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Abstract: Model-based development uses modeling and simulation as essential
means for specification, rapid prototyping, design, and realization of embedded
systems. The classification-tree method complements model-based development
with a formal approach for test case description and automation. This paper
shows how “raw” classification trees are transformed into complete classificati-
on trees using an extensible tool, the classification-tree transformer (CTT). This
tool and its domain specific extensions are generated using the graph rewriting
system PROGRES.

1 Introduction

The use of software is of increasing importance for the competitiveness of
mechatronical systems. Many systems would not be able to serve their purpose
without embedded software components. Examples are large systems like aircrafts or
space systems, but also small ones like mobile phones or airbag systems. Domain-
specific development methods and tool environments have emerged with the evolution
of embedded (sub-)systems. In particular, elaborated methods for control engineering
like modelling by function block diagrams and simulation are nowadays applied
during embedded software development.
This paper shows how quality assurance by means of testing can be further automated
within a model-based development process. In particular, the well-established
classification-tree method (CTM, [GG93a]) for systematic testing of software and
systems in general has been reassigned to models developed with the de-facto standard
modeling and simulation tool Matlab/Simulink/Stateflow for automotive applications
([IAC98], [IAC00], [ML00], [Je00]). Within this approach, several test development
steps have already been automated exploiting the information incorporated in the
model. Still the execution of some steps are left to the human developer since they are
engineering tasks requiring ingenuity. Nevertheless, when rules-of-thumb have been
developed for a certain domain they can also be fixed and exploited for further
automation.
This paper shows how fixed heuristics applied in a specific step in the testing method
are captured by transformation rules. For this purpose, the paper introduces in section
2 model-based testing and the application of the classification-tree method within a
model-based development scenario. Automatically executed classification-tree
extensions are a major step missing in this scenario. Hence, the requirements for
extension rules are set up in section 3. These extension rules are specified by graph
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transformation and introduced in section 4. Section 5 shows the particular graph
transformation rules which implement a specific classification-tree extension. A
conclusion is given at the end of the paper.

2 Model-based Testing

For the sequel the term model-based testing is used for those software testing
techniques in which test scenarios are derived from an executable behavioral model of
the software. According to our approach, model-based tests consequently take up an
intermediate position between functional tests on the one hand, in which the test
scenarios are derived from the functional specification (only the interfaces of the
object to be tested are to be considered here), and the structural tests on the other hand,
in which the structure of the object to be tested is considered.
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Figure 1: CCS Model (Simulink/Stateflow) and its raw classification tree

Model-based testing is studied by scientific and industrial research for some years. A
model-based development process enables a tight integration of development and
testing activities. A lot of the information contained in the behavioral model can be
utilized for the automation of this testing process. Furthermore, the early accessibility
of an executable behavioral model enables most testing activities to be based on it and,
therefore, to be started at early development stages.
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Our approach to model-based testing utilizes the classification-tree method. This
method is a specific instance of black-box partition testing, partly using and improving
ideas from the category partition method [OB88]. The classification-tree method has
been used successfully in various fields of application at DaimlerChrysler.
Commercial tool support is available with the classification-tree editor (CTE,
[GG93b], [CTE01]). The classification-tree method is an instance of partition testing
where the input domain of the test object is split up under different aspects usually
corresponding to different input data sources. The different partitions, called
classifications, are subdivided into (input data) equivalence classes. Finally different
combinations of input data classes are selected and arranged into test sequences.
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input output
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Figure 2: Model-based testing cycle

