
i
i

“proceedings” — 2017/8/24 — 12:20 — page 1563 — #1563 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Automated Continuous Evaluation of AUTOSAR Software

Architecture for Complex Powertrain Systems

Hariharan Venkitachalam1, Kalkin Powale2, Christian Granrath3 und Johannes

Richenhagen4

Abstract: Connectivity of the vehicle to heterogeneous information sources is one of the key factors

which lead to complexity of automotive software architecture. The information content from

external communication sources modifies the structure, content and the synchronization of control

algorithms. In addition to this, time and cost constraints for software development are challenging.

With increasing complexity and reduction of development time, ensuring software quality is one of

the foremost priorities of vehicle manufacturers. Software architecture plays an important role in

ensuring quality by implementing design principles which enhance non-functional quality attributes

of the automotive software. The extent to which a software architecture definition fulfills the quality

requirements is not verified at early stages of development. As a consequence, design problems are

transferred to later stages of development thereby causing rework of software artifacts. The paper

focuses on a tool-based evaluation of non-functional quality characteristics using the concept of

Continuous Integration for AUTOSAR-based transmission control software. The suggested

approach enables early and continuous evaluation of software architecture thereby improving

software quality

Keywords: Software Architecture, Software Quality, AUTOSAR, Continuous Integration, Agile

Methods, Frontloading

1 Introduction

The complexity of the powertrain software architecture is increasing exponentially [Da13]

[VWR16a]. The major reasons for this complexity are emission legislation, efficiency, a

large number of variants, connectivity of data to the powertrain and automated driving. A

stringent emission legislation has led to the electrification of the powertrain which

involves coordination between various powertrain components. The advent of Car-2-Car,

Car-2-X, and cloud-based technologies have added more data inputs to the powertrain

which help in optimizing fuel consumption and reduce greenhouse gases[Ri15]. The

synchronization between powertrain control algorithms and external data sources adds

complexity due to timing constraints. With the evolution of autonomous vehicles, a large

1RWTH Aachen, Institute for Combustion Engines, Forckenbeckstrasse, 52074 Aachen,

venkitachalam@vka.rwth-aachen.de
2TU Chemnitz, Department of Computer Science, Strasse der Nationen 62, 09111 Chemnitz,

kalkin.p@gmail.com
3 RWTH Aachen University, Institute for Combustion Engines, Forckenbeckstrasse, 52074 Aachen,

granrath@vka.rwth-aachen.de
4 FEV GmbH, Embedded Software Systems, Neuenhofstrasse 181, 52078 Aachen, richenhagen@fev.com

cbe doi:10.18420/in2017_156

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1563

https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_156

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1564 — #1564 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

portion of the mission-critical functionality will be realized using software [Mc16].Thus,

ensuring a high-quality software is important for the adoption of new technologies in the

automotive software domain. The increase in software complexity makes the software

difficult to maintain, test and to identify quality defects. Market demand has reduced the

time available for the development of automotive control software [Ek15], [KK14]. As a

result of this, software quality defects in the vehicle are increasing [SR16]. Given the cost

of rework and warranty costs involved in fixing software quality defects, it is important to

identify those at the early stages of development [BP88].

1.1 Research Questions

Software architecture is one of the earliest activities in the development lifecycle which

involves decomposition of a complex functionality into smaller and manageable parts. The

architectural decisions made at the start of the project have a deep impact on structural and

dynamic aspects of the software. In the past few years, AUTOSAR has emerged as a

standard way to express software architecture, ensure portability of software components

and enable software sharing between suppliers and vehicle manufacturers [AU].

The increasing complexity of software architecture has resulted in a lack of consistent

overview of software architecture. Reduction of the development time has caused “quick-

and-dirty” changes to be included in the software. As a result, quality issues were detected

at later stages of development. The automotive software also has to comply with a large

number of standards [IS11c], [IS11a]. This leads us to the research question (RQ1)

• RQ1: What are the quality requirements of software architecture in the

powertrain domain?

