

Supporting Behavioral Contracts for COM Components

Sonal Bhagat, Rushikesh K. Joshi�
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay
Powai, Mumbai - 400 076, India.
�rkj@cse.iitb.ac.in

Abstract: Specifying behavioral specifications for components apart from the
conventional syntactic interface specifications can be very useful in component
based system development. Preconditions and postconditions describe one form
of behavioral aspects of components. We discuss a tool and an implementation
mechanism to incorporate behavioral contracts expressed in terms of
preconditions and postconditions for COM components. A method invocation on
a component is executed only if the precondition is satisfied. Similarly, the
results are successfully returned upon successful execution of the postcondition.
A design criterion was to facilitate contract specifications for existing
components with least amount of changes at client and server side code. The tool
requires that the component should implement an additional interface called
IAccess if the behavioral contract needs component state. No modification is
required to existing clients of the component.

1 Introduction

Though contracts play an important role in component based system development, the
conventional syntactic contracts specifying name, constituents and type signatures of
component's interfaces are not sufficient for many software engineering tasks. For
example, the conventional interface specifications do not specify the behavioral aspects
such as constraints on interface parameters and the semantics of interfaces. The
behavioral aspects are important for many tasks such as selecting the right component
for reuse and achieving correct composition of components. Hence the notion of
behavioral contracts [Ba99], [CR99] is gaining importance. Behavioral contracts in
Design by contract method [JM97] include Boolean invariants, preconditions and
postconditions. A JAVA implementation of the design by contract method through
Biscotti, a language extension, can be found in [CR99]. Components can be associated
with various kinds of information. A framework for handling different kinds of
metadata about components can be found in Orso et al. [OHR00].

In this paper, we describe a method and a tool for integrating behavioral contracts in the
form of preconditions and postconditions to existing COM components. It is possible to
design similar tools for other component systems. One goal has been to allow contract
specifications to existing components with as little modifications to existing code as
possible. The behavioral contract itself is specified in a contract component. A method
invocation on a component is invoked only if the precondition is satisfied in its contract

45

component. Similarly the contract component ensures that the postcondition is satisfied
after the execution of the method. Upon failure, an exception is returned to the client.
The client remains unaware of the existence of the intermediate contract component.
This approach is similar to filter objects [Jr00], in which, the intermediate filter object
traps every method invocation transparently and carries out computations before and
after the method invocation without the knowledge of the client.

By specifying behavioral contracts in the form of intermediate contract components, not
only preconditions and postconditions can be verified, but other intermediate tasks also
can be performed. A contract component may require access to implementation of the
associated server component. In this case, the component needs to implement an
interface called IAccess through which the contract component can gain access to the
component's implementation. Access to the component through IAccess is restricted
and only the contract component is allowed to invoke the methods through this
interface.

A tool has been built to support the development of the contract components. The tool
generates the necessary abstractions and partial implementations for contract
specification for a given component. We will describe the design and implementation
aspects of this method in subsequent sections.

2 Design

The tool requires an IDL specification of the server component and the desired name of
the contract component. The IDL specification of the server component is typically
specified in a file with .idl extension, containing the description of the interfaces that
are implemented by the server component. The tool parses the .idl file to generate
required abstractions and partial implementations. Let us consider an input .idl
containing the interface declaration as shown in Figure 1.

 // Interface ISampleInterface
 [object, uuid (…),
 helpstring ("ISampleInterface Interface"),
 pointer_default (unique)
]
 interface ISampleInterface : IUnknown {

HRESULT function ([in] int a,[in] int b, [out] int* c);
 };

 // Interface IAccess
 [object, uuid (…),
 helpstring ("IAccess Interface"),
 pointer_default (unique)
]
 interface IAccess: IUnknown {
 HRESULT getPrivateMember ([in] CLSID clsid, [out] int* av);

 };

Figure 1: The Component IDL

46

As required by the contract component, the server component implements the IAccess
interface. The IAccess interface contains methods for accessing the implementation
members of the server component, which may be required for evaluating the
precondition and the postcondition code. Access to interface IAccess is provided only to
the contract component. This is ensured through one of the input parameters to all
methods of IAccess interface, which is the CLSID of the contract component. By
comparing the CLSIDs, implementation of IAccess may reject an invocation. Figure 2
depicts the class diagram of the system of components after it is made contract aware.

