High-dimensional indexing for multimedia features

Ira Assent* Stephan Giinnemann™* Hardy Kremer™ Thomas Seidl™
*Department of Computer Science
Aalborg University, Denmark
ira@cs.aau.dk
FData Mining and Data Exploration Group
RWTH Aachen University, Germany
{guennemann,kremer,seidl } @cs.rwth-aachen.de

Abstract: Efficient content-based similarity search in large multimedia databases re-
quires efficient query processing algorithms for many practical applications. Espe-
cially in high-dimensional spaces, the huge number of features is a challenge to exist-
ing indexing structures. Due to increasing overlap with growing dimensionality, they
eventually fail to deliver runtime improvements.

In this work, we propose an overlap-free approach to indexing to overcome these
problems and allow efficient query processing even on high-dimensional feature vec-
tors. Our method is inspired by separator splits e.g. in B-trees for one-dimensional
data or for sequence data. We transform feature vectors such that overlap-free splits
are ensured. Our algorithm then queries the database with substantially reduced num-
ber of disk accesses, while ensuring correctness and completeness of the result.

Our experiments on several real world multimedia databases demonstrate that we
build compact and overlap-free directory information in our index that avoids large
percentages of disk accesses, thus outperforming existing multidimensional indexing
structures.

1 Introduction

There is tremendous growth in multimedia databases in application domains such as medi-
cine, engineering, biology and entertainment. New technologies such as computer tomog-
raphy or digital photography produce increasingly large volumes of data. Typical access
to multimedia data is required in form of content-based similarity search, e.g. to support
medical diagnosis by automatically retrieving similar magnetic resonance images. Simi-
larity models are usually defined via distance functions evaluated with respect to content
related features like color distribution or shape histograms.

Due to the massive amount of multimedia data, efficient algorithms for content-based sim-
ilarity search are of foremost importance. Efficient retrieval is especially challenging for
high resolution of features, i.e. high-dimensional feature vectors. In high-dimensional
feature spaces, not only the one-to-one comparison of multimedia features is more costly.
Most importantly yet, multidimensional indexing structures that are deployed to improve
runtimes, degenerate. Degeneration is due to the fact that with increasing feature dimen-
sionality, descriptor regions (e.g. minimum bounding rectangles in R-trees) overlap to a

187

growing extent. Consequently, most queries will require access to a large part of the direc-
tory and random access at the leaf level. Thus, eventually index-based search algorithms
may perform even worse than a sequential scan of the entire database, meaning that they
fail at their very goal of efficiency improvement.

In this work, we propose an indexing approach that avoids overlap even for high-dimensio-
nal feature histograms, thus allowing efficient runtimes for content-based similarity search.
Our idea is inspired by the observation that for one-dimensional or sequential data types,
overlap-free indexing approaches exist. Using the inherent order of dimensions, separators
are directory entries that split the data into smaller and larger values without any overlap.
We propose to derive a meaningful ordering of dimensions and discretization of values to
generate an overlap-free separator split, while maintaining minimum bounding rectangles
to enhance the pruning power.

In our method, query processing is efficiently possibly, as the number of paths that have
to be followed for any given query is greatly decreased, and consequently, the number of
disk accesses is substantially reduced. We provide a multistep filter-and-refine algorithm
to ensure that discretization neither produces false dismissals nor introduces false hits.

We demonstrate in thorough experiments on several real world databases that our separator-
based approach builds very compact index directories, and that the number of disk accesses
is substantially reduced in comparison with competing approaches.

Summarizing, advantages of our method include:

e Compact and overlap-free indexing for multimedia databases
e Scalability to high-dimensional and massive data
e Efficient, complete, and correct query processing algorithm

e Substantially reduced number of disk accesses

This paper is structured as follows: we review related work on indexing of multimedia
databases in Section 2 and study the challenges involved in overlap-free indexing for
content-based similarity search in Section 3. Section 4 details our method, with Section
4.1 describing the indexing concept and its properties, whereas Section 4.2 specifies the in-
dex structure followed by the query processing algorithm in Section 4.3. Our experiments
in Section 5 demonstrate great reduction in disk accesses for query processing, before we
conclude our work in Section 6.

2 Related work

In the literature, different indexing structures for efficient query processing have been pro-
posed [Sam06]. The general idea is to maintain compact directory entries that hierarchi-
cally narrow down the search to relevant parts of the database, thus decreasing the number
of disk accesses and consequently the overall search time as well.

188

The original B-tree was developed for indexing of one-dimensional data or keys [BM70,
BM72, BU77]. Directory entries are separators between smaller and larger values with
respect to the order in this dimension. Moreover, as nodes reflect disk page size, short
separators usually provide compact directory entries with large fanout, and thus small
trees. During search, point queries will only require access to one path along the tree,
and typically range queries read only small parts of the database as well. In String B-
trees or the TS-tree, this idea was also used for sequential data where separators between
sequences can be computed as well [FG99, AKASOS].

In multidimensional or spatial data, the R-tree family extends the idea of page-based bal-
anced trees [Gut84, BKSS90, MNPTO06]. Directory entries are minimum bounding rect-
angles of the respective subtrees. For low to medium dimensional data, these indexing
structures provide substantial efficiency gains. With increasing dimensionality, however,
overlap of minimum bounding rectangles eventually leads to degeneration. Typical queries
overlap with larger parts of the directory and hardly any data can be pruned from the
search. Consequently, indexing fails to deliver efficiency gains in high dimensional data,
even compared with brute force sequential scan of the entire database.