AUTOSAR standardized the interfaces to the basic software and workflow which is

supported today by various commercial tools [AU]. However, the impact of the

architectural design decisions (for e.g. functional decomposition, interface definition) on

software quality of AUTOSAR software components has not been explored in detail.

Current evaluation methods for software architecture focus on the manual evaluation of

the architecture drafts and design guidelines. Given the high complexity of powertrain

software architecture, a manual evaluation of the software quality is difficult. Software

architecture is also evolving with the increasing complexity. In the absence of an objective

and continuous method to evaluate the software architectural quality, design flaws are

passed on the next stages of development. These design flaws lead to rework of software

artifacts thereby, increasing development cost. Thus, a continuous evolution of software

architecture requires a high-frequency evaluation of software quality attributes. This leads

us to the second research question (RQ2)

• RQ2: How to continuously evaluate the quality of AUTOSAR software

architecture?

1564 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1565 — #1565 i
i

i
i

i
i

Automated Continuous Evaluation 3

1.2 State-of-the-Art

AUTOSAR proposes a layered architecture can be broadly classified into three layers at

the highest abstraction level namely - Basic Software (BSW), Real Time Environment

(RTE) and Application Layer (APSW) [AU]. The basic software provides a

communication framework for the software. The Real Time Environment (RTE) provides

communication services to the application software which makes the AUTOSAR software

components independent from the mapping to a specific ECU. The application layer

(APSW) consists of the control algorithms which are implemented on top of the

AUTOSAR framework which is implemented as compositions, components, and

runnables. The analysis of the software architecture is focused on the application software.

AUTOSAR focuses on non-functional quality characteristics such as portability of

software architecture. However, there are many other quality criteria that need to be

fulfilled to ensure software quality (for e.g. testability, maintainability, etc.) that are not

directly addressed by AUTOSAR software architecture. The existing validation tools

focus on verification of the syntax of the architecture specification. However, they do not

address the relationship between the architectural parameters and software quality. This

paper focuses on addressing this technological gap which will enable early assessment of

AUTOSAR-based application software.

There exist two fundamental approaches to evaluate software architecture namely-

scenario-based [Cl09] and metric-based methods. The scenario-based method involves

subjective evaluation of software architecture quality based on scenarios which are created

by key stakeholders involved in the project with or without a formal architecture

specification [Cl09]. The reproducibility of the results from the scenario-based approach

is not ensured [VWR16a]. The metric-based approach, on the other hand, needs a semi-

formal or formal architecture specification but ensures reproducible results.

2 Methodology

The authors propose a “metric-based continuous evaluation” of powertrain software

architecture to perform early, objective and repeated evaluation of software architecture.

The fundamental approach is based on the previous works of the author [VWR16a],

[Ve17]. This paper deals with the extension of the metric-based evaluation concept for

AUTOSAR architectures. In general, the metric-based approach proposed consists of the

following steps which are described below

• Definition of the quality model and metrics

• Continuous measurement and evaluation of metrics

• Architecture design improvement using metrics

Automated Continuous Evaluation of AUTOSAR for Complex Powertrain Systems 1565

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1566 — #1566 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

2.1 Definition of quality model and metrics

Fig. 1: Quality model for AUTOSAR-based software architectures based on ISO 25010 standard

[IS11c]

The first step of architecture evaluation is the definition of the quality model. The key

research question that we tackle here in this section is

• RQ1: What are the quality requirements of software architecture in the

powertrain domain?

The Goal-Question-Metric approach is followed to define the metrics based on quality

criteria [Ba92]. The quality criteria which are relevant for software architecture are

described in a quality model which is based on the ISO 25010 and ISO 26262 standards

[IS11c], [IS11a], [Ve17]. In addition to this, there are certain organizational goals which

need to be considered like reusability of software components [Ri13], [Wi03], [Ha03],

modularity [Pa72], [Ri13], [Dr08]. Thus, a quality model is created by considering the

standards and the organizational requirements. There exist various models which describe

software quality attributes [FHR08], [Wa10].