As shown in Figure 2, CServer implements interfaces IAccess and ISampleInterface.
The tool generates the classes ContractSuperClass, CContract and CContractFactory.
Class CContract is the contract component class and class CContractFactory creates
the contract component. Class ContractSuperClass implements the interfaces
implemented by CServer making the classes conceptually compatible. This allows the
component class to be transparently filtered through the same abstractions provided by

<<interface>>

IAccess

 getPrivateMember

<<interface>>

IClassFactory

<<interface>>

ISampleInterface

function

CServer

 function
 getPrivateMember

create
ContractSuperClass

 function
pre-function

post-function

CContract

pre-function

post-function

CComponentFactory

CContractFactory

create

Figure 2: The Class Diagram

47

the contract component. The contract programmer only needs to implement the abstract
methods in this class through inheritance. This class implements the server component's
interface in such a way that preconditions and postconditions are invoked before and
after the intended function invocation on the component. Preconditions and
postconditions are modeled as abstract methods (hooks) in this class.

As the client invokes a method on the CServer, it should actually invoke the
corresponding ContractSuperClass method, which ensures that the necessary
precondition and postcondition is satisfied. This is achieved through COM's support to
change implementations keeping the same abstraction through the treat as directive.

An example contract class implementation of a method in the component interface is
given in Figure 3. It can be seen that if the precondition is not satisfied, an error code
CContract_E_PRECONDITION is returned to the client without passing on the
invocation to the server component. An existing client will be able to handle this error
code in a generic fashion.

The precondition method receives the input parameters as arguments. It also has an
access to the IAccess interface on the server component. A pointer to this interface is
made available through a tool-generated implementation. The IAccess interface can be
used by the precondition and postcondition implementation if required by their
semantics. Similarly, the postcondition method receives the output parameters. If the
postcondition is not satisfied, an error code CContract_E_POSTCONDITION is
returned to the caller. If an error code is returned by the server component itself, it is
passed on to client. This special case has been omitted from Figure 3 for the sake of
readability.
The concrete contract component specifies the implementations of postcondition and
precondition. As shown in the class diagram, class CContract implements the contract.
The user through an interface provided by the tool chooses the name of the contract
component. The tool generates the skeleton of the contract class and the contract
developer only needs to complete the implementations of the hook methods in the base

HRESULT __stdcall ContractSuperClass::function (int a, int b, int* c) {
 if (pre_function (a, b)) {
 int contract_c;
 pISampleInterface->function (a, b, &contract_c);

 if (post_function (&contract_c)) {
 *c = contract_c;
 return S_OK;
 } else return CContract_E_POSTCONDITION;
 } else return CContract_E_PRECONDITION;
}

Figure 3: Contract Implementation of Component's Interface

48

class. The tool also generates a factory class for the contract component, in this
example, class CContractFactory as shown in the class diagram.

A CoCreateInstance for the server component invokes a CoCreateInstance on the
contract component, which in turn directs the component's server process to create an
instance of the server component. In this way, from the user's viewpoint, the
relationship can be described through COM's containment model as shown in Figure 4.
However, from the system's viewpoint, it is an example of using relationship since it is
possible to remove or change a contract component at any point of time. The
implementation mechanism is discussed in the next section.