This observation has led to index structures that work towards higher dimensionality. The
X-tree extends the R-tree by introducing supernodes if a reasonable minimum bounding
rectangle cannot be derived, and maintains a split dimension history to optimize the split
choice in R*-trees [BKK96]. This approach alleviates problems with scalability, but can-
not solve the problem entirely, as in high dimensional data overlap dominates the index
eventually.

Other approaches have focused on improving the performance of the sequential scan di-
rectly. In the VA-file index, quantized representatives of the database are searched se-
quentially, and only potentially relevant representatives are refined by direct access to the
respective multimedia objects [WSB98]. The IQ-tree and A-tree combine the idea of quan-
tization with that of multidimensional index structures [BBJ*00, SYUKO0O]. The IQ-tree
approach uses different quantization at different levels of the tree and requires computation
of the trade-off between finer resolution in quantization or splitting of nodes according to
a cost model. The A-tree uses relative quantization with respect to the parent node and
thus does not require costly recomputation. We compare our method against the A-tree in
the experiments.

Another family of index structures is based on vantage points or other directory informa-
tion based on relative distances to other objects in the database [Zez06]. Examples include
MVP-tree, M-tree and the Slim-tree [BO97, CPZ97, TTSF99]. They are especially useful
for metric databases where dimensional information is not necessarily available. In these
cases, only other objects or their mutual distances can be used to create directories. They
also suffer from poor performance when overlap is large [TTSF99].

In this work, we index multimedia data as in the TS-tree for sequential data. Our goal is to
compute separators between nodes to guarantee overlap-freeness, yet maintain minimum
bounding rectangles as in R*-trees.

189

—I I.I | | |

T T 1

I distance

Figure 1: Feature vector based similarity

3 Multimedia indexing

Similarity models define the relevant characteristics of multimedia objects, for example
color distribution in images, or pixel frequencies in shapes. Such features can be compared
via distance functions which assign a degree of dissimilarity to any pair of histograms. An
example is given in Figure 1. Two images and their respective color histograms, i.e. the
relative frequencies of color pixels in each image, are depicted. To compare the images,
distance functions compute a dissimilarity value on their histogram features.

We formally introduce the concept of feature vectors that can represent a variety of multi-
media characteristics.

Definition 1 Feature vector.

For any multimedia object o in database DB, a d-dimensional feature extraction E is a
mapping E : DB — R to a d-dimensional real valued feature vector f = (f1,..., fa)
with bin entries corresponding to each of the dimensions i € {1,. .., d}.

An example that we will use throughout this work without loss of generality is (normal-
ized) image color histograms. Then mapping E is instantiated as the relative number of
pixels corresponding to a certain color range in feature space:

|{pwy|pwy € bi}|

[{Pay }|

where p,, denotes a pixel in position z,y, and b; denotes the corresponding bin per di-
mension %.

fi=

In multidimensional index structures, the main idea is to use the information contained in
the individual dimensions. Hierarchical index structures create a small-size directory of
the entire database based on those dimensions. This directory is used to direct the simi-
larity search process to determine the result set. To do so, multidimensional features are
grouped together according to their respective values. They are summarized by bounding
geometries kept at the next higher levels in the directory. During retrieval, the query is
compared to these bounding geometries to direct the search towards the result. In Fig-
ure 2(a), two-dimensional points are grouped in a hierarchy of minimum bounding rect-
angles. These rectangles are stored in a tree (Figure 3). Starting at the root, the query is

190

]
o0 o ¢ Level 1 Level 2
° o
[} hd ‘! | |
o o ° . |:|
d Y
® o -
d o
(a) R-Tree with isosurface for a 1-NN query (b) page accesses

Figure 2: Minimum bounding rectangles geometrically

compared to the rectangles, thus choosing only paths down to the data that are relevant for
the query. Comparison to rectangles using the Euclidean distance is straightforward. If the
query ¢ = (q1,-..,qy) is smaller than the rectangle MBR = ((I1,u1),..., (I, uy)) in
that dimension, compute the distance to the lower boundary of the rectangle, if it is larger
to the upper. Otherwise, the distance is zero:
n o (a—1)? @<l
distrsr(¢; MBR) = Z (¢ —wi)® w <g
i=1 | 0 else

Figure 2(b) shows the page accesses for a Nearest Neighbor query for the query point in
(a). Clearly, only a subset of the pages has to be accessed, resulting in a significant speed
up.

As R*-trees grow bottom-up by splitting of minimum bounding rectangles if the corre-
sponding node overflows, in high-dimensional spaces, many dimensions are not split at
all or only once. This means that many of the MBRs extend across the entire unsplit di-
mension. Consequently, overlap is huge, and queries intersect with most of the minimum
bounding rectangles. Figure 4 shows this problem in a low dimensional setting for illustra-
tive purposes: if many MBRs overlap, the query ¢ at the center of the circular query range
has to access most nodes in the tree, requiring access to the entire directory plus random
read of the database. This worst case scenario is not typical for low dimensional spaces,
but very common in high dimensional spaces.

=l

\

| 000 | | 0000 | | 0000 | |OOOO | |OOOOO | |OOOO | |OOOOOO |

Figure 3: Hierarchy of minimum bounding rectangles

191

®
L] []
. Level 1 Level 2
o ¢
P °
o
o | o
(o |-
[} [} o
|| of
o . o
° []
[]
o
(a) R-Tree with isosurface for a 1-NN query (b) page accesses

Figure 4: Overlap leads to index degeneration

To improve efficiency of multidimensional indexing, avoiding overlap is thus crucial.

