinguished, including
web services supporting matchmaking and negotiation between the pre-transaction
phase, and monitoring during the execution and post-transaction phase.

3 A pragmatic approach to service matching

It is a basic tenet of this paper that a web service is not the service, but an instrument
at the informa level to support certain phases in the service lifecycle. The exact
liaison between service (value transfer) and its lifecycle (process) is a topic of current

59

Senice supply Value Object
—~
~
realize, fransfer
~

~ |
. [Transaction |2 1 [value Transaction
i | T 1

_—
—

Post-transaction

/
\mp\e/ments

>||

Infrastructure WS

[Informational WS | [Domain ws |
[1 [1
[1 [1

—
Persistency ‘ ‘ Security H Load balancing ‘ e — I
1 | == ! i
/1
1 Registry | " [Certification | ontracting 1\1 |

[Match‘maker‘ [Negotiation | [Monitoring |
[1
!]]|]

Figure 4: A unified metamodel defining and linking Services and Web Services.

research [We06] that is not in the scope of this paper.

Service discovery not only includes the use of semantic matching techniques (e.g.,
DAML-S matching), but it also has pragmatic aspects whose importance become
apparent when we consider web services to support value transactions. Let us first
explain what we mean by a pragmatic approach. Where semantics deals with the
meanings of data, pragmatics deals with their context of usage [Si02]. Table 1 is an
attempt to highlight the differences in focus between a Semantic Web approach and
a Pragmatic Web approach.

The Semantic Web aims at improving information exchange. Its central object is the
web document. Currently, many documents are only accessible to humans. The Se-
mantic Web dream (Berners-Lee’s words) is that agents can access and analyze these
documents as well. To achieve that, documents must be enriched with semantic de-
scriptions. These are typically based on ontologies, that are founded in Description

60

Logic and Knowledge Representation. In contrast, the Pragmatic Web aims at im-
proving human collaboration, and its central object therefore is the (social) action.
Currently, social actions are performed by humans. The Pragmatic Web challenge
is that agents can effectively support humans in performing their social actions. To
achieve that, agents must be able to enter meaningful conversations and get at agree-
ments. These conversations can also function of hiding the “excess” semantics of
data that might otherwise be revealed [Si02]. Ontologies do have a role here as well,
but in principle, the agreements are grounded in the communities and their (mostly
implicit) norms and trust relationships. Pragmatic Web solutions may come, among
others, from Communication Theory and the field of Multi-Agent Systems.

Web services play an important role in both perspectives [Si02], but the Seman-
tic Web efforts are mainly directed at finding web services, whereas a pragmatic
approach relativizes this effort and is especially interested in service composition.
Instead of adopting a light workflow-like language, like done by standards such as
BPEL and OWL-S, the Pragmatic Web engineers processes as collaborations be-
tween “intelligent” services within a shared and trusted context. This implies that
service composition should go far beyond connecting port types of (web-)services,
and should involve issues such as reaching agreement about business protocols, se-
curity, transactionality, while assuming that semantic interoperability issues are han-
dled by the community or vertical domain, e.g., using reference models such as
RosettaNet. Once services have been composed, the Pragmatic Web applies dynamic
service adaptation in context to modify functional and non-functional characteristics
of services given external or internal stimuli. In [WHfc], we have explored some
initial ideas regarding dynamic service adaptation.

In addition, and perhaps more importantly, the Pragmatic Web treats processes as
value-exchanges, providing existential meaning and context to services. In this
emerging paradigm, web-services constitute the main fabric to assemble processes
that implement services and take care of value transactions between service re-
questers and providers.

Semantic Web Pragmatic Web
information exchange collaboration
document action
agents can analyze documents agents can perform delegated actions
semantic descriptions conversations and agreements
ontologies communities
Description Logic, Knowledge Representation Communication Theory, Multi-Agent Systems
finding services composing, adapting services

Table 1: Semantic Web vs. Pragmatic Web: distinctive and complementary

61

3.1 Service discovery

The conceptual architecture of Preist contains three models, the first being the dis-
covery model. The model assumes that both requestor agent and provider agent have
descriptions of their requirements and offers respectively. These descriptions can be
matched. It is noted that a match does not guarantee that the service can be actually
delivered — the item may be out of stock temporarily. We will come back on the
availability check in the next subsection.