Only a few quality characteristics can be measured at the early stages of software

development. The quality characteristics which are influenced by the software

architecture were identified by literature survey [Ri14], [BCK13], [Sc02], [Wa96],

[Bo07], [Fr03], [LL13]. The next step is to identify the mapping between the quality

criteria and architectural parameters. The extent to which these quality attributes can be

measured using the architectural parameters at early stages of development is evaluated.

Based on this, we conclude upon the metrics to be used to evaluate software quality based

1566 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1567 — #1567 i
i

i
i

i
i

Automated Continuous Evaluation 3

on the abstraction levels.

2.2 Continuous measurement and evaluation of software architecture

The complexity of powertrain functionality and the reduced time available for the

evaluation of architecture has necessitated a tool-based approach to measuring software

architectural quality. The sections 2.2 and 2.3 deal with the research question

• RQ2: How to continuously evaluate the quality of AUTOSAR software

architecture?

The proposed tool-framework has two major parts which deal with the measurement and

evaluation of software architecture. The first step involves extraction of the architectural

information from the ARXML file format. The information extracted from the ARXML

file is based on the architectural parameters which are required to compute the metrics.

The measurement framework uses the extracted architectural information from various

powertrain software projects to calculate metrics (defined in in Section 2.1) based on

quality criteria.

The evaluation framework uses the measurement information from various projects and

calculates thresholds based on statistical data. The outcome of the metric evaluation can

vary based on the definition of thresholds. The fulfillment of quality criteria cannot be

identified by a single metric. Hence, a combination of various metrics is required to

identify the fulfillment of quality criteria. The evaluation framework aggregates and

assigns weights for the metrics based on the quality criteria. Depending upon the

importance of quality criteria, sufficient weights are assigned to various quality criteria. A

detailed explanation of the evaluation framework is covered in the previous works of the

author [Ve17]. This paper focuses on extending the measurement framework based on

AUTOSAR concepts. The metrics are developed on a MATLAB/Simulink® tool-

framework.

As mentioned before, the core focus of this work is to extend the measurement of quality

for AUTOSAR-software architectures. Hence, the concept extension impacts only the

measurement framework (see Fig. 2). ARXML, which is the standardized file format to

describe software architecture, is used as the artifact to extract architectural information.

In the previous works of the author, the focus was on structural aspects. However, the

ARXML file format provides detailed information regarding timing and memory

consumption in the software architecture. Hence these quality characteristics have been

evaluated.

2.3 Architecture Design Improvement

The understanding of the relationship between architectural parameters and quality

characteristics helps us suggest improvement measures for the software architecture. Tab.

Automated Continuous Evaluation of AUTOSAR for Complex Powertrain Systems 1567

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1568 — #1568 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

1 shows some of the metrics, their design consequences and improvement measures for a

better software architecture design. For each metric, such a design consequence and

counter-measures are suggested.

Fig. 2: Tool-framework used for the continuous evaluation of software architecture using metrics

3 Validation of architecture metrics

The metric-based architecture evaluation concept was applied to an AUTOSAR-based

transmission control unit software. The current realization is validated for the ARXML

file generated from Systemdesk® based on the AUTOSAR 4.0 specification. However,

the measurement framework can also evaluate the ARXML files which are generated by

other tools. Since a single transmission control unit project has been considered for the

evaluation of the metric concept, a statistical evaluation is not feasible. Hence, an

empirical evaluation of the metric values with software quality criteria is performed by

empirical validation with experts. In the case of a larger dataset, the statistical evaluation

as shown in Fig. 2 can be used. The empirical validation of the metrics concept suggested

by the authors consists of a macro-level validation which evaluates whether the approach

tackles the key problems of handling complexity, ensuring software quality and improving

development efficiency. At a micro-level, the extent to which the architecture metrics

concept deals with these problems in detail is evaluated.

Continuous

Integration

Framework

- Project specific

configuration

- Architecture

description files

Project

Repository1

Jenkins (Configurable)
Trigger

Measurement Framework

Architecture extraction

Dependency evaluation

Metric calculation

Visualization

Evaluation Framework

Central Repository

Measurements

Project 1..