4 Overlap-free indexing

We avoid overlap using a method successfully used in B-trees and TS-trees for one-
dimensional and sequential data. The basic observation is that separator split leads to
overlap-free descriptors. Consequently, the indexing concept relies on transformation and
ordering of the feature vectors for this purpose. We show how this concept is used algo-
rithmically in a lossless multistep filter-and-refine approach.

4.1 Indexing concept

Naively using a B-tree to index multimedia feature vectors would mean that only the first
few dimensions are used for indexing [BM70, BM72, BU77]. Consequently, the first
dimensions would dominate the query processing, and, even worse, only information on
those first dimensions could be used before reaching leaf level. Thus, if there is no descrip-
tor information on the remaining dimensions, we would see far too many disk accesses
during query processing.

We therefore propose to proceed as in TS-trees for time series and include meta data on all
dimensions, as well as principal components analysis to ensure that the first dimensions
are the most relevant for indexing [AKASOS, Jol86]. For multimedia feature vectors, the
additional meta data consists of minimum bounding rectangles, just as in R-trees or R*-
trees.

Definition 2 Separator.

A separator S is the shortest string that is lexicographically larger than the left subtree t;
and lexicographically smaller (or equal) than the right subtree t, : t; < S < t,.

192

Example. Separators according to default order.

Assume a small database of only four feature vectors f; = (0.1,0.1,0.1,0.7), fo =
(0.1,0.1,0.2,0.6), f3 = (0.1,0.1,0.3,0.5), f4+ = (0.1,0.1,0.4,0.4). Using the order
of dimensions as given in this example, a suitable separator to distinguish between the two
smaller objects and the two larger objects would be s = (0.1,0.1,0.3) with s > f1, fo
and s < fs, f4. A different method, e.g. based on the variances of the dimensions, could
identify dimensions three and four as those with the most information, and would thus re-
order the dimensions accordingly: f{ = (0.1,0.7,0.1,0.1), f5 = (0.2,0.6,0.1,0.1), f; =
(0.3,0.5,0.1,0.1), f1 = (0.4,0.4,0.1,0.1). Then, a separator to distinguish between the
transformed feature vectors in the new space would be s’ = (0.3). This leads to separators
that provide directory information on the most relevant dimensions in the database, thus
providing good pruning power. Assuming that most queries follow the distribution in the
database, queries might show values of ¢ = (0.1,0.1, *, %), i.e. have a distance of zero to
s in the first two dimensions, leading to no pruning possibilities. Separators in the trans-
formed space are moreover much shorter, and thus require less storage space which in turn
leads to greater fanout.

Alternatively, the variance based reordering can be replaced by PCA (principal component
analysis [Jol86]). Thus the statistical covariance in the dimensions is also considered by
the transformation. In our algorithm and in the experimental section we use the PCA
approach, while for illustrative purposes the variance based method is used.

Building separators on suitably ordered feature vectors still leaves one problem: on con-
tinuous valued vectors, separators would typically only be of length one, that is, be built
just for the very first dimension. This is due to the fact that for real numbers, it is not very
common to see the exact same values in many different objects. Consequently, splitting
between different values does not require incorporating any further dimension and hence
the objects are grouped only by the similarity in the first dimension. Therefore, discretiza-
tion is necessary to ensure that separators include more dimensions.

Example. Separators on continuous values.

Given a database of five feature vectors f; = (0.1,0.1,0.1,0.7), fo = (0.11,0.29,0.4,0.2)
f3 =1(0.12,0.38,0.3,0.3), f4 = (0.13,0.07,0.7,0.1), f5 = (0.14,0.1,0.1,0.7). One can
see, that the two features f; and f5 are very similar. But using the order of dimensions as
given in this example, a suitable separator to distinguish between the two smaller objects
and the three larger objects would be s = (0.12) with s > f1, fo and s < fs, f4, f5. Thus,
even though the objects f1 and f5 are very similar they are not grouped together, because
they differ marginally in the first dimension. At the same time the separator length is only
one, even though the first dimension provides low information. This fact cannot be un-
covered by the separators, as real numbers that clearly distinguish between the values in
the first dimension exist. By discretization of the objects, this effect is avoided. If only a
certain number of ranges are used, separators will grow as more objects with the same dis-
cretized representation are indexed. For example, assuming a discretization with respect
to the ranges a = [0,0.25), b = [0.25,0.5), ¢ = [0.5,0.75), and d = [0.75, 1], we get
f1 = (a,a,a,c),fg = (a,b,b,a),fg = (a,b,b,b),f4 = (a,a,c,a),fg, = (a,a,a,c¢). A

193

discretized separator would thus be § = (a, a, ¢) with § > fl, fg, and 5 < fg, f37 f4.

As we can see, discretization thus leads to automatic growth of separators, along with a
mapping of similar feature vectors to the same discretized representation. Thus, discretiza-
tion leads to a loss of information in feature vectors. To ensure correctness of the result,
discretized representatives are used only in the index directory, whereas leafs store pointers
to the original data. Upon reaching the leaf level, any potentially relevant feature vector in
the original continuous-valued representation is used for comparison. Thus, during query
processing, the query is compared against discretized ranges. Using a conservative dis-
tance computation, the actual distance is potentially underestimated. Refinement with the
original features ensures that any false alarms are cleared out.

Definition 3 Discretization.

Discretization of a feature vector f to a partition P = p1, ..., pm with p; = [l,,,, up,) of
adjacent ranges with u,, _, = l,, maps each feature value f; to p; with l,,. < f; < ..