In this paper we will use the following example of a cruise control system (CCS
[CH98], top of Figure 1). Upon the driver’s request (e.g. BrakePedal), the CCS
controls the speed of the car ensuring a safe distance to the vehicle driving ahead. If
there is no vehicle driving ahead, the CCS controls the speed. Once a vehicle driving
ahead has been recognized, a distance control is activated. The system which is
controlled by the cruise control lever contains separate speed (SC) and distance control
(DC) components. Both controllers define desired output torques that are coordinated
by a downstream component according to the current driving situation.
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The model-based test of the CCS consists of five steps (Figure 2). The subsystem of
the behavioral model (here CCS), developed with Matlab/Simulink/Stateflow, serves
as a basis for the derivation of the test scenarios.
1. A so-called model extractor (see figure 1) analyses the model systematically with

respect to the test scenario specification. Relevant data will be automatically
extracted as tree elements. The name of the test object itself forms the root node
(here: CruiseControl). Input signals (e.g CruiseControlLever), elements of input
busses, i.e. collections of input signals, and internal model parameters are
extracted from the model and denoted as classifications below the root node. The
input busses, e.g. CarData, are represented by refinement nodes. The refinement
for CarData aggregates the classifications of the individual input signals v_car,
a_car, n_engine, and i_transmission. The generated tree elements, describing the
inputs and parameters of the model, and informations for the hierachical structure
of the inputs (e.g. busses, vectors) are processed by the the model extractor which
fully automatically outputs a first, incomplete instance of a classification-tree
called raw tree.

2. The generated raw tree is transformed into a complete classification tree. For this
purpose all generated classifications of needed input signals and parameters must
be disjointedly and completely partitioned into (equivalence) classes which are
suitable abstractions of individual input values for testing purposes. The range of
the binary signal BrakePedal is now divided into class 0 (not activated) and class
1 (activated). Vehicle speed v_car, which can take on continuous values between
–30 and 250 km/h, is divided into one interval for all negative values, three
intervals for all positive values, and separate classes for the special cases 0, 40,
and 160. Step 2 completes the systematic analysis of the input space.

3. Based on the input partition test scenarios can be determined. These scenarios
specify how the behavior of the regarded unit under test should be evaluated. The
domain for the description of test scenarios is provided by the completed
classification-tree. The tree is used as head of the combination table. Each
scenario captures a data abstraction of the behavior of the unit under test and,
hence, describes – largely independent from concrete data – what is to be tested.
In order to represent test scenarios in an abstract way, they are decomposed into
individual test steps. Each test step defines the input situation at a certain time. A
sequence of such test steps is called a test sequence (cf. [Co00]).

4. In a fourth step, the test sequences will be instantiated by discrete waveforms.
Test harnesses, which stimulate the test object with the defined test-data series
and record test results, are generated automatically and fed with the input vectors.
The tests are executed within Matlab/Simulink/Stateflow using the model-based
test tool MTest [Co99].

5. Finally test evaluation is performed by systematic investigation of the execution
results. The test sequences as defined in the context of model testing as well as the
captured results may be reused for software testing and embedded system-testing.
In doing so, there will be regression test cycles reduced to steps 4 and 5 above.

To summarize, raw classification trees are automatically created by the model
extractor. However, there was no efficient tool support for step 2, the raw tree
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completion. Closing the gap we developed a tool, the CTT [St00] (cf. section 3 and 4),
automating a manual step in the model-based testing cycle.

3 Tool Support Requirements

The cycle of model-based test shown in Figure 2 is a mixture of automated and
manually performed steps, where the automated steps mostly perform data
transformations. E.g. the extraction of the interface information into the raw tree is an
isomorphic function which translates a subsystem's interface into a raw tree.
Experience in the use of the classification-tree method has shown that the next step in
the test cycle, namely the completion of the raw tree by definition of classes, can be
partially automated, too. In this step, classes must be defined to partition the value
space of input signals. For this test design step a number of heuristics have been
developed which led to further automation steps. They could be divided into three
testing heuristics.
1. Data type related heuristics: Some of the heuristics are often related to the data

type of the signal. E.g. the classification of a Boolean signal is set up by two
classes true and false or enumeration types are classified by setting up a class for
each enumeration value. A signal of the type double with an initial value init and a
permissible range restricted by min and max would be divided into the following
classes: min, ]min;init[, init, ]init;max[ and max. Another example is the division
of a predetermined value domain into n equal-sized sub-intervals. The partititon of
all generated classifications of input signals into disjoint sets of “useful”
equivalence classes is left open to the engineer although this task is usually
straightforward and guided by project independent rules.