3 Implementation Mechanism

The sequence of events leading to an installation of a contract component is shown in
the interaction diagram in Figure 5. The mechanism uses out-of-process servers. When
the server process is brought up, it creates and registers an instance of the component's
class factory. Whereas, when the contract server process is started, it calls the
CoTreatAsClass (CLSID_S, CLSID_C) API to switch the implementation of the server
component. CLSID_S represents the CLSID of the server component and CLSID_C
represents the CLSID of the contract component. This API call assigns the TreatAs key
of the server component to CLSID_C. This causes the contract component class to
emulate the server component class. Subsequently, calls to CoGetClassObject with
CLSID_S as the parameter transparently use CLSID_C.

As shown in Figure 5, creating an object of CLSID_S results in CreateInstance being
invoked on CContractFactory. The contract factory now needs to perform two tasks:
the server component be created and returned to the user as desired, and a contract
component be created and assigned in relationship with the server component.

CServer IAccess

ISampleInterface

CContract

ISampleInterface

IUnknown

Figure 4: Containment of Server Component by Contract Component

IUnknown

49

 Server ContractServer Client COM Registry CContractFactory CContract CServer CServer
 Library Instance Instance Factory Instance

 Instance

Figure 5: Interaction diagram

Coinitialize

Create

CoRegisterClassObject Register

Message
 Loop

Coinitialize

Create

CoRegisterClassObject
Register

Assign TreatAs of
CLSID_S as CLSID_C

CoTreatAsClass
(CLSID_S, CLSID_C)

Coinitialize

Message
 Loop

CoCreateInstance (CLSID_S)

CoTreatAsClass
(CLSID_S, NULL)

Nullify
TreatAs

CoCreateInstance (CLSID_S)
CreateInstance

Create

Create

function

pre-function

post -function

function

CreateInstance

50

At this stage, the contract component cannot directly instantiate the server component,
as create calls on the component are redirected to itself. Hence, it momentarily disables
redirection by calling CoTreatAsClass(CLSID_S ,CLSID_NULL). CContractFactory
instance then calls CoCreateInstance on server component factory. After remembering
the pointer to the server component, it switches back to redirection and returns server
component's interface to client. Subsequently, the contract component filters message
invocations sent to the server component.

Although we can view the relationship between the contract component and the server
component as COM containment, it is not desirable to implement this as a simple COM
containment since the clients will need to instantiate the contract component, thus
requiring a change in the client code. This would not satisfy the requirement of keeping
the client code unchanged.

This design can be extended to include an elaborate contract plug-unplug protocol to
remove or change contract components dynamically. This method does not require the
client code to be modified. An existing server needs to provide an additional interface
namely IAccess, if the contract component requires access to component’s
implementation.

4 Conclusion

A method of specifying behavioral contracts for existing COM components was
discussed. The method considers contract specification in terms of preconditions and
postconditions for existing COM components. A tool support for the development of
contract components has been provided. The implementation is built around COM's
treat as directives. The contract component remains transparent to the clients of the
server component.

Bibliography

[Ba99] Beugnard, A.; Mark, J.; Plouzeau, N.; Watkins, D.: Making Components Contract Aware,
IEEE Computer, 32(7), July 1999, pp. 38-45.

[CR99] Cicalese, C.; Rotenstreich, S.: Behavioral Specification of Distributed Software
Component Interfaces, IEEE Computer, 32(7), July 1999, pp. 46-53.

[JM97] Jezequel, J.; Meyer, B.: Design by Contract: The Lessons of Ariane, IEEE Computer,
30(2), Jan 1997, pp. 129-130.

[Jr00] Joshi, R.K.: Modeling with Filter Objects in Distributed Systems, Proceedings of the 2nd
Workshop on Engineering Distributed Objects, Nov. 2000, LNCS Vol. 1999, pp. 182-187.

[OHR00] Orso. A.; Harrold, M.J.; Rosenblum, D.: Component Metadata for Software
Engineering Tasks, Proceedings of the 2nd Workshop on Engineering Distributed Objects, Nov.
2000, LNCS Vol. 1999, pp. 129-144.

51