Measurments

Project n

Combination of project metrics

Threshold Determination

Aggregation of metrics

Weighting of metric values

Evaluation

Project 1

Data

access

1568 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1569 — #1569 i
i

i
i

i
i

Automated Continuous Evaluation 3

3.1 Handling complexity of software architectures

The tool-based approach was capable of handling a transmission control unit with 62

application software components and more than 300 signals received from the CAN bus.

The correctness of the results generated by the tool was manually verified for a set of

software components. There is no restriction regarding the complexity of the architecture

which can be handled by the tool-based approach.

3.2 Evaluating software quality

The second aspect of validation involves determining the usability of the metrics for

determining quality. There exist three approaches to evaluate the usability of the

architecture metric. One of the approaches is to correlate the metric with another

established metric at later stages of development (model or code) [Ve17]. The second

approach involves correlating the metric with defect density [Ku]. The third method

involves empirical validation with experts. The third approach involves discussions with

developers in the project to identify the conceptual relationship between problems faced

in code generation and software integration and the metrics. Unlike other approaches, this

is more conceptual in nature and established a causality between AUTOSAR concepts and

software quality. Hence, this approach was adopted.

3.3 Reduction of development time and effort

A high degree of automation enables faster feedback loops for software development to

respond to shorter development time and enables reduction of costs. The continuous

integration framework provides a basis for implementing a technical solution which

provides fast feedback loops for the evaluation of software. A traditional scenario-based

analysis of software architecture is estimated to involve an effort of 70 man days [Cl09].

The engineering effort estimated for the conception, development, and deployment of

architecture metrics is high. However, the applicability of metrics across a software

product line or a group of projects reduces the effort over a large number of projects.

Automated Continuous Evaluation of AUTOSAR for Complex Powertrain Systems 1569

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1570 — #1570 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

Metric Design consequence Improvement measures

Number of

runnables per

software

component

Latency time of a component is

affected by using a large number

of runnables. Depending upon the

implementation, there are two

categories of runnables namely-

basic and extended runnable

entities depending upon whether

they contain a “wait point” or not.

The mapping of extended

runnable entities to a single task

leads to jitter which affects the

time behavior.

The number of runnables

per software component

must be reduced to reduce

the complexity of the

software component. A

threshold of 3 runnables

per component needs to

be set for the software

architecture to improve

understandability of the

software component.

Number of inter-

runnable variables

per software

component

Inter-runnable variables are in

general protected by critical

sections. The latency time

increases due to a large number of

inter-runnable variables.

The software developers

propose a design with less

inter-runnable variables

for safety-critical

applications. This

improves the time

behavior of the software

components.

Fan-in (adapted for

AUTOSAR from

[HK81])

A large number of fan-in would

mean that there are a large number

of components coupled to the

input side of a software

component. This reduces the

testability of the software

component.

The coupling of

components to various

software components

must be reduced by

grouping of functionally

or logically cohesive

software components.

Tab. 1: Example of design consequences and architecture improvement using metrics

4 Results

The focus of the work is to develop a tool-based evaluation methodology for AUTOSAR

software architectures. Fig. 1 shows the quality model for the powertrain software

architecture based on the first research question (RQ1). Fig. 2 shows the tool architecture

for continuous evaluation of software architecture based on the second research question

The solution was based on two key research questions. The first research question (RQ1)

focussed on the development of a quality model for software architecture which outlined

1570 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1571 — #1571 i
i

i
i

i
i

Automated Continuous Evaluation 3

those quality attributes which can be evaluated at early stages of development. The quality

goals were derived from various standards like ISO 25010[IS11a] and ISO 26262[IS11b].

Fig. 1 shows the quality goals for software architecture which can be measured at the early

stages of development.

The next key research question (RQ2) focussed on the evaluation of the software

architecture continuously. The quality metrics defined were programmed into the

continuous integration environment (as shown in Fig. 2). These metrics were evaluated

for a transmission control unit software. The metrics are based on the abstraction level of

the elements in the software architecture. Fig. 3 shows some of the metric results at the

abstraction level of the AUTOSAR software components. Tab. 2 shows some of the

metrics at the system level including various electronic control units in the architecture

based on the ARXML file. These results at various abstraction levels are used to identify

improvement measures for the software architecture similar to Tab. 1.