Example. Query processing with discretized separators.

In a database of five feature vectors f; = (0.1,0.1,0.1,0.7), fo = (0.11,0.29,0.4,0.2),
f3 = (0.12,0.38,0.3,0.3), f4 = (0.13,0.07,0.7,0.1), f5 = (0.14,0.1,0.1,0.7). After
variance based reordering and discretization, we get: fi = (¢,a,a,a), fo = (a,b,b,a),
fz = (b,b,b,a), fa= (a,c,a,a), fs = (¢,a,a,a). A suitable separator would be s = (b)
with s > fg,f4 and s < fl,fg,,f5. Assuming a query ¢ = (0.1,0.1,0.1,0.8) we want
to find all features f; with a maximal (euclidean) distance of € = 0.1 to q. Obviously the
correct result set is { f1 }.

For query processing, ¢ is transformed to ¢ = (d,a,a,a). Now we can calculate the
distance between ¢ and s, which results in a minimal value of (d a,a,a) — (byx,*, %) =
d—b=075—05 = 0.25 > e. Therefore both features fs, f4 < s can be pruned,
because their distance could only increase. If we proceed with the distance computation
to the remaining discretized features fl, fg7 fo the result set would be { fl, fO}

Hence query processing on the discretized representation in the index structure alone
would obviously result in incorrect results, as the exact value of the original feature vec-
tor is ignored. We therefore proceed in a multistep filter-and-refine fashion. Multistep
algorithms, as e.g. in the GEMINI or KNOP frameworks speed up query processing by
efficiently reducing the database to a small set of candidates via filtering [Fal96, SK98].
Only for those candidates the exact distance is used for refinement. The general idea is
illustrated in Figure 5(a): the query is first evaluated with respect to the indexed repre-
sentatives to obtain the set of candidates. To refine them, the full representation from the
database is used.

To ensure that query processing via multistep filter-and-refine algorithms yields the desired
efficiency gains, a number of quality criteria should be fulfilled. Summarized as ICES
[AWSO06], they refer to

e Index: to tap the full potential of database techniques for low runtimes, usage of
indexing structures should be supported by the algorithm.

194

query

query
i i WHILE FilterDist < ResultListk]
A ——>candidates index (filter)m

) i incremental
index (filter) @ ranking Q

——refinement | update
feature database
feature database (exact) MTTIT
(exact) ResultList
results @
results
(a) GEMINI (b) KNOP

Figure 5: Multistep filter-and-refine frameworks

e Completeness: to ensure that efficiency is not at the cost of correctness of the result,
the filter should not drop any true result.

e Efficiency: the filter step should be substantially more efficient than the refinement
step, such that the overall algorithm is more efficient as well.

e Selectivity: the filter step should reduce the entire database to a small fraction of
potential candidate objects, such that the costly refinement step has to be executed
as little as possible.

Obviously, our approach offers index support. It is also complete, as we will prove below.
Efficiency is guaranteed as computing the distance to the boundaries of the descriptors is
efficiently possible. And finally, selectivity will be demonstrated in our experiments.

We deploy the KNOP multistep framework, as it minimizes the number of refinements in
kN N queries by keeping a dist,,q, value of the current kth best nearest neighbor distance
by immediate refinement of each potential candidate as it is demonstrated in Figure 5(b).

Formally, we ensure completeness of query processing via proof of the lower bounding
property. Lower bounding property means that the distance computed between query and
the index descriptors is never greater than the actual distance. Computing the distance
between query and discretized features as the minimum of any feature vector within this
range, fulfills the lower bounding property. As shown in [Fal96, SK98], lower bounding
distance functions guarantee no false dismissals during multistep filter-and-refine process-
ing according to the GEMINI or KNOP framework, respectively.

Theorem 1 Lower bounding property of discretized feature vectors.

For any query feature vector q and any feature vector f, the distance between q and f is
lower bounded by the distance between q and discretized feature vectorf:

dist(q, f) < dist(q, f)

195

Proof 1

From the definition of the distance to upper and lower bounds, we immediately have

. n (¢ —L)? @<l n (¢ — fi)* @<l
dist(q, f) =Y S (6 —w)? wi<q <> (6—fi)? w<q =dist(q,f)
i=1 | 0 else i=1 | (¢ — fi)? else

O

4.2 The overlap-free tree

In this section we formalize the concepts presented in the previous section by introducing
the overlap-free tree (OFT). With the discretized separator information at hand we can
construct an overlap free index by adapting a B-Tree construction algorithm. The query
processing for such an index was already shown in a previous example, where the separator
information was used for pruning some feature vectors. To enhance the pruning power our
index additionally stores MBRs in the index nodes. Thus pruning of subtrees is accessorily
possible similar to the pruning methods in R-trees.

Formally, nodes in the index contain discretized representatives. As in TS-trees, we use
finer partitioning to a degree r of the leaf entries and the MBRs, and a rougher partitioning
of the separators to ensure that more dimensions are used. Separators are simply added to
the MBR information in R-trees or R*-trees, to rule out overlap during split, and identify
relevant parts of the tree during query processing:

Definition 4 Index node.

For branching factor m, rough discretization parameter r and fine discretization parame-
ter f a node stores:

o [entries (m < k < 2m) with MBRs and pointers to subtrees and additionally k — 1
separators
e separators are discretized to the r partitions and prefix compressed

e MBRs and leaf entries are discretized to the f partitions

The root node, of course, is allowed to contain fewer entries, i.e. between 2 < k < 2m if
it is an inner node.