2. Problem-specific partitioning heuristics: An example are the speed signals in the
CCS. Typically, velocity values range between –30 and 250 km/h. Furthermore,
in the CCS context there is a distinguished speed range (40 to 160 km/h) where
the cruise control can be activated by the driver. Above and below the threshold
values it is not possible to use the cruise control functionality. The initial value
coincides with the special case stationary vehicle (0 km/h). This leads to the
problem-specific classification of the velocities into the intervals [-30;0], 0,
]0;40[, 40, ]40;160[, 160, ]160;250]. Such a problem-specific partitioning can be
determined by pattern-matching on the signal names or the signal value domains.
The CCS example uses the prefix ‘v_’ for velocities by convention.

3. General testing heuristics: Finally, a third type of heuristics will be applied during
the classification step related to general testing heuristics. Testing practice has for
example shown that many faults occur due to improper handling of boundary
values. Hence, a boundary value testing heuristics states that in particular the
areas around specified boundary values should be inspected. As a consequence,
all generated classifications should be refined such that additional boundary value
tests are enforced. For instance, an integer signal with negative minimum values
and positive initial and maximum values could be divided into the classes: ]-inf;
min-1], min, [min+1; -1], 0, [1; init-1], init, [init+1; max-1], max and [max+1;
inf[.
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Besides the test heuristics which are applied for raw tree completion further tree
transformations may be applied for structure refinement. For example, a classification
with high tree-width might be restructured by introduction of further structuring levels.
Or, as another application example, a large classification tree may be split into several
parts. To summarize, it is possible to identify the following categories of
classification-tree transformation rules:

• Data type specific rules define standard classifications for several data types.

• Domain specific rules enable a problem-specific partitioning.

• Error type specific rules generate additional classes for error-prone special cases.

• Structuring rules are used for redesigning the shape of a generated classification
tree.

The heuristics for classification are becoming stable so that it makes sense to automate
the step of classification-tree transformation. On first sight, all heuristics could be
implemented in a straightforward manner and built into the classification-tree editor.
So, the standard functionality of the tool would be enhanced by a fixed set of
heuristics. This approach has been taken for some examples. Quite soon it turned out
that the rapid development of especially domain specific heuristics could not be
supported since hard-coding of the rules has been too cumbersome and not accessible
to test engineers. Consequently an approach had to be found which, first, enables the
domain aware test engineer to specify his heuristics such that, second, a
transformation engine can be generated which performs the tree completion according
to the specification. The specification language should be as close as possible to the
tree view used in the classification-tree editor. So, at least tree transformations should
be used for specification purposes. Moreover, the transformation rules must be
collected in sets to build up a library of test heuristics which can provide tree extension
rules for specific application domains or different projects.

4 Tree Transformation Rules

A generic framework must be identified to implement the classification-tree
transformation. Implementing all these tree transformations by hand in a programming
language like Java is not appropriate for a test engineer who wants to document his
experience. As a consequence a very high-level language or tree processing system is
needed which simplifies the manipulation of attributed (classification-)trees
considerably.
Tools known from the research area of compiler toolkits such as Optran [Li88], the
Cornell Synthesizer Generator [RT88], or the Java Tree Builder (JTB) [WTP00] lay a
main emphasis on the construction and evaluation of attributed trees; they offer no
high-level support for the specification of (context-sensitive) tree transformation rules.
Tools like TXL [CHP91] or XSLT [XSL99], which were specifically developed for
the transformation of trees (XML documents), employ a rather low level textual syntax
for the description of their rules and neglect to a certain extent the manipulation and
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evaluation of attributes. Furthermore, all above mentioned tools do not offer sufficient
support for interactive debugging and graphical visualization of the specified
manipulation rules. Finally, using these purely tree-based tools we would not be able
to add the following extensions to the raw tree extension tool in the future: (1) The
gradual transition from black-box testing to white-box testing techniques requires the
processing of behavior-describing state machine graphs (of Matlab Statflow); using
these state machine graphs and appropriate test coverage metrics more sensible input
(equivalence) classes for generated classifications can be generated. (2) Until now
ignored dependencies between different input data signals must be added to (raw)
classification trees as dependencies between certain classes; these dependencies
simplify the selection of useful or the elimination of useless combinations of input data
classes during the test sequence planing process. [LW00] has introduced appropriate
techniques for the specification of logical dependencies between elements of the
classification tree which make it possible to exclude inconsistent class combinations
from test case design. In all these cases, attributed graphs instead of trees have to be
inspected and manipulated.