Fig. 3: Metric results for an AUTOSAR-based transmission control unit

Description of the system level metric Measured values

Total number of COM signals 324

Number of OS tasks 67

Number of Application SW components 62

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

ru
n

n
a
b

le
s

p
e
r

S
W

c
o
m

p
o

n
e
n

t

SW Component

0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f

in
te

r-
ru

n
n

a
b

le
 v

a
ri

a
b

le
s

in
 a

 S
W

 c
o

m
p

o
n

e
n

t

SW Component

0

2

4

6

8

10

12

14

CoT TOFC TOPC VehV TrSD

F
a
n
-i

n
 o

f
a
 S

W
 c

o
m

p
o

n
e
n

t

SW Component

0

2

4

6

8

10

12

14

F
a
n

-o
u

t
o

f
a
 S

W
 c

o
m

p
o

n
e
n

t

SW Component

Automated Continuous Evaluation of AUTOSAR for Complex Powertrain Systems 1571

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1572 — #1572 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

Number of service SW components 8

Number of complex device drivers 3

Tab. 2: Metrics at the system level derived from the ARXML file with the measured values.

5 Conclusion and Future Outlook

Metric-based analysis of software architecture tackles some of the key problems faced

related to quality and development time. Although AUTOSAR standardizes the interfaces

to the basic software, aspects of testability, maintainability and their relationship with

architectural parameters were not delved into. This approach fundamentally focuses on

quantifying the impact of architectural decisions on software quality. The tool-based

implementation provides a framework to handle the architectural complexity of the

powertrain and provides feedback regarding the quality attributes. The continuous

integration framework provides the possibility to evaluate software architecture after

modifications thereby reducing the cost of rework. Hence, it supports the agile

development of software functionalities for the vehicle without compromising on software

architectural principles.

Definition of threshold values for a large number of AUTOSAR-metrics is still an open

topic. The evaluation framework proposed by the authors in their previous work is based

on statistical data from multiple projects. Since the availability of statistical data is limited,

the approach is to define empirical thresholds for various metrics based on consultation

with experts. These empirical thresholds will form the basis for tracking the fulfillment of

design guidelines for future AUTOSAR projects.

References

[BCK13] Bass, L.; Clements, P.; Kazman, R.: Software architecture in practice. Addison-Wesley,

Upper Saddle River, NJ, 2013.

[Bo07] Bosch, J.: Design and use of software architectures. Adopting and evolving a product

line approach. Addison-Wesley, Harlow [u.a.], 2007.

[BP88] Boehm, B. W.; Papaccio, P. N.: Understanding and controlling software costs. In IEEE

Transactions on Software Engineering, 1988, 14; pp. 1462–1477.

[Cl09] Clements, P.: Evaluating Software Architectures. Methods and Case Studies. Addison-

Wesley, 2009.

[Da13] Davey, C.: Automotive Software Systems Complexity. Challenges and Opportunities,

2013.

[Dr08] Dressler, J.M.: A Walk Through EMS2010 Modular Software Development, 2008.

1572 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1573 — #1573 i
i

i
i

i
i

Automated Continuous Evaluation 3

[Ek15] Eklund, U.: The future of Automotive Software Engineering, 2015.

[FHR08] Fieber, F.; Huhn, M.; Rumpe, B.: Modellqualität als Indikator für Softwarequalität. Eine

Taxonomie. In Informatik-Spektrum, 2008, 31; pp. 408–424.

[Fr03] Frankel, D.: Model driven architecture. Applying MDA to enterprise computing. Wiley,

New York, 2003.

[Ha03] Hammel, C. et.al.: A Common Software Architecture for Diesel and Gasoline Engine

Control Systems of the New Generation EDC/ME(D)17. SAE International400

Commonwealth Drive, Warrendale, PA, United States, 2003.

[HK81] Henry, S.; Kafura, D.: Software Structure Metrics Based on Information Flow. In IEEE

Transactions on Software Engineering, 1981, SE-7; pp. 510–518.