An example inner node is presented in Figure 6 (left). Each feature vector f covered by an
entry/subtree, is located between the two neighboring separators (e.g. Sep; < f < Sep,)
as well as within the MBR (e.g. M BR). Figure 6 (right) illustrates this valid region for
MBR;, and the two separators. In general we use a descriptor D = (MBR, Sy, S,.) to
identify such regions.

During query processing, we could simply compute the distance only to the MBRs as
in R-trees. However, as in B-trees or TS-trees, we may use the information given by

196

f : g o) —
MBR, Sepi MBR, Sep, ©| | . e o
BERETREEE @ . .
subtree c //' . @/%'/ r;ga;zliign c //{/ o
b / b qr™ /
a MBRTegion // a w .
a b ¢ d e a b ¢ d e

Figure 6: Example of an inner node (left) and the resulting regions ~ Figure 7: mindist to valid re-
in a 2d space (right) gion for different query points

the separators not only for the split, but for query processing as well. Basically, we are
interested in not only computing the minimum distance to the MBR or the separator, but
instead to their intersection [AKASOS].

Figure 7 shows four different query points and their minimal distances to the valid region.
As one can see, there are three different cases how the distances are determined. These
cases mainly differ in the assignment of the query points to the three shaded “columns”
(i.e. partitions in the first dimension) of the diagram.

- case A: If a query point is assigned to the first column, one has to ensure that the
(virtual) point where the minimal distance could be realized, is lexicographically larger
than the left separator (see ¢1). Additionally we can add the distance to the MBR in
the remaining dimensions, if the virtual point is still outside the MBR (see g2).

- case B: The same argument holds if a query point is assigned to the last column (see
qs3). First the lexicographical-smaller-relation to the right separator must be obtained
and second the distance to the MBR (for the remaining dimensions) can be added.

- case C: In the last case a query point is assigned to a column in between (see q4). The
lexicographical relation to both separators is directly fulfilled, and one can add the
distance to the MBR.

For a query ¢ we have to minimize over all three cases to get the minimal distance to the
valid region. A running example with a (discretized) query ¢ = (a,a) and the descriptor
from Figure 6 is illustrated in Figure 8.

assign to lex. > (b,c) ? within MBR?

s (pa) 122 0% () MNMERS (h ¢)

assignto within MBR? - : choose minimal

query (a,a) 2nd column = (c,a) > (c.b) i distance to (a,a)
assign to lex. < (d,e) ? within MBR? 3
3rd cglumn (d.a) el (da) (d.b)

Figure 8: Schematic representation of the mindist computation

197

The rare situation (case D), where both separators starts with the same symbol (Sy; =
Sr1), i.e. only one “column” exists, can be considered by calculating the minimal distance
in this first dimension and go ahead in a recursive fashion. The complete minimal distance
is formalized by:

Definition 5 Minimum distance to MBRs and separators.
The mindist between query ¢ = (q1, - - ., qn) and a descriptor D = (MBR, S}, S;) of a
subtree is defined as mindist(q, D) := mindist(q, D, 1):

i — Sy;| + mindist(q,D,i+1) Si; = Sy D
mindist(q,D,i):{ la 15| + mindist(¢,D,1+1) S ri (case D)

mindist' (¢, D, 1) else
|gi — S1;| + mindist> (i + 1) (case A)
mindist'(¢,D, i) = min{ |g; — Sy;| + mindist- (i + 1) (case B)
lgi — S|+ distypr(i+1),VS : S;; < S < Sy (case €)
where:
0 1>n
L. N diStMBR(i) q >SNt <n
mmdzstz(l) - i |Qi _ Sli| + mmdistz (Z + 1)]
i — (S, + V)| + distypr(i+1) ¢
00 1>n
.. N dist]MBR(Z') q; < S!‘i Nt <n
mindist< (i) = win] 16— Sl +mindist< (i +1) e
¢ = (Sei = V[+ distypr(i+1)

The functions mindist> (i) and mindist (i) ensure in a recursive fashion, that the lexi-
cographical order and the containment in the MBR is maintained, which is used by the two
cases (A) and (B). In addition the expression distapr(7) is an abbreviation for the mini-
mal distance from a point g to a MBR, whereas both objects are restricted to the remaining
dimensions i . ..n, i.e.

‘ . . n (qj — lj)z q; < lj
dZStMBR(Z) = sztMBR(qﬁ...na MBRl’L’!l) = Z (qj - uj)2 Uj < q;j
j=i | 0 else

4.3 Algorithm

In this section, we give a general overview over our algorithm and discuss its inner work-
ings. Algorithm 1 gives a pseudo-code description.

The algorithm starts by comparing the query against the information stored in the root
node of the tree, i.e. the minimum bounding rectangles as well as the separators. Based

198

on the distance values computed, it decends the tree along the most promising path in
terms of minimum distance until the first leaf node is refined. At this point, the actual data
page containing the original feature vector representations is accessed. For all of these
original feature vectors stored on this particular page, the algorithm sequentially compares
the distance to the query. If their distances are better than the current set of k nearest
neighbors (which is obviously the case initially), they replace candidates in the result set
that have a larger distance. dist,,q., the variable that stores the distance of the kth nearest
neighbor in the set, is updated accordingly. Query processing continues with the next most
promising index or data page until the best filter distance is no longer smaller than the kth
nearest neighbor. From the proof of the lower bounding property, we are now sure that the
candidate set is exactly the true result set and return it to the user who issued the query.