According to [LOO05], the discovery process takes two steps. First, using abstract
service descriptions written in Description Logic [LHO3] that only considers the de-
sired result, and one that takes into account actual input, where transaction logic can
be used to simulate an actual service execution. The latter is not based on actual
availability checking, but is based only on the abstract service specification. The
actual availability check is done during service contracting. The two steps proposed
in [Fe05] are similar, but they do not commit themselves to specific logics. In both
approaches, the first match is done on what they call an ontological level, that is,
in terms of the service description rather than the web service (WSDL) description,
and this is a significant improvement. Nevertheless, in our view both approaches
still link web services and services too closely. The first step is called web service
discovery, but what is done is matching of service descriptions. So first of all, the
client is trying to discover services, not web services. One possible way is to look
into each web service whether the required service is offered there, but this can also
be done via other ways (e.g. the service provider may have advertised his services
somewhere on the Internet or outside). Once a service is identified, the user can look
for its web service, if any. In the second, or now third step, a more refined match
can be made. However, it is not evident that this should be based on the choreog-
raphy of the web service. The input requirements can also be matched at service
level first, including a comparison between competitive providers. And only after
this has been done successfully the web service requirements are considered. Below,
we will propose a flexible way of setting up web services so that the restrictions of
the choreography are minimal.

The identification of an abstract service should be based on the value object it offers.
Several semantic techniques can be used to improve the matching process in terms of
recall and precision [MMO3]. From a value perspective, it is important to be aware
of the "means” relationship between resource and value transformation. A client
typically is interested in the value transformation, and the provider in providing a
resource. For example: the client wants to get from Schiphol Airport to Amsterdam.
A resource offered by Rent-a-Car can be a loan car. “car” and “getting to Amster-
dam” do not match directly, only if we recognize that the former can be a means
to achieve the latter. Some providers may address both the resource and the value
transformation in their service description, but since this will not be always the case,
we recommend the use of a general means/end relationship acquired by learning.

62

Secondary values are the features (of value to the customer) that within a certain
industry distinguish one service provider from another. For example, there are many
companies that can offer flights; some of them provide the secondary value cheap,
other the secondary value comfortable, etc. For a good matching of service needs
and services offered, the secondary values are a major means of selecting the most
suitable service for a customer.

3.2 Reducing uncertainty

From a pragmatic point of view, the main objective of the pre-transaction phase is to
reduce uncertainty about the value transaction (that is, to realize the value transaction
and mitigate the risks involved such as items being out of stock). Service discovery
should not only consider static published service descriptions. The following char-
acteristics of e-business transactions were identified in [AWO05]

e Uncertainty about Functionality. Providers are dynamic (volatile) — while
initially advertising their functionality in UDDI-type registry, they might
change as a whole or some of its characteristics

e Uncertainty about Providers. Providers are autonomous entities, sometimes
exhibiting opportunistic behavior

e Uncertainty about Technical Infrastructure. The transactions’ technical in-
frastructure (media, protocols, etc.) might be unreliable

e Uncertainty about Contractual Terms. Rather than being focused on ex-
ecution speed, e-business transactions use schedules and timeouts (specified
duration); being contract-governed execution, duration is predefined.

e Uncertainty about Capacity. Participants have functional and capacity re-
strictions on their operations. Functional reflect internal business capabilities
of the participants that are hard to change, capacity addresses participants’
characteristics at the execution time.

In order to cope with these business uncertainties, [AWO05] proposed an advanced
locking mechanism. The pre-transaction might be split into two sub-phases: prepare
and locking. Technically, e-business locking is an asynchronous message exchange
between prospective participants and a change of the Provider’s state in case lock
is applied successfully. While not being explicitly addressed, e-business transaction
execution is enclosed with support/service phases addressing reliability and correct-
ness issues.

We slightly adapt [AWO05] to the context of services and web services and suggest a
prepare and a reserve phase with the following characterization:

63

Prepare phase — this includes functionality verification of prospective providers. It
precedes both reservation and execution. We assume this phase’s activities verify
functionality (that is, the value object) of prospective providers and do not impose
any definite reservation, neither they impose an obligation on any party. In case of
completion or execution failure the preparation does not require any compensation.
Because the provider’s profile, initially published in a registry might reflect actual
functionality incorrectly (being outdated) or incompletely (containing insufficient
information to invoke provider’s functionality), the requesting party might want to
check this information. An example is checking with a supplier whether a certain
component can be ordered.

While functionality is quite stable, provided capacity (value object instances) may
vary in a rather unpredictable manner due to resources’ utilization by other parties.
Exact capacity value (or, rather, available capacity) is correct only at the reserve
phase, however, any estimate performed before invocation also contributes to the ef-
ficiency of execution scenario because it allows excluding (potentially) unavailable
participants from the scenario right from the start. Following up on the example, the
capacity check asks whether the specified chip will be in stock at some date in the
future.