[IS11a] ISO: ISO/IEC 25010:2011 Systems and software engineering -Systems and software

Quality Requirements and Evaluation (SQuaRE) -- System and software quality models,

2011.

[IS11b] ISO: ISO/DIS 26262-Road vehicles – Functional safety- Part 6: Product development at

the software level. International Standardization Organization, 2011.

[IS11c] ISO: ISO/DIS 26262-Road vehicles ‐ Functional safety- Part 6: Product development at

the software level. International Standardization Organization, 2011.

[KK14] Katumba, B.; Knauss, E.: Agile Development in Automotive Software Development:

Challenges and Opportunities. In (Jedlitschka, A. Ed.): Product-focused software

process improvement. 15th International Conference, PROFES 2014, Helsinki, Finland,

December 10-12, 2014 proceedings. Springer, Cham, 2014; pp. 33–47.

[LL13] Ludewig, J.; Lichter, H.: Software Engineering. Grundlagen, Menschen, Prozesse,

Techniken. dpunkt-Verl., Heidelberg, 2013.

[Mc16] McKinsey: Numetrics R&D Analytics. Introduction.

[Pa72] Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules, 1972.

[Ri13] Richenhagen, J.: Development of modular powertrain controls with continuous

integration, 2013.

[Ri14] Richenhagen, J.: Entwicklung von Steuerungs-Software für den automobilen

Antriebsstrang mit agilen Methoden. Dissertation, Aachen, 2014.

[Ri15] Richenhagen, J. et al.: PERSIST – A scalable software architecture for the control of

diverse automotive hybrid topologies. In (Bargende, M.; Reuss, H.-C.; Wiedemann, J.

Eds.): 15. Internationales Stuttgarter Symposium. Automobil- und Motorentechnik.

Springer Vieweg, Wiesbaden, 2015; pp. 37–56.

[Sc02] Schmidt, D. C.: Pattern-orientierte Software-Architektur. Muster für nebenläufige und

vernetzte Objekte. dpunkt-Verl., Heidelberg, 2002.

[SR16] SRR Global Financial Advisory Services: Industry Insights for the road ahead.

Automotive Warranty and Recall Report 2016.

Automated Continuous Evaluation of AUTOSAR for Complex Powertrain Systems 1573

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1574 — #1574 i
i

i
i

i
i

4 Hariharan Venkitachalam et al.

[Ve17] Venkitachalam, H. et al.: Metric-based Evaluation of Powertrain Software Architecture.

In SAE International Journal of Passenger Cars - Electronic and Electrical Systems,

2017, 10.

[VWR16a] Venkitachalam, H.; Wissel, D. von; Richenhagen, J.: Metric-based Evaluation of

Software Architecture for an Engine Management System. In SAE International Journal

of Engines, 2016, 9.

 [Wa10] Wagner, S. et al.: Softwarequalitätsmodelle – Praxisempfehlungen und

Forschungsagenda. In Informatik-Spektrum, 2010, 33; pp. 37–44.

[Wa96] Wasserman, A. I.: Toward a discipline of software engineering. In IEEE Software, 1996,

13; pp. 23–31.

[Wi03] Williams, C.: Algorithms, Algorithm Modeling, Software, & Software Architecture.

http://www.eecs.umich.edu/courses/eecs486/win03/notes/GMVisit.pdf.

[Ku] Kugler, C. et al.: Metrics-based strategies for quality assurance of automotive embedded

software. In (Bargende, M.; Reuss, H.-C.; Wiedemann, J. Eds.): 17. Internationales

Stuttgarter Symposium. Automobil- und Motorentechnik. Springer Fachmedien

Wiesbaden GmbH, Wiesbaden, 2017; pp. 711–730.

[AU] AUTOSAR: Layered Software Architecture. Version 4.2.2. www.autosar.org, accessed

2017.

[Ba92] Basili, V.: Software Modelling and Measurement. The Goal/Question/Metric Paradigm,

report CS-TR-2956, Department of Computer Science, University of Maryland, College

Park, 1992

1574 Hariharan Venkitachalam, Kalkin Powale, Christian Granrath, Johannes Richenhagen