Figure 3: CT graph of classification tree

As a consequence we have selected the graph transformation programming
environment PROGRES [SWZ99] as the basis for the development of the needed
classification-tree transformation tool CTT. This environment supports the graphical
description and debugging of attributed graph transformations, which are a superset of
context-sensitive tree transformation rules. A rather sophisticated pattern matching
algorithm guarantees for restricted classes of graphs (e.g. for graphs with a tree
skeleton) a rather efficient execution of specified rules. Furthermore, PROGRES
combines an incremental attribute evaluator with a procedural sublanguage for the
development of parameterized rule application strategies, and it supports interactive
debugging as well as the generation of standalone graph processors (implemented in C
with an optional tcl/tk-based graph display interface).
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The transition from trees to graphs enforced us to select a standard “encoding” of
classification trees as classification-tree graphs, henceforth called CT graphs. Figure 3
shows one example of the CT graph representation of a raw classification tree (a cut-
out of the CruiseControl tree of Figure 1). Next-edges are used to order the subnodes
of a parent node, whereas first- and last-edges point from a parent node to its first and
last child.

Figure 4: Boundary Value Analysis CT Graph Extension

A first example of a graph transformation rule programmed in PROGRES, which adds
boundary values to any node whose name has the prefix ‘v_’, is presented in Figure 4.
This rule (production) is parameterized in order to be reusable if the conventions for
the definition of velocity value names change. Its first parameter searchstr provides
a substring such as ‘v_’, whereas the second parameter method determines whether
the given substring has to be a prefix, infix, or postfix of a regarded classification-tree
(graph) node name. The left-hand side of the production (the graph above ‘::=’)
matches a classification node with at least two different classes as subnodes.
Furthermore, the rule’s left-hand side requires that these subnodes are not yet the
result of a “boundary value analysis” extension process, i.e. it requires the
nonexistence of (crossed-out) boundary edges between a regarded classification node
and its first and last child. Finally, the expression below the keyword ‘condition’ uses
an elsewhere defined function (written in PROGRES itself or in C) to check that the
given parameter searchstr is a substring of the name of the regarded classification
node. The rule’s right-hand side (the graph below ‘::=’) merely adds two new class
nodes as the first and last child of the selected classification and connects them to the
rest of the processed CT graph via first-, last-, next-, and boundary-edges
appropriately. These new nodes receive appropriate values for their Name-attributes by
the assignments below the keyword ‘transfer’. Furthermore, the rule preserves all
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three nodes matched by its left-hand side, indicated by nodes with inscriptions of the
form n’=‘n in its right-hand side.

5 Rule Design and Application

In section 3 categories of classification-tree transformation rules (e.g. data type
specific rules) were mentioned. One example of a simple graph transformation rule
was presented in Figure 4. The complete PROGRES specification of the CTT kernel
consists of the following sections:
• A graph schema (class diagram) defines all classification tree elements produced

by the model extractor for Matlab/Simulink/Stateflow models. This graph schema
must be extended in the general case if new properties of processed models are
regarded or if new modeling tools are integrated.