Functionality Capacity
check . check
Prepare functionality capacity
Reserve lock . reserve
functionality capacity

Figure 5: Functionality vs. capacity and prepare vs. reserve

Reserve Phase — sometimes it is useful to reserve capacity before actually commit-
ting to buy it. The reserve phase follows the prepare phase and typically it assumes
the existence of a contract or similar agreement specifying conditions of cancelations
and non-performance, but this contract can also be more general and implicit.
Checking applies either to the functionality and the capacity. The same is true for
the reservation, which leads to an orthogonal architecture (figure 5). This orthogonal
architecture provides the following benefits:

64

e it allows transitivity of properties and functionality from participant (Provider)
to capacity (resources) it controls, thus optimizing speed of reservation (no
need to provide additional information for every operation);

e it minimizes cost and impact of compensation. Application of participant/
capacity reservations could be relatively extended in time, allowing reservation
costs to be minimized. For example, a check can be performed in January, a
provider reservation in March (for the rest of the year), a capacity reservation
in June, when the production planning is finalized, while the actual execution
is only performed in October.

When the check in January fails, another supplier can be looked for. Similarly,
when the provider reservation fails in March, another short-listed supplier can
be chosen. In this way, the risks are minimized against minimal costs.

Both prepare and reserve phase precede transaction execution, but their impact is
quite different. While check verifies functionality and requests additional informa-
tion, reserve is applied upon known functionality; the check request is based on
advertised functionality, while reserve is based on confirmed (verified) functionality;
in the case of reserving, compensations might follow for cancelations, while check
is a request for information with no compensations defined or needed. The provider
is considered to be a prospective one before reserve application and actual after.

4 Conclusion

Service-Oriented Architectures provide major advantages for today’s enterprise in-
formation systems by presenting the interfaces that loosely coupled connections re-
quire. Web services seem to become the preferred implementation technology for
realizing the SOA promise of service sharing and interoperability. In this paper, we
have scrutinized the difference between service and web service. Two complement-
ing modeling techniques were presented that support the modeling of services at an
abstract, technology-independent level. Several pragmatic aspects of service discov-
ery have been discussed, including the use of uncertainty-reducing techniques during
web-service discovery.

The grand challenge for the research community for the coming years is to develop
and evaluate well-founded and pragmatic design methodologies for web services.
The two theoretical frameworks presented in this paper have proven to be useful in
enterprise modeling. A topic for future research is to integrate these frameworks and
connect them with a Service-Oriented Architecture, so that web service design can
be performed at business level supported by automatic or semi-automatic generation
of web services.

65

References

[AWO05]

[Di06]
[Fe05]

[GAVO00]

[LHO3]

[LOO05]

[MMO3]

[Pa05]

[Pr04]

[Si02]

[W304]
[WHfc]

[We06]

S. Artyshchev, H. Weigand. Interoperable transactions for E-Business. In Proc.
16th IFAC World Congress, Prague, 2005.

J. Dietz. Enterprise Ontology — Theory and Methodology. Springer, Berlin, 2006.

D. Fensel et al. WWW or What is Wrong with Web Service Discovery. In
W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Aus-
tria, 2005.

J. Gordijn, H. Akkermans, J. van Vliet. Business Modeling is not Process Mod-
eling. In Conceptual Modeling for E-Business and the Web, Berlin, LNCS 1921,
2000. Springer.

L. Li, I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the Twelfth International World Wide Web
Conference (WWW 2003), 2003.

R. Lara, D. Olmedilla. Discovery and Contracting of Semantic Web Services. In
W3C Workshop on Frameworks for Semantic in Web Services, Innsbruck, Austria,
2005.

D. Mandell, S. Mcllraith. Automating Web Service Discovery, Customization,
and Semantic Translation with a Semantic Discovery Service. In WWW (Posters),
2003.

M. Papazoglou. Web Services Technologies and Standards. ACM Computing
Surveys, to appear, 2005.

C. Preist. A Conceptual Architecture for Semantic Web Services. In Frank
van Harmelen Sheila A. Mcllraith, Dimitris Plexousakis (ed.), The Semantic Web
ISWC 2004: Third International Semantic Web Conference, Berlin, LNCS 3298,
2004. Springer.

M.P. Singh. The Pragmatic Web: Preliminary Thoughts. In Proc. of the NSF-
OntoWeb Workshop on Database and Information Systems Research for Semantic
Web and Enterprises, April 2002, pp. 82-90.

W3C. Web Services Architecture W3C Working Group. http:www.w3.orgTRws-
arch, 2004.

H. Weigand, W.J. van den Heuvel The challenge of self-adaptive systems for
E-commerce. In Group Decision and Negotiation, forth-coming

H. Weigand et al. On the Notion of Value Object. In Proc. CAISE ’06, Berlin,
2006. Springer.

66