Algorithm 1 kNN queries in OFT

input: query g, result set size k
output: k nearest neighbors
queue <= List of (dist, Page) in ascending order by dist
queue.insert(ROOT) [/ start with root page of OFT
result Array < (dist, Object features) [k] = [(oo, NULL), ..., (co, NULL)]
dist e <= 00
while queue.hasNext and queue.nextDistance < dist,,q, do
p <= queue.poll First
if p.isDataPage then
for each oin p do // iterate over all feature vectors in the data page
exactDist < Dist(q, o)
if exactDist < dist,, ., then
result Array [k] < (exactDist, 0)
result Array.sort
dist e < result Array [k] .dist
end if
end for
else // pisindex page
for each descriptor D in p do
h = mindist(q,D)
if h < dist,,,, then
queue.insert(h, D.childpage)
end if
end for
end if
end while
return resultArray

The actual construction of the tree is given in Algorithm 2. We start by running a suit-
able feature extraction algorithm on the multimedia database that results in a database of
feature vectors. For these feature vectors, we run principle components analysis to de-

199

rive an appropriate ordering of the dimensions. Depending on the dimensionality of the
feature vectors, this step may also be used to reduce the overall dimensionality of the
representation in the index. Please note that this reduction does not endager the lower
bounding property, as the resulting distances may only decrease. Other dimensionality
reduction techniques that fulfill this lower bounding property could be used as well. To
prepare the feature vectors for separator construction, discretization to a partition of the
value range is computed. The partition may be simply equi-width or pre-computed based
on an assumption about the feature vector distribution, or even based on an analysis of the
actual distribution. The feature vectors are simply mapped to their corresponding ranges
as defined in Definition 3. After this step, the feature vectors have been pre-processed for
indexing. The index is constructed in a bottom-up fashion, just like any B-tree, R-tree,
R*-tree, etc. While the MBRs are constructed as in the R-tree family, the split itself is
based entirely on the B-tree-style split to ensure that no overlap is incurred. Separators
themselves are constructed like in B-trees as the shortest string that distinguishes between
left and right subtree (cf. Definition 2).

Algorithm 2 OFT construction

input: multimedia database M
feature database F' < FeatureExtractor(M)
transformed database T < PCA(F)
discretized database D < Discretize(T')
for each oin D do
Node p <= OFT.searchNode(o)
p.insert(o)
s <= p.parentNode
if p.isFull then
p1, P2 < p.SeparatorSplit
s.compute M BRs(p1,p2)
s.updateSeparators()
s.propagateSplit()
else
s.compute M BRs(p)
end if
end for

5 Experiments

We compare our approach with a recent index approach, the A-tree that combines MBRs
with quantized virtual VBRs [SYUKOO], and with the R*-tree [BKSS90]. The R*-tree
uses floats (four bytes) per dimension to store the continuous values of the MBRs. For the
A-tree, we use a discretization parameter of 8, which fared best in our preliminary exper-
iments. All indexing structures are implemented using Java 1.6. We use implementation
invariant performance measure like the number of pages accessed or the average capac-
ity of the index pages as well as the number of refinements necessary. Experiments were

200

conducted on 2.33GHz Inte]l XEON machines running Windows Server 2008.

We thoroughly evaluate the performance of these approaches on several real world data
sets.

e Data set 1 is a subset of the well known Corel database which consists of 59,870
photographs of different scenes.

e Data set 2 is a collection of 107,350 license free photos from the pixelio web page
[Pix]. Due to constant updates by users of the web site, this database is very hetero-
geneous.

e Data set 3 comprises 103,642 images from several TV stations which were captured
at an interval of at least 5 seconds.

e Data set 4 is the Hemera photo objects database containing 53,802 images [Hem].
Every object is represented multiple times in different positions.

e Data set 5 is the Aloi database [GBS05] which consists of 10,000 object images, each
shown from 72 different directions; hence the database comprises 72,000 images.

We used color histograms in extended HLS color space as feature extraction method to
obtain the feature vectors for all databases. The results of the conducted experiments are
very similar for the different databases. Thus, we only show a selection of the outcomes.

5.1 Structural analysis

In our first experiment, we evaluate our overlap-free indexing structure in terms of its
structural properties. We built R*-trees, A-trees, and OFT of different discretization pa-
rameter values (4, 16 and 64) and compared them for various dimensionalities on the Corel
database. As we can see in Figure 9, the average number of entries per node and therefore
also the fanout is substantially larger in our OFT approach. This is due to its discretiza-
tion. The A-tree, while using quantized virtual bounding rectangles, does not show large
capacity of nodes due to the additional overhead incurred from storing both the MBRs
and the VBRs (quantized virtual bounding rectangles). In leaf nodes, the difference to the
competing algorithms is generally smaller, as we maintain finer discretized representations
at this level, which requires more storage overhead. This is done for the sake of reduction
of the number of data page accesses. The better the information stored at leaf level, the
fewer false hits require data page reads.