• A first group of graph transformation rules offers all services needed by a parser
that translates a textual classification tree description into a raw CT graph.

• A second group of rules implements a recursively defined unparsing process from
CT graphs into text files which relies on derived attribute evaluation mechanisms.

• All other sections contain different categories of CT graph extension rules ranging
from low-level data type specific rules to domain specific rules as introduced in
section 3.

New (groups of) rules may be defined by either constructing new graph transformation
rules such as the one for boundary value analysis from scratch or by combining
already existing rules into more complex ones. For this purpose PROGRES offers
various kinds of control structures, the functional abstractions of which are called
transactions.
Let us assume that the following basic graph transformation rules are available:
• CreateClassification(parent, type, name): adds a new classification

node of the given type as the last child to a given classification tree node parent.

• FindAllNodesOfType(type, out nodeSet): returns the set of all nodes in
the regarded CT graph which have the type type.

• CreateNumberIntervals(searchstr, method): adds to all classifications
with a given searchstr as prefix, infix, or suffix (determined by method) of
their Name-attribute a sensible set of intervals as equivalence classes.

• BoundaryValueAnalysis(searchstr, method): adds to a classification
with a set of intervals as classes two additional classes as described in section 4.

Based on these four rules a new CT graph transformation may be constructed which
(1) identifies all classifications which represent input vectors (arrays of a given data

type with a fixed dimension) and returns the result as a set of CT graph nodes of
type Vector,

(2) creates a new subclassification for each dimension as a child of the regarded
Vector node which has the same name as its parent node except of an attached
dimension number suffix, and
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(3) applies then the standard rules for subdividing these new classifications into
sensible subclasses (the actual parameter values of these rules guarantee that just
created CT graph nodes are processed).

Figure 5 shows the definition of the needed complex CT graph transformation
(transaction) HandleVectors. In this case the PROGRES language itself has been
used to specify a new CT graph transformation strategy by combining a number of
already existing graph transformation rules appropriately.

Figure 5: Complex CT graph transformation

6 Conclusion

The classification-tree extension heuristics and their generic implementation within the
tool CTT provides another step in the automation of model-based testing. It reduces
the amount of human activities within model-based testing to the real engineering
tasks. Repetitive efforts which are guided by the application of well-defined heuristics
are made accessible for automation by the specification of transformation rules. These
rules take a raw classification-tree as input and produce an extended classification-
tree, where (almost) all input data classifications are partitioned into appropriate
equivalence classes.
Not only a single test project is speed up, but testing experience can be easily re-used
in similar future projects and spread in an organisation. By accumulation of a body of
test knowledge, the maturity of the organisation increases.
The classification-tree extension has been realised based on the graph transformation
programming environment PROGRES. The decision to use a graph (instead of a tree)
transformation tool for these purposes was justified by the following observations:
1. The efficiency of the generated tree extension rules is acceptable and any

observable processing delays are mainly caused by the communication overhead
via CORBA.

2. The addition of new tree extension rules does not require a profound background
in graph grammar theory; in most cases it is possible to copy and make
straightforward adoptions of already existing rules to produce the desired new
rules.

3. Using graph processing techniques the developed tool is open for future
extensions concerning the addition of state machine based test data selection
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techniques and the efficient processing of input data dependencies in the form of
cross-references between tree nodes.

By means of the powerful generation mechanism provided by PROGRES, a tree
transformer is generated from a set of extension rule specifications. Furthermore, the
generation mechanism is customised such that any generated transformer seamless
integrates into the environment set up for the model-based test of Mat-
lab/Simulink/Stateflow models. As an integral part of the testing environment MTest
the classification-tree transformer functionality is available. In the future the rule-
based tree transformation will be exploited for other tasks within the classification-tree
method. For instance, consistency checks on the tree will be specified and executed by
means of graph transformations, too. The CTT is currently being pilot-operated with
respect to its contribution to shortening the testing times and the acceptance of the user
interface.
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