
Verification Witnesses ∗

Dirk Beyer 1, Matthias Dangl 1, Daniel Dietsch 2,

Matthias Heizmann 2, and Andreas Stahlbauer 1

1 University of Passau, Germany 2 University of Freiburg, Germany

http://www.sosy-lab.org/∼dbeyer/verification-witnesses/

Abstract: It is commonly understood that a verification tool should provide a counterex-ample to
witness a specification violation. Until recently, software verifiers dumped error witnesses in
proprietary formats, which are often neither human- nor machine-readable, and an exchange of
witnesses between different verifiers was impossible. We have defined an exchange format for
error witnesses that is easy to write and read by verification tools (for further processing, e.g.,
witness validation). To eliminate manual inspection of false alarms, we develop the notion of
stepwise testification: in a first step, a verifier finds a problematic program path and, in addition to
the verification result FALSE, constructs a witness for this path; in the next step, another verifier
re-verifies that the witness indeed violates the specification. This process can have more than two
steps, each reducing the state space around the error path, making it easier to validate the witness
in a later step. An obvious application for testification is the setting where we have two verifiers:
one that is efficient but imprecise and another one that is precise but expensive. The technique of
error-witness-driven program analysis is implemented in two state-of-the-art verification
tools, CPACHECKER and ULTIMATE AUTOMIZER.

Overview

Software verification becomes more and more important in practice; several breakthroughs

in verification research were achieved during the last decade, and several successful verifica-

tion tools were developed. The TACAS International Competition on Software Verification

(SV-COMP) 1 [Bey14, Bey15] serves as a showcase of the state-of-the-art. Users can choose

from a wide range of verifiers, and the SV-COMP categories give an approximate guidance

on which verifier is good for which kind of programs. One important and unsolved problem

of applying verification technology in practice is that verification tools sometimes produce

false alarms, and it still requires an enormous manual effort to find out if a reported bug

indeed represents a genuine specification violation.

Our solution comprises two components: we developed an exchange format for error

witnesses and evaluated its effectiveness by a thorough experimental evaluation, and we

develop the notion of stepwise testification, as the technique of witness validation immedi-

ately leads to the notion of witness refinement, enabling a chain of verifiers (or testifiers) to

continuously refine the erroneous state space until a test vector for the error is found.

⇤This is a summary of a full article on this topic that appeared in Proc. FSE 2015 [BDD+15].
1http://sv-comp.sosy-lab.org/

Stepwise

Testification

Error-Testification

Step 1

Error-Testification

Step k

Conditional

Model Checking k

Conditional

Model Checking 1

FALSE

+ Violating Test Vector

TRUE

+ Correctness Proof

......

Figure 1: Stepwise testifica-

tion: conceptual view

Testification is the process of giving evidence for a claim

that a given program satisfies, or violates, its specification.

The evidence of the absence, or presence, of a specification

violation is given by one or more witnesses. A verification

tool is a testifier if it provides evidence to support its claim,

i.e., if it produces a witness for correctness or for a violation

of the specification. Stepwise testification is the process

of applying testification in several steps, on ever refined

witnesses, possibly using different verification tools, com-

bining different strengths. Figure 1 illustrates the process of

stepwise testification. Our study explores stepwise testifica-

tion of specification violations by producing error witnesses

(left part), while conditional model checking [BHKW12]

focuses on stepwise testification of correctness.

We accompany the bug report of verifier V1 with an error witness, which represents

information that can effectively guide another verifier V2 to efficiently re-explore the state

space that verifier V1 reported to contain a bug. Our experimental study [BDD+15] confirms

the following insights: (1) our exchange format makes it possible to communicate error

witnesses across verifiers, (2) verifier V2 needs on average considerably less resources

to validate the witness than verifier V1 needed to find the error, even if V2 uses a more

expensive verification technology (e.g., V1 using linear and V2 using bit-precise arithmetic),

(3) stepwise testification can be more efficient than verification, i.e., the CPU time for

V1-verification + V2-witness-validation can be less than the CPU time for V2-verification

alone, (4) the state-space to be analyzed by V2 is effectively reduced.

On the syntactic level, we use XML, more specifically GraphML, as a language to represent

error witnesses. On the semantic level, we use the standard concept of (non-deterministic)

finite automata to represent an error witness. A witness automaton observes the paths that

the verifier explores and directs the exploration engine along the paths that the witness

describes, i.e., towards the violation of the specification. Witnesses can be read by humans

or a witness validator.

Our technique was already used in the two most recent editions of the competition on

software verification. The SV-COMP community manifested in the competition rules that

each answer FALSE must be accompanied by an error witness [Bey15], and requires the

organizer to reasonably validate each witness before assigning a success score, in order to

get more confidence that the error witness indeed represents a valid bug.

References

[BDD+15] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness Validation
and Stepwise Testification across Software Verifiers. In Proc. ESEC/FSE, pages 721–733.
ACM, 2015.

[Bey14] D. Beyer. Status Report on Software Verification. In Proc. TACAS, LNCS 8413, pages
373–388. Springer, 2014.

[Bey15] Dirk Beyer. Software Verification and Verifiable Witnesses (Report on SV-COMP 2015).
In Proc. TACAS, LNCS 9035, pages 401–416. Springer, 2015.

[BHKW12] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional Model
Checking: A Technique to Pass Information between Verifiers. In FSE. ACM, 2012.