We have analyzed the effect of discretization on the number of page accesses in a very
high dimensional setting. Figure 10 shows the results for the Corel database and the Pixelio
database, respectively, on 60-dimensional color histograms and an index dimensionality of
16. Clearly, R*-trees do not scale to this index dimensionality. However, both the A-tree
and our OFT approach fare much better and show reasonable numbers of page accesses for
query processing. We can see that the best discretization strategy of our OFT algorithm
is using between 8 and 16 equiwidth partitions per dimension. This strategy is slightly
better than assigning the same number of partitions equidepth according to the normal

201

Tree Type Index Dimensionality
16 20 24 28 32
R*-Tree Non-Leaf 22.78 18.44 16.40 14.05 12.16
Leaf 46.08 37.74 31.74 28.01 24.36
A-Tree Non-Leaf 24.59 19.76 16.51 13.64 12.50
Leaf 110.66 89.09 77.15 65.50 57.01
OFT s4 Non-Leaf 56.25 46.08 40.56 37.00 31.03
- Leaf 133.04 108.26 92.24 80.90 71.44
OFT s16 Non-Leaf 55.50 47.63 40.26 38.50 37.38
- Leaf 134.84 114.25 99.12 86.39 76.26
OFT s64 Non-Leaf 53.12 50.20 49.75 41.17 40.63
- Leaf 140.87 119.26 100.28 85.52 77.55
Figure 9: Capacity
Corel database Pixelio database
HLS+G(6,3,3,6) DataDim=60 IndexDim=16 HLS+G(6,3,3,6) DataDim=60 IndexDim=16
800 1500
3 3
& 600 -=R*-Tree g 1200 “=-R*Tree
§ il~‘:/CA)>F-I:I[e§quiDepth § 900 —wA-Tree
o 400 — < OFT Eautiwwi o «--OFT_EquiDepth
& OFT_EquiWidth % 600 - -OFT_EquiWidth
Q [}
. - . ¥ * A A
® D 300 Foes e R D E T
0 0
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
discretization [number of symbols] discretization [number of symbols]

Figure 10: Effect of discretization

distribution. Apparently, the data does not follow a Gaussian pattern. Most importantly,
our best technique saves more than 60% of the page accesses required by the A-tree.

5.2 Scalability

We further study the scalability of the OFT indexing structure compared to its competi-
tors. Figure 11 illustrates the number of page accesses required for different index di-
mensionalities on the Hemera and Pixelio database. Starting from an original database of
60-dimensional feature vectors, we reduce them to different lower dimensional represen-
tations using PCA (principle components analysis, as discussed in Section 4.3). As we
can see immediately from the graphs, dimensionality reduction is beneficial for all index
structures as it reduces overlap in the competing approaches and reduces the storage usage
in our OFT approach. Using a discretization to 16 equiwidth partitions clearly outperforms
the competing techniques by at least an order of magnitude.

We further evaluate the performance on a data set of much higher feature vector dimen-
sionality extracted on the Corel and TV databases. Figure 12 depicts the number of page
accesses for different index dimensionalities starting from an original representation of

202

Hemera database Pixelio database

HLS+G(6,3,3,6) DataDim=60 HLS+G(6,3,3,6) DataDim=60

1000 1500 =R Tree
3 =-R*-Tree $ —*A-Tree
@ - @ 1200 ’
2 —+A-Tree e OFT s4
Q Q
g g 900 - -OFT_s16
& ()
© © 600 ,——r’//-"
Q Qo
@ W 300
© ©

0
16 18 20 22 24 26 28 30 32 16 18 20 22 24 26 28 30 32
Index dimensionality Index dimensionality
Figure 11: Variations of the index dimensionality
Corel database TV database
HLS-G(10,5,5,6) DataDim=256 HLS-G(10,5,5,6) DataDim=256

8000 10000
o -#-R*-Tree k4 *
§ 6000 % 3000 -=-R*-Tree
8 —+A-Tree 8 —+A-Tree
s S 6000 - ..
g 4000 g OFT_s4
& 8 4000 | |- -OFT_s16
£ 2000 <
¥ @ 2000
© ©

8 32 128 8 32 128
Index dimensionality (log. scale) Index dimensionality (log. scale)

Figure 12: Variations of the index dimensionality in extreme cases

dimensionality 256. As we can see, R*-tree and A-tree suffer from increasing overlap in
higher dimensionalities. Our OFT approach, however, scales extremely well. Even for this
high dimensionality, the number of page accesses remains low.

To understand the effects of the difference in page accesses, we provide a more detailed
experimental evaluation on the Corel, Pixelio, Hemera, Aloi and TV databases. Figure 13
therefore distinguishes between the number of index pages accessed and the number of
actual data pages with the original representation. For all databases, we see that the number
of index page accesses clearly dominates the number of data page accesses. OFT therefore
outperforms A-trees and R*-trees mainly due to its informative index nodes that provide
relevant information for pruning.

The effect of data dimensionality is analyzed in our next experiment. Figure 14 shows
the results of fixed index dimensionality under varying original feature vector dimension-
alities. Once again, we observe that R*-trees do not scale with the dimensionality of the
data. Compared to the A-tree, we note that our best discretization scheme requires about
one order of magnitude fewer page accesses. Moreover, the performance is very stable
with increasing data dimensionality.

Finally, scalability with respect to database size is demonstrated. Figure 15 illustrates
for a large-scale database, consisting of all 5 data sets, and a dimensionality of 16 and
32, respectively that R*-trees and A-trees do not scale very well with increasing database

203

Corel database
HLS+G(6,3,3,6) IndexDim=16
Index Pages|
OFT_s16 79,88'15,55 m Data Pages
A-Tree 219,2 I1,52
R*-Tree 660,6 .88
0 200 400 600 800
Pixelio database Hemera database
HLS+G(6,3,3,6) IndexDim=16 HLS+G(6,3,3,6) IndexDim=16
] Index Pages|] Index Pages
OFT_s16 165,68 39,72 W Data Pages OFT_s16 52:545,7 ¥ Data Pages
A-Tree 336,2 A-Tree 173,8 h 2
R*-Tree 115336 72 R™-Tree 551,68 Je.s8
[} 200 400 600 800 1000 1200 1400 [} 100 200 300 400 500 600
Aloi database TV database
HLS+G(6,3,3,6) IndexDim=16 HLS+G(6,3,3,6) IndexDim=16
‘ Index Pages| Index Pages|
OFT_s16 22,12 lzs m Data Pages OFT_s16 58,04 2,12 u Data Pages
A-Tree 61,04 I1,4 A-Tree 247,84 2,28
R*-Tree 104,76 I1,4 R*-Tree 1014,48 2,08
0 20 40 60 80 100 120 0 200 400 600 800 1000 1200
Figure 13: Index and data page accesses for data dimensionality = 60
Hemera database
700 IndexDim = 16
1%}
n — -=-R*-Tree
@ 500 ~
Q —-+A-Tree
® 400 -
< A - -OFT_s4
D 5nn]
oo 300 OFT_s8
g - -OFT_sl6
= 200 —— —a
Qo / —_
X -
© 100 HEAN

32 60

data dimensionality

134 256

Figure 14: Influence of the data dimensionality

204

DataDim = 60 DataDim = 60

1600 4000
4 [
2 1200 _=-R*-Tree 3000
S o -=-R*-Tree
© ——A-Tree &
o 800 o 2000 ——A-Tree
e OFT_s16 b
a S e e OFT_s16
w 400 ,__-/_.—/4 b 1000
s & /".___‘—__‘
© ©
o —— .
100 150 200 250 300 350 400 100 150 200 250 300 350 400
database size [in thousand] database size [in thousand]
(a) index dimensionality = 16 (b) index dimensionality = 32

Figure 15: Scalability with respect to the dababase size

size. OFT, on the other hand side, shows remarkably good scalability with respect to the
database size, clearly outperforming its competitors by at least one order of magnitude
also in this respect.

6 Conclusion

Multimedia similarity search in large databases is a challenging task, especially for very
high-dimensional feature vectors. In this work, we have proposed an approach that uses
multimedia indexing structures to improve the overall query processing efficiency. A ma-
jor obstacle for multimedia indexing structures is the fact that with increasing dimension-
ality, overlap leads to a degeneration of indexing structures. We therefore use the concept
of separators to guarantee overlap-free splits. Separators require discretized values and or-
dering of dimensions, for which we presented a transformation that allows lossless query
processing in an efficient multistep filter-and-refine algorithm. Our experiments demon-
strate that our approach successfully scales multimedia similarity search to large and high-
dimensional multimedia databases, clearly outperforming competing indexing structures.

References

[AKASO8] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The TS-Tree: Efficient
Time Series Search and Retrieval. In EDBT, 2008.

[AWSO06] Ira Assent, Marc Wichterich, and Thomas Seidl. Adaptable Distance Functions for
Similarity-based Multimedia Retrieval. Datenbank-Spektrum Nr. 19, pages 23-31,
2006.

[BBJT00] S. Berchtold, C. Bshm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent
Quantization: An Index Compression Technique for High-Dimensional Data Spaces.
In ICDE, pages 577-588, 2000.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-Tree: An Index
Structure for High-Dimensional Data. In VLDB, pages 28-39, 1996.

205

[BKSS90]

[BM70]

[BM72]

[BO97]

[BU77]

[CPZ97]

[Fal96]

[FG99]

[GBSO05]

[Gut84]

[Hem]
[Jol86]
[MNPTO06]

[Pix]
[SamO06]
[SK98]

[SYUKOO]

[TTSF99]

[WSB9S8]

[Zez06]

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-
tree: an efficient and robust access method for points and rectangles. In SIGMOD, pages
322-331, 1990.

Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large Or-
dered Indexes. In Record of the 1970 ACM SIGFIDET Workshop on Data Description
and Access,, pages 107-141, 1970.

Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large Or-
dered Indices. Acta Informatica, 1:173-189, 1972.

T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric
spaces. In SIGMOD, pages 357-368, 1997.

Rudolf Bayer and Karl Unterauer. Prefix B-trees. ACM Transactions on Database
Systems, 2(1):11-26, 1977.

Paulo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces. In VLDB, Athens, Greece, pages 426435, 1997.

Christos Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic
Publishers, Norwell, MA, USA, 1996.

Paolo Ferragina and Roberto Grossi. The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. Journal of the ACM, 46(2):236-280,
1999.

J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders. The Amsterdam Library
of Object Images. Int. J. Comput. Vision, 61(1):103-112, 2005.

Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD, pages 47-57, 1984.

Hemera Photo Objects. http://www.hemera.com.
Ian T. Joliffe. Principal Component Analysis. Springer, New York, 1986.

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and Yan-
nis Theodoridis. R-Trees: Theory and Applications. Springer, London, 2006.

License free photo database. http://www.pixelio.de.
H. Samet. Foundations of Multidimensional and Metric Data Structures. Elsevier, 2006.

Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor search.
In SIGMOD, pages 154-165, 1998.

Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, and Haruhiko Kojima. The
A-tree: An Index Structure for High-Dimensional Spaces Using Relative Approxima-
tion. In VLDB, pages 516-526, 2000.

C. Traina, A. Traina, B. Seeger, and C. Faloutsos. Slim-trees: High Performance Metric
Trees Minimizing Overlap Between Nodes. Springer, 1999.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. A Quantitative Analysis and Per-
formance Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB,
pages 194-205, 1998.

P. Zezula. Similarity Search: The Metric Space Approach. Springer, 2006.

206

